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ABSTRACT

The majority of variants identified by genome-wide
association studies (GWAS) reside in the noncod-
ing genome, affecting regulatory elements includ-
ing transcriptional enhancers. However, characteriz-
ing their effects requires the integration of GWAS
results with context-specific regulatory activity and
linkage disequilibrium annotations to identify causal
variants underlying noncoding association signals
and the regulatory elements, tissue contexts, and
target genes they affect. We propose INFERNO, a
novel method which integrates hundreds of func-
tional genomics datasets spanning enhancer activ-
ity, transcription factor binding sites, and expression
quantitative trait loci with GWAS summary statis-
tics. INFERNO includes novel statistical methods
to quantify empirical enrichments of tissue-specific
enhancer overlap and to identify co-regulatory net-
works of dysregulated long noncoding RNAs (lncR-
NAs). We applied INFERNO to two large GWAS stud-
ies. For schizophrenia (36,989 cases, 113,075 con-
trols), INFERNO identified putatively causal variants
affecting brain enhancers for known schizophrenia-
related genes. For inflammatory bowel disease (IBD)
(12,882 cases, 21,770 controls), INFERNO found en-
richments of immune and digestive enhancers and
lncRNAs involved in regulation of the adaptive im-
mune response. In summary, INFERNO comprehen-
sively infers the molecular mechanisms of causal
noncoding variants, providing a sensitive hypothe-
sis generation method for post-GWAS analysis. The

software is available as an open source pipeline and
a web server.

INTRODUCTION

Genome-wide association studies (GWAS) have success-
fully identified over 50,000 genetic variants associated with
more than 2,300 human diseases and phenotypes (1,2), but
interpretation of these signals remains difficult. First, each
GWAS-identified variant tags linkage disequilibrium (LD)
blocks of potentially functional variants that are inherited
together, and the causal variant underlying the associa-
tion signal may not be genotyped on the platform (3). Sec-
ond, 90% or more of GWAS variants are in the noncod-
ing genome where they do not directly affect coding se-
quences of messenger RNAs (mRNA) (4); rather, they may
affect regulatory elements that modulate mRNA transcrip-
tion levels such as enhancers (5). Enhancers are context-
specific and annotations are incomplete, so information
must be integrated across tissue contexts and data sources
to identify variants affecting enhancer function (6). Finally,
to translate GWAS findings into a deeper understanding of
pathology, enabling the development of novel therapeutics,
it is crucial to identify the tissue-specific target genes of en-
hancers affected by regulatory variation.

Recent large-scale efforts focused on identifying active
regulatory regions within the noncoding genome (7–9), but
the field lacks a comprehensive method for identifying not
only causal noncoding variants and the regulatory elements
they disrupt but also the relevant tissue contexts, target
genes, and downstream biological processes affected by
these variants. A straightforward approach for investigat-
ing noncoding genetic signals is to derive a score measur-
ing the regulatory potential of individual variants; examples
include RegulomeDB, GWAVA, CADD and GenoCanyon
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(10–14). However, these score-based methods do not iden-
tify both the specific affected regulatory elements and the
affected target genes and mostly ignore the reality that vari-
ants may have different impacts on different traits. Hap-
loReg (15) is the best known tool that addresses this sci-
entific need, which expands GWAS tag variants into haplo-
type blocks and overlaps them with chromatin state anno-
tations and expression quantitative trait loci (eQTL), vari-
ants whose alleles are correlated with changes in the expres-
sion level of a target gene, to identify specific regulatory loci
and target genes. However, it offers no way to integrate the
enhancer and eQTL overlap results to characterize the af-
fected tissue contexts, and performs direct eQTL overlap,
which is biased by LD structure and may yield both false
positives and negatives.

To address these issues, we introduce INFERNO (IN-
FERring the molecular mechanisms of NOncoding genetic
variants), a new method that integrates hundreds of diverse
functional genomics data sources across tissues and cell
lines with GWAS summary statistics to identify sets of puta-
tively causal noncoding variants underlying an association
signal and comprehensively characterize the downstream
regulatory effects of these variants including the tissue con-
texts, specific regulatory elements, and target genes that they
affect. INFERNO includes a tissue classification scheme
that integrates information across diverse functional ge-
nomics data sources to characterize the relevant tissue con-
text of functional variants in a hypothesis-free manner. IN-
FERNO also introduces a novel statistical model for quan-
tifying the enrichment of enhancer overlaps in specific tissue
categories for any GWAS data.

To identify tissue-specific affected target genes, IN-
FERNO integrates eQTL data from the GTEx consortium
(16) with GWAS summary statistics using a Bayesian co-
localization model (17). This allows the method to avoid
the biases of directly overlapping GWAS variants with
eQTL measurements and to identify eQTL signals that are
strongly co-localized with association signals. Furthermore,
it identifies functional variants that underlie co-localized
signals and overlap regulatory elements in the matching
tissue category. Many eQTL signals affect long noncod-
ing RNAs (lncRNAs) which in turn can regulate protein-
coding gene expression. INFERNO identifies lncRNA co-
regulatory networks and downstream biological processes
using GTEx RNA sequencing data (16), both across all
tissues and using a novel principal components-adjusted
method to identify tissue-specific regulatory networks. In
summary, INFERNO provides a powerful hypothesis gen-
eration approach for identifying putatively causal regula-
tory signals to guide post-GWAS research.

To demonstrate the utility of INFERNO, we first applied
the method to a large GWAS for schizophrenia (36,989
cases, 113,075 controls (18)). INFERNO uncovered func-
tionally supported variants underlying eQTL signals tar-
geting known schizophrenia genes and novel candidates
related to transmembrane cellular signaling and signifi-
cant enhancer enrichments in neuron-related tissue cate-
gories. We also identified downstream effects of lncRNAs
on several known schizophrenia-related pathways includ-
ing MAPK signaling, splicing, and Herpes simplex infec-
tion which is a known risk factor for schizophrenia (19). We

then applied INFERNO to a large GWAS for inflammatory
bowel disease (IBD) (12,882 cases and 21,770 controls) (20).
INFERNO identified enhancer enrichments in immune and
digestive tissues and effects on IBD-related pathways in-
cluding adaptive immune response and leukocyte activa-
tion. INFERNO is available as an open source software
package, and users can analyze top GWAS variants using
the web server at http://inferno.lisanwanglab.org/.

MATERIALS AND METHODS

INFERNO pipeline implementation

The open source INFERNO pipeline is implemented using
Python v2.7.9, R v3.2.3, and bash, and is available at https:
//bitbucket.org/wanglab-upenn/INFERNO. The pipeline
can run any or all of the analysis steps spanning annota-
tion, enhancer enrichment analysis, eQTL co-localization,
lncRNA co-regulatory network identification, and pathway
analysis and implements user-definable parameters for each
step, and can be run on bsub-based servers or directly in a
bash shell.

P-value and LD expansion of top GWAS variants

INFERNO starts with GWAS summary statistics and a set
of user-defined top tagging variants as input. First, each top
variant is expanded into a set of putative causal variants for
further examination. In the p-value expansion mode, IN-
FERNO computes a set of all variants i within 500 kb of
each tagging variant such that pi ≤ m * pt where pi is the
p-value for variant i, pt is the p-value of the tagging vari-
ant, and m is the user-defined multiplicative constant, 10 by
default for one order of magnitude. These sets are pruned
by LD using PLINK v1.90b2i 64-bit (21) with ‘–indep-
pairwise 500 kb 1 0.7′ (within 500 000 bp and meeting a cor-
relation threshold of r2 > = 0.7, which are user-definable pa-
rameters). LD structure is estimated using phase 3 version
1 (11 May 2011) of the 1000 Genomes Project (22). For the
GWAS analyses in this manuscript, data from the European
(EUR) population was used, but INFERNO users can also
select LD structure data from 1000 Genomes for African
(AFR), Asian (ASN), and South American (AMR) popula-
tions. Then, variants are re-expanded by LD structure using
the same distance and r2 parameters. INFERNO also im-
plements a direct expansion mode where input tag variants
are directly expanded by LD structure.

Genomic partition analysis

Variants were categorized into different functional cate-
gories using the UCSC knownGene and RepeatMasker an-
notations for the hg19 genome build. Only chr1-22, X and
Y are used in INFERNO. The 5′ UTR exons and introns,
3′ UTR exons and introns, and exons and introns were ex-
tracted from the knownGene annotation for each protein-
coding gene, and all overlapping exons were merged to-
gether. Promoter annotations were defined as 1000 bp up-
stream of the first exon in the transcript, either coding or
in the UTR. Variants were then assigned to mutually ex-
clusive genomic element annotations using the hierarchy: 5′
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UTR exon > 5′ UTR intron > 3′ UTR exon > 3′ UTR in-
tron > promoter > mRNA exon > mRNA intron > repeat.
A variant not overlapping with any class of elements above
was classified as intergenic.

Functional annotation data download and pre-processing

FANTOM5 enhancer facet-level expression BED files,
Roadmap ChromHMM BED files for the five core
Roadmap marks (H3K4me3, H3K4me1, H3K36me3,
H3K27me3, H3K9me3), HOMER TFBS annotations, and
GTEx v6p eQTL and RNAseq data were downloaded from
their respective servers and further processed using the bed-
tools suite (23) and custom awk and Python scripts.

Dataset classification into tissue categories

Building off existing categorization of Roadmap samples
and informed by the UBERON and CL ontologies (24,25)
used in the FANTOM5 facet-level classification and in
GTEx, the different tissues and cell types from each data
source were grouped into 32 major classes, with some data
sources further grouped into 58 secondary and 15 tertiary
sub-classes (Supplementary Tables S1–S3).

Quantification of enhancer enrichments

10,000 random sets of background variants matched to the
input set of variants (the LD pruned set for p-value ex-
pansion or the input for direct expansion) by distance to
the nearest gene, minor allele frequency, and the number
of variants in each tagged LD block are sampled. The vari-
ants from each background set are then expanded into their
corresponding LD blocks to match the number of vari-
ants in the LD expanded input set and overlapped with the
same sets of functional annotations. Then, the empirical p-
value for the significance of the overlap of the input data
with each functional annotation or combination of anno-
tations a (e.g. eRNA enhancer overlap, or both eRNA en-
hancer overlap and eQTL overlap) in a given tissue cate-
gory t is defined as pa,t = (1 + ba,t) / (1 + 10 000), where
ba,t is the number of background samples that include at
least as many variant counts overlapping the annotation a
in the tissue context t as the input dataset. These counts are
calculated so that each LD block only contributes one ef-
fective count for annotation overlap in order to correct for
LD structure by default, but INFERNO also reports results
counting each variant in an LD block separately. These em-
pirical p-values are corrected for multiple testing using the
Benjamini–Hochberg procedure (26). INFERNO reports
empirical p-values both within and across tag regions.

eQTL co-localization analysis

INFERNO uses the COLOC R package (17) to perform
co-localization of the eQTL signals tested in GTEx v6p
in 44 tissues against GWAS summary statistics. For each
tag region and GTEx tissue, the script identifies all the
genes tested for eQTL with the tagging variant in the re-
gion, reads in the eQTL data for each gene, and per-
forms co-localization analysis using all the GWAS vari-
ants 500,000 bp on either side of the tag variant that are

also found in the eQTL data. Minor allele frequencies
(MAFs) can be defined by the user or can be extracted from
1000 genomes data using a custom preprocessing script.
Then, the MAF and p-values of variants in the GWAS and
eQTL datasets are used for co-localization analysis, includ-
ing a user-defined sample size and case/control ratio for the
GWAS of interest. Only variants with MAF ≥ 1% are in-
cluded in the eQTL data by design of the GTEx consortium.

lncRNA cross-tissue and tissue-specific correlation analysis

To characterize co-regulatory networks of lncRNAs with
eQTLs, reads per kilobase per million (RPKM) values
across all RNA-sequenced samples in GTEx are used.
GENCODE annotations are used to identify GTEx target
genes that are categorized as lncRNAs (27), and correla-
tions of the lncRNA RPKM vectors against all genes are
computed using corr.test from the psych R package. Genes
not expressed in any sample are excluded. Two correla-
tion measures are computed: the Pearson correlation, which
measures the linear relationship between two variables, and
the Spearman correlation, which is a rank-based test that
does not assume a linear relationship. User-defined param-
eters on the absolute values of the Spearman and Pearson
values, 0.5 by default, are used to identify lncRNA target
genes.

For tissue-specific correlation analysis, to avoid spuri-
ous intra-tissue correlations due to sample characteris-
tics such as read depth, INFERNO performs a principal
components-based correction analogous to PEER correc-
tion in eQTL scans or population stratification in GWAS
studies. We generate a matrix of gene expression (in RPKM)
Gc of size nc × kc, where nc is the number of samples in tissue
category c and kc is the number of genes that are expressed
in at least one sample in category c. Then, the tissue-specific
sample correlation matrix Cc of size nc x nc is defined as Gc
× G’c. Principal components (PC) analysis using center-
ing and scaling was performed with the prcomp function in
R, and the top 10 PCs for each sample were saved. To per-
form tissue-specific correlation analysis, the gene expression
vectors for each lncRNA of interest and gene expressed in
category c are modeled by linear regression against a user-
defined number of PCs, 10 by default, and correlation is per-
formed on the regression residuals.

WebGestalt pathway analysis

The pathway analysis script uses the WebGestaltR pack-
age (R ≥ 3.3) (28–30) to query pathway annotations over
the Internet and performs pathway analysis of co-localized
eQTL target genes, eQTL target genes within tissue cate-
gories, cross-tissue lncRNA targets, tissue-specific lncRNA
targets, and cross-tissue and tissue-specific targets of indi-
vidual lncRNAs against the KEGG, Gene Ontology Bio-
logical Process (BP), Gene Ontology Cellular Component
(CC), and Gene Ontology Molecular Function (MF) path-
way databases. For all three Gene Ontology categories, the
‘no redundant’ annotations were used to reduce redundant
genes in each given pathway of interest. Pathway analysis on
targets of individual lncRNAs is also performed if the num-
ber of genes targeted by that lncRNA exceeds the minimum
pathway overlap threshold.
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MetaXcan analysis

INFERNO implements MetaXcan analysis (31–33) using
GTEx v7 models from the PredictDB database and calls
MetaMany.py from MetaXcan to analyze GWAS summary
statistics.

LD score regression

INFERNO implements partitioned heritability LD score
regression analysis using data and scripts provided at
http://data.broadinstitute.org/alkesgroup/LDSCORE/
(34,35). INFERNO uses 1000 Genomes Phase 1 baseline
model LD scores, regression weights, and allele frequencies,
and the munge sumstats.py and ldsc.py scripts.

Schizophrenia GWAS analysis

The full summary statistics file (scz2.snp.results.txt) and 128
top variants (scz2.rep.128.txt) for the schizophrenia anal-
ysis were obtained from the Psychiatric Genomics Con-
sortium website. Top variants were parsed to remove vari-
ants on sex chromosomes or indels and converted into IN-
FERNO input format using awk scripts. Summary statis-
tics were annotated with minor allele frequencies from
the 1000 genomes data using a custom script, anno-
tate input variants.R, in the data preprocessing/ section of
the INFERNO code. These parsed files were then used as
input to INFERNO with no p-value expansion.

IBD GWAS analysis

The full summary statistics file for the European popu-
lation IBD analysis (EUR.IBD.gwas info03 filtered.assoc)
was obtained from the International Inflammatory Bowel
Disease Genetics Consortium (IIBDGC) website and an-
notated with 1000 Genomes minor allele frequencies. We
selected 60 genome-wide significant variants by filtering the
IBD GWAS p-value to 5 × 10−8 in the ‘All loci - Eur.’ tab of
Supplementary Table S1 from Liu et al. (20). These parsed
files were then used as input to INFERNO with no p-value
expansion using the EUR 1000 Genomes population.

RESULTS

Overview of INFERNO pipeline

INFERNO consists of four stages (Figure 1): (i) Define sets
of all potentially causal variants underlying each top GWAS
signal. (ii) Characterize these variants by overlapping with
various functional genomics data sources including epige-
nomic states, enhancer annotations, and overlap with mes-
senger RNA (mRNA) and repeat elements. (iii) Identify
tissue-specific effects on target genes using Bayesian co-
localization of GWAS and eQTL data. (iv) Integrate infor-
mation from all previous steps using a tissue categorization
framework to identify functional variants with concordant
annotation support, the tissue contexts of enhancer-gene
interactions, target genes with strong functional support,
significant tissue-specific enrichments of enhancer overlaps,
and the downstream biological processes affected by disrup-
tion of target genes and long noncoding RNAs.

Figure 1. Outline of INFERNO pipeline approach.

Defining comprehensive sets of potentially causal variants
from GWAS findings

Given a user-defined list of top variants and summary
statistics from a given GWAS, INFERNO provides two
approaches for defining comprehensive sets of putatively
causal variants underlying each top association signal
(Methods). For high powered GWAS datasets with dense
association signals, or where summary statistics are not
available, INFERNO uses data from the 1000 Genomes
Project (22) in a user-defined population (European,
African, East Asian, or admixed American) to define
blocks of variants in linkage disequilibrium (LD) with user-
specified top variants using parameters for the threshold on
r2 and maximum size of each LD block (0.7 and 500Kbp by
default, respectively). For lower-powered GWAS datasets
or those with sparse association signals, INFERNO uses
GWAS summary statistics to identify all significant or
almost significant variants within a user-defined window
around each tagging variant (p-value expansion). This set
is pruned by LD structure using PLINK (21), where rep-
resentative subsets of variants within each LD block are
chosen such that subjecting them to LD expansion recap-
tures the other variants in the LD block. These LD block-
tagging variants are re-expanded into full LD blocks us-
ing PLINK. For lower-powered GWAS data, the p-value
expansion enables the analysis of nominally significant sig-
nals near genome-wide significant signals by taking the full
GWAS summary statistics as well as LD structure into ac-
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count, potentially capturing causal variants underlying as-
sociation signals. For GWAS datasets with larger sample
size and denser association signals such as the two datasets
we analyzed in this study, we recommend direct LD expan-
sion from the tagging variants to avoid confounding sepa-
rate genome-wide significant signals that are close to each
other.

Annotation of expanded variant sets with transcriptional reg-
ulatory elements

To identify noncoding genetic variants, INFERNO quanti-
fies the proportion of variants overlapping messenger RNA
(mRNA) promoters, exons (i.e. coding variants), introns, 5′
untranslated region (UTR) exons and introns, 3′ UTR ex-
ons and introns, and RepeatMasker genomic repeats includ-
ing LINEs and SINEs. Any variant outside all of these re-
gions is classified as intergenic. All variants are subjected to
annotation overlap regardless of genomic partition.

Next, each variant is overlapped with two complemen-
tary enhancer data sources. The first are sites of enhancer
RNA (eRNA) transcription, which reflects enhancer ac-
tivity (36), as assayed by cap analysis of gene expression
(CAGE-seq) data generated by the FANTOM5 consor-
tium across 112 tissue and cell type groupings (7). The
second is enhancer states defined by ChromHMM (37)
using combinatorial epigenomic states measured by chro-
matin immunoprecipitation and sequencing (ChIP-seq) of
five histone modifications, which mark active enhancers in
a stereotypical pattern (38,39), across 127 tissues and cell
types generated by the Roadmap Epigenomics Project (8)
and by the Encyclopedia of DNA Elements (ENCODE)
project (9,40). In the Roadmap analysis, variants are over-
lapped with a total of 15 ChromHMM states including
three types of enhancer states, sites of genic transcription,
repressed regions, and active promoters, another type of
transcriptional regulatory element that may harbor causal
variants underlying an association signal. Enhancer over-
lap in all tissues and cell types from FANTOM5 and/or
Roadmap is reported for each variant in the full expanded
set.

In addition to overlapping variants with functional ge-
nomics annotations across tissues, INFERNO includes a
sequence-based analysis to find variants affecting transcrip-
tion factor binding sites (TFBSs) identified by the HOMER
tool (41) (see Materials and Methods). INFERNO uses
positional weight matrices (PWMs) to compute the differ-
ence in the log-odds binding probability of each affected
TFBS between the reference and alternate alleles of the
overlapping genetic variant (�PWM score) in order to iden-
tify genetic variants that either increase or decrease TFBS
strength.

Tissue categorization of annotations and integrative analysis

Combining information across complementary sources of
functional genomics data enables the comparison of evi-
dence from independent experiments to improve sensitiv-
ity and robustness. However, it is not possible to directly
compare results across the three consortia analyzed by IN-
FERNO (FANTOM5, Roadmap, and GTEx) because each

assayed different tissue types and cell lines at different lev-
els of biological complexity. To integrate evidence from
these disparate data sources, we designed a tissue classi-
fication scheme that grouped individual samples from all
3 data sources into one of 32 tissue categories (Supple-
mentary Tables S1–S3, Supplementary Figure S1, Materi-
als and Methods). This categorization approach provides
additional power over using the individual enhancer data
sources on their own, as an average of only 38% of FAN-
TOM5 enhancers and 1.2% of Roadmap enhancers are
shared between the two data sources within tissue cate-
gories (Supplementary Figure S2). This integrative catego-
rization provides a high-level view of the affected tissue con-
texts across consortia, allowing for easy identification of the
tissue contexts harboring noncoding elements affected by
variants within each GWAS tag region.

Background sampling for enrichment of enhancer overlaps

Due to the widespread regulatory activity in the noncod-
ing genome (9), selecting a large set of genetic variants in
an LD block and overlapping them with hundreds of func-
tional measurements may yield many overlaps simply by
chance. To quantify the significance of enhancer overlap
enrichment, INFERNO includes a statistical sampling ap-
proach to define empirical p-values for the enrichment of
overlaps for each pair of annotations a and tissue category
t within individual GWAS tag regions as well as across all
tag regions (e.g. a = FANTOM5 enhancers, t = brain, see
Materials and Methods). This provides statistical evidence
of enhancer dysregulation aggregated across all genome-
wide significant loci as well as enrichments within individ-
ual loci. INFERNO provides results from two modes of
sampling: (i) LD-collapsed, where any number of variants
that overlap a given annotation but are in LD with each
other contribute just one count to that annotation-tissue
category combination; (ii) direct, where each variant over-
lapping an annotation in a tissue category contributes one
to the observed counts, regardless of other overlaps in the
same LD block. The LD-collapsed approach is consistent
with other genomic enrichment tools including GREGOR
(42), while the direct approach is more sensitive in detecting
large regions of regulatory annotations within LD blocks.
As an alternate approach for quantifying the genome-wide
enrichment of GWAS signals in various functional annota-
tions, INFERNO can perform stratified LD score regres-
sion (34,35) against the 53 functional annotations from the
full baseline model. We emphasize that the INFERNO en-
richment analysis is distinct from LD score regression in
that it focuses on identifying enhancer enrichments within
significant loci rather than genome-wide enrichment, which
could occur even without any genome-wide significant sig-
nal.

eQTL co-localization analysis

Current noncoding genetic variation annotation methods
can identify functional variants and affected regulatory el-
ements, and in some cases provide a hypothesis-free char-
acterization of the relevant tissue context (14), but do not
fully characterize the affected target genes. These methods
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either assume that the nearest gene is the affected transcript
or directly overlap variants with eQTLs, including Hap-
loReg, which uses eQTL signals from 14 sources. However,
the closest gene is typically not the target of transcriptional
regulatory elements (5), and direct overlap of variants with
eQTL signals is biased by genomic LD structures, where an
eQTL association signal may be spread across a haplotype
block so that the measured variant is not the causal regula-
tory variant.

When summary statistics are not available, INFERNO
performs direct overlap with eQTL signals across 44 tis-
sues from the Genotype-Tissue Expression (GTEx) project
(16). If summary statistics are available, INFERNO per-
forms co-localization analysis using the COLOC method to
control for bias from LD structures (17). This model uses a
Bayesian statistical model to calculate posterior probabili-
ties for different causality relationships between GWAS and
tissue-specific eQTL signals. The most relevant hypothesis
from the COLOC output for INFERNO is H4, that there
is a shared causal variant underlying both the eQTL sig-
nal and the GWAS disease signal. INFERNO performs co-
localization analysis comparing all GWAS signals within
500kb of each tag variant with eQTL signals across all 44
GTEx tissues (Methods). Strongly co-localized signals are
defined as a user-definable threshold on P(H4), 0.5 by de-
fault representing a higher chance of a co-localized signal
than any other hypothesis. COLOC also reports the proba-
bility of any individual variant being the shared causal vari-
ant, measured by the Approximate Bayes Factor (ABF). For
further analysis of putatively causal variants, INFERNO
defines sets of variants accounting for at least half of the
cumulative ABF distribution at each strongly co-localized
signal. This allows for the sensitive detection of truly co-
localized signals to identify causal variants, the target genes
they affect, and the tissue context of the regulation.

As an alternate approach for identifying affected genes,
INFERNO also provides an option to perform MetaXcan
analysis (31–33) using GTEx data as the reference tran-
scriptome dataset to perform gene-based association map-
ping given GWAS summary statistics. MetaXcan identifies
tissue-specific effects on genes but does not prioritize indi-
vidual variants, so only COLOC results can be integrated
with the variant-based analyses in the rest of the INFERNO
pipeline.

Integrative analysis of co-localized eQTLs with annotations

To integrate the results between the enhancer and eQTL
analyses, INFERNO uses the tissue categorizations of the
FANTOM5, Roadmap, and GTEx datasets to filter vari-
ants in the ABF-expanded sets underlying a co-localized
signal to only those overlapping an enhancer from the con-
cordant tissue class. Those variants are then prioritized
based on whether they overlap a TFBS and/or have a high
individual ABF value (Materials and Methods). Prioritiza-
tion by ABF enables the identification of highly confident
single variants, but single variants with high ABF may be
difficult to detect in complex LD regions, so prioritization
by TFBS can distinguish potentially causal variants from
sets of variants with low ABF. This integration of diverse
data types spanning epigenomic marks, enhancer activity,

transcription factor motifs, and eQTL signals provides a
useful tool to identify causal variants, affected target genes,
and relevant tissue contexts in an unbiased fashion. Fur-
thermore, if users have an a priori assumption about which
tissue categories might be relevant for their trait of interest,
INFERNO can further prioritize variants from those spe-
cific categories.

Identification of co-regulated networks mediated by lncRNAs

Finding a GTEx eQTL signal supported by concordant en-
hancer support may be only the first step to understand-
ing the affected regulatory mechanism underlying a ge-
netic association signal because the eQTL may target a
long noncoding RNA (lncRNA), which can in turn act as
a transcriptional regulatory element for other genes (43).
Although tools for lncRNA target prediction in specific
contexts exist, lncRNA targeting mechanisms are not fully
characterized, so INFERNO takes an unbiased approach
to find genes that may be co-regulated with or directly regu-
lated by lncRNAs: RNA sequencing-based expression vec-
tors of all expressed genes in the genome across all samples
and tissues from GTEx are correlated with the expression
vector of a lncRNA of interest. Then, genes with correla-
tion values meeting user-specified thresholds on the abso-
lute value of Spearman and/or Pearson correlations across
all tissues (0.5 by default, Methods) are considered to be co-
regulated with the lncRNA of interest, in line with previous
approaches to lncRNA target identification (44). We ana-
lyzed 1,417,168,941 pairs of transcripts expressed in GTEx
and 6,007,249 met both correlation thresholds, indicating
that the default settings roughly correspond to the top 0.5%
of interactions transcriptome-wide (Supplementary Figure
S3A). To identify tissue-specific lncRNA co-regulatory net-
works, INFERNO also performs a principal components-
corrected intra-tissue category correlation analysis (Meth-
ods, Supplementary Figure S3B). These approaches provide
lists of co-regulated genes based on expression correlation,
which are potential lncRNA targets, but cannot character-
ize the direction of causality for lncRNA–mRNA relation-
ships. Thus, INFERNO identifies putative co-regulatory
networks affected by genetic variants across tissues and
within tissue categories. This analysis is done automatically
within INFERNO after the co-localization analysis is com-
plete.

Tissue-specific pathway analysis of co-localized eQTL target
genes and lncRNA targets

To characterize the biological processes affected by co-
localized eQTL target genes as well as potential targets of
co-localized lncRNAs, INFERNO uses the WebGestaltR
package (28–30) to perform pathway analysis (Materi-
als and Methods). This analysis is performed on all co-
localized eQTL target genes, eQTL target genes within tis-
sue categories, cross-tissue lncRNA targets, tissue-specific
lncRNA targets, and cross-tissue and tissue-specific targets
of individual lncRNAs.
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Application to schizophrenia GWAS

To demonstrate INFERNO’s utility, we analyzed a GWAS
dataset for schizophrenia from the Psychiatric Genomics
Consortium with 94 LD-independent signals (n = 36,989
cases, 113,075 controls, (18), skipping variants on chromo-
some X due to lack of annotations for indels). Due to the
density of genome-wide significant association signals in
this dataset, we performed this analysis using direct LD
expansion from the tagging variants. LD expansion with
a threshold of r2 > = 0.7 in the European population of
1000 genomes yielded 4,329 unique variants (Figure 2A).
Only 40 of these were located in messenger RNA (mRNA)
exons. The majority were in mRNA introns (1,354), re-
peat elements (1,175), or outside of any annotations (1,010)
(Figure 2B), suggesting potential noncoding impact. Over-
lapping these variants with enhancer annotations found
widespread enhancer signals in the Roadmap data, with
2,215 (51%) variants overlapping a ChromHMM enhancer
state in at least one tissue (Figure 2C). The FANTOM5
overlaps were limited due to the more conservative nature
of the eRNA measurements, with 103 (2.4%) variants over-
lapping a FANTOM5 enhancer in at least one tissue. Fi-
nally, overlap with HOMER TFBSs found that 2,013 (46%)
unique variants overlapped TFBSs for 227 unique tran-
scription factors for a total of 4,869 variant––TFBS over-
laps. The majority (4,073) of these overlaps lowered the pre-
dicted binding strength (Figure 2D).

The INFERNO LD-collapsed sampling procedure iden-
tified significant enrichments of enhancer overlaps in 2
FANTOM5 tissue categories, 12 Roadmap tissue categories
and 4 categories for concordant FANTOM5+Roadmap
overlap (Figure 2E). This wide range of tissue categories re-
flects the low tissue-specificity of the regulatory elements af-
fected by individual schizophrenia-associated genetic vari-
ants. There was no enrichment for brain annotations af-
ter multiple testing correction, with the lowest p-value (un-
adjusted empirical p-value = 0.0344) for Roadmap over-
laps alone. The neuron datasets from both FANTOM5 and
Roadmap are grouped into the ‘nervous’ category (adjusted
p-value = 0.0564 for Roadmap) rather than brain, suggest-
ing that neuronal regulatory mechanisms may be more ge-
netically affected than higher-level signals measured from
homogenized brain region samples in the brain category
containing mixtures of various cell types, only a fraction of
which may mediate schizophrenia predisposition.

Specific enriched categories with previously described
relevance to schizophrenia include: blood vessel (45); en-
docrine, specifically thyroid hormones (46); female repro-
ductive, given the later average onset of schizophrenia and
reduced incidence rate in women (47); heart (48); immune
organ, given the strong epidemiological and molecular ge-
netic evidence of immune dysfunction and gastroenterolog-
ical issues in schizophrenia (49–51); developmental cate-
gories such as stem cell and iPSCs (52,53); lung (54); pla-
centa (55); and nervous (56). No individual tag regions were
found to have LD-collapsed significant enrichments.

Comparison of the LD-collapsed enrichment counts with
the direct count-based enrichment counts found fewer
cross-tag region enrichments, including in the immune or-
gan and epithelial categories, but did not identify an en-

richment in stem cell (Supplementary Figure S4) or in
brain. However, this approach yielded significant enrich-
ments within 46 individual tag regions, including for brain
in 4 tag regions (Supplementary Table S4).

Next, 103,016 co-localization tests for 2,928 genes
(COLOC) were performed across the 94 tag regions, identi-
fying 942 unique tissue-target gene eQTL signals spanning
all 44 GTEx tissues and 286 unique genes (including 53
lncRNAs from 34 tissues) that were strongly co-localized
with schizophrenia GWAS signals (Supplementary Table
S5, Supplementary Figure S5). Pathway analysis on the 286
co-localized target genes found no significant enrichments.
We cross-referenced these genes with several schizophrenia
differential gene expression datasets (57–63), but found that
only 14 co-localized genes were significantly differentially
expressed across these datasets.

To prioritize the strongest signals from this analysis, we
identified five regions harboring co-localized eQTL and
GWAS signals supported by variants with individually high
ABFs as well as enhancer overlaps from the same tis-
sue category: rs4766428 (12q24.11), rs12826178 (12q13.3),
rs56205728 (15q15.1), rs4702 (15q26.1), and rs6002655
(22q13.2) (Figure 3A, Supplementary Table S5, Table 1).
In all these regions, the prioritized variant was also the tag
variant, but this is not necessarily always the case.

We focused on the 12q24 region around rs4766428, the
only high ABF signal with TFBS overlap. rs4766428 it-
self was prioritized as having high ABF underlying 12 dis-
tinct eQTL signals including for C12orf76 and VPS29 in
the brain category and TCTN1 in the nerve tissue cate-
gory (Figure 3B). Note that this variant lies in an intron
of ATP2A2 but is not co-localized with an eQTL for that
gene. These three genes are all involved in transmembrane
cellular processes: C12orf76 is an unannotated transcript
associated with the ‘ion channel activity’ GO pathway (64),
VPS29 is part of a group of vacuolar sorting proteins (65),
and TCTN1 encodes a family of secreted transmembrane
proteins involved in ciliopathies and several cancer types
(66). This variant also disrupts binding sites for ERRA,
PPARg and RXR (�PWM = −1.95, −1.84, −2.06, re-
spectively). Of particular relevance is the ChromHMM en-
hancer overlap in brain dorsolateral prefrontal cortex (high-
lighted with red box in Figure 3B), although several other
brain regions have also been implicated in schizophrenia
(67).

Using the top 94 LD-independent signals as input, Hap-
loReg detected almost none of the top results identified by
INFERNO. In the rs4766428 region, HaploReg did not
identify any brain signals for VPS29 and did not identify
any eQTL signals at all for C12orf76 and TCTN1. In the
rs1286178 region, HaploReg did not detect any eQTL sig-
nal for rs1286178. In the rs56205728 region, HaploReg did
not identify the brain signals for BUB1B or the PAK6 signal.
In the rs4702 region, HaploReg detected the FES signals in
pancreas but not subcutaneous adipose, detected the FU-
RIN signal in esophagus mucosa, and missed the SLCO3A1
fibroblast signal, although it identified additional FES sig-
nals in fibroblasts and thyroid that INFERNO did not iden-
tify as strongly co-localized signals (P(H4) = 0.08 and 0.40,
respectively). In the rs6002655 region, HaploReg detected a
signal for NDUFA6-AS1, but not in whole blood, and did
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Figure 2. Characteristics of expanded variant sets for schizophrenia analysis. (A) Number of variants after LD expansion. (B) Genomic partitions of ex-
panded set variants across tag regions. (C) Summary of tissue category FANTOM5 and Roadmap enhancer overlaps across tag regions. (D) Distribution of
�PWM scores for variants overlapping HOMER TFBSs. (E) Empirical enrichment of variants overlapping enhancers from FANTOM5 and/or Roadmap
in specific tissue categories.
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Figure 3. Results of GTEx co-localization analysis with schizophrenia GWAS. (A) Top results from co-localization analysis integrated with annotation
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Table 1. Summary of INFERNO region prioritizations for schizophrenia. Strong ABF refers to signals where one variant had an ABF of 0.50 or higher
for a co-localized eQTL signal

Prioritized variant Prioritization approach Tissue and target gene

rs4766428 (12q24.11) Strong ABF + TFBS + concordant
enhancer

12 signals including C12orf76 and VPS29 in brain and
TCTN1 in nerve

rs12826178 (12q13.3) Strong ABF + concordant enhancer TSPAN31 in blood
rs56205728 (15q15.1) Strong ABF + concordant enhancer BUB1B in brain, PAK6 and PLCB2 in skeletal muscle
rs4702 (15q26.1) Strong ABF + concordant enhancer FES in subcutaneous adipose and pancreas, SLCO3A1 in

transformed fibroblasts, and FURIN in esophagus mucosa
rs6002655 (22q13.2) Strong ABF + concordant enhancer NDUFAF6, RANGAP1, RP4-756G23.5 in blood

not identify any eQTLs for RANGAP1 or RP4-756G23.5.
These discrepancies suggest that the comprehensive use of
functional annotations and the Bayesian co-localization ap-
proach integrating eQTL data with GWAS summary statis-
tics in INFERNO provides a more sensitive approach than
the generic annotations in HaploReg.

Next, we performed correlation-based target identifica-
tion for the lncRNAs reported by INFERNO. INFERNO
identified 5,893 unique genes co-regulated with 42 unique
lncRNAs from 33 tissues and 15 tissue classes (Supplemen-
tary Figure S6). We first performed pathway analysis on all
5,893 genes across 4 functional annotation databases. This
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found significant enrichments in 107 pathways (Supplemen-
tary Table S6) including previously reported schizophrenia-
related pathways such as RNA splicing (FDR = 2.04 ×
10−11 (68)), phosphatidylinositol signaling (FDR = 0.0011
(69)), MAPK signaling pathway (FDR = 0.044) (70), Th1
and Th2 cell differentiation (FDR = 0.013 (71)), T cell re-
ceptor signaling (FDR = 0.013 (72)), spliceosome (FDR
= 0.00045 (68)) and RNA transport (FDR = 0.023 (73)).
One intriguing finding was the enrichment of the Herpes
simplex infection (hsa05168, FDR = 0.025). Maternal Her-
pes simplex virus (HSV) infection may lead to increased
risk of schizophrenia in their offspring (19) and HSV ex-
posure may exacerbate cognitive function impairment in
schizophrenic patients (74). We used PC-adjusted tissue-
specific correlation to find putative tissue-specific lncRNA
targets, which identified 2,938 unique genes targeted by 22
lncRNAs across 14 tissue categories, 1,438 of which were
also identified by the cross-tissue approach. Tissue-specific
pathway analysis of these 2,938 genes identified 84 enriched
pathways across eight tissue categories (Figure 4, Supple-
mentary Table S6). In brain, there were several enrichments
for DNA repair-related pathways (75), and in blood, several
enrichments were observed for immune-related pathways.

Application to inflammatory bowel disease GWAS

Due to the relative undersampling of functional datasets
in the brain category for the schizophrenia analysis, we
also applied INFERNO to an Inflammatory Bowel Disease
(IBD) GWAS in Europeans (n = 12,882 cases and 21,770
controls) (20) with 60 genome-wide significant loci (Mate-
rials and Methods). Using the same parameters as in the
schizophrenia analysis, INFERNO identified 2,649 poten-
tially causal variants. Only 56 overlapped with mRNA ex-
ons. 1,638 (61%) variants overlapped with a ChromHMM
enhancer state, while 181 (6.8%) overlapped with FAN-
TOM5 enhancers. 1,259 (47%) overlapped with TFBSs for
58 unique TFs, for a total of 2,925 variant-TFBS overlaps,
with the majority (2,449) of these lowering the predicted
binding strength (Supplementary Figure S7A–D).

LD-collapsed sampling found significant enrichments of
enhancer overlaps in eight FANTOM5 tissue categories, 16
Roadmap tissue categories, and four categories for concor-
dant FANTOM5+Roadmap overlap (Supplementary Fig-
ure S7E). Several of these enrichments are as expected from
an immune-related trait such as IBD, including the blood
category (which includes all the T- and B-cell line datasets
and was enriched for FANTOM5, Roadmap, and concor-
dant overlaps), the immune organ category (which was en-
riched for Roadmap overlap), and the digestive category
(which was enriched for all three types of overlaps).

Next, 85,609 co-localization tests were performed for
2,408 genes across the 60 tag regions, identifying 647 unique
tissue-target gene co-localized eQTL signals spanning all
44 GTEx tissues and 202 unique genes (including 40 lncR-
NAs in 34 tissues) that were strongly co-localized with IBD
GWAS signals (Supplementary Figure S8, Supplementary
Table S7). Pathway analysis returned the IBD KEGG path-
way (FDR = 0.0005) and found additional enrichments in
leukocyte differentiation (FDR = 0.0098), leukocyte cell-
cell adhesion (FDR = 0.0098), and the vacuolar cellular

component (FDR = 0.0096), supporting their relevance to
the trait.

Co-regulatory network analysis found 4,750 unique
cross-tissue genes for 34 out of 40 lncRNAs from the
co-localization analysis. These genes were enriched for
140 pathways including dozens of immune-related path-
ways such as the adaptive immune response (FDR = 0),
leukocyte-mediated immunity (FDR = 0), and B cell activa-
tion (FDR = 6.93 × 10−11), and the IBD KEGG pathway
as well (FDR = 9.303 × 10−7) (Supplementary Table S8).
The enrichment of leukocyte-related pathways in both the
COLOC genes and lncRNA targets supports their relevance
to IBD, which is characterized by infiltration of circulating
leukocytes into inflamed intestinal mucosa (76). The tissue-
specific co-expression approach identified 959 unique genes
targeted by 21 lncRNAs across 10 tissue categories, 344 of
which were also found in the cross-tissue approach. Tissue-
specific pathway analysis identified 58 enriched pathways
across four tissue categories (Supplementary Table S8), in-
cluding immunological synapse (FDR = 0.0089) and the
Ras signaling pathway (FDR = 0.0462) in blood.

Web server and tool availability

We provide a web server (http://inferno.lisanwanglab.org)
for INFERNO that accepts the top variants from any given
GWAS, expands them by LD, and performs the annota-
tion overlap analysis including directly overlapping vari-
ants with GTEx eQTL data. To run the computation-
ally intensive enhancer sampling, eQTL co-localization,
lncRNA correlation, and pathway enrichment analyses, IN-
FERNO is also available as an open source pipeline (https://
bitbucket.org/wanglab-upenn/INFERNO). INFERNO in-
cludes a master script that can be customized by the user
to run any or all of the individual analysis steps (Materials
and Methods).

DISCUSSION

INFERNO provides a sensitive and comprehensive hypoth-
esis generation method for identifying functional genetic
variants underlying genetic association signals and charac-
terizing their tissue-specific effects on regulatory elements,
target genes, and downstream biological processes. Analysis
of the schizophrenia and IBD datasets demonstrated that
INFERNO picks up many signals that converge to com-
mon tissue contexts and pathways when sufficient genetic
loci are available. These two disease applications show that
INFERNO can identify putatively causal variants, affected
tissue contexts, regulatory elements, and target genes rele-
vant to any type of GWAS trait, and that the lncRNA tar-
get identification can identify both cross-tissue and tissue-
specific biologically relevant genes and pathways down-
stream of lncRNA perturbations by genetic variants. How-
ever, while the diversity of functional genomic data and tis-
sue contexts analyzed by INFERNO allows it to charac-
terize the potential mechanisms underlying GWAS associ-
ation signals, this broad range of data sources also means
that our algorithm may pick up more general regulatory
mechanisms not directly related to the phenotype of inter-
est, and these ‘hitchhikers’ could obfuscate the truly causal

http://inferno.lisanwanglab.org
https://bitbucket.org/wanglab-upenn/INFERNO


8750 Nucleic Acids Research, 2018, Vol. 46, No. 17

GO_MF KEGG

GO_BP GO_CC

 c
la

th
rin

 b
in

di
ng

 G
T

P
as

e 
ac

tiv
ity

 g
ua

ny
l n

uc
le

ot
id

e 
bi

nd
in

g

 h
or

m
on

e 
re

ce
pt

or
 b

in
di

ng

 im
m

un
og

lo
bu

lin
 b

in
di

ng

 m
R

N
A

 b
in

di
ng

 n
uc

le
as

e 
ac

tiv
ity

 p
ro

te
in

 tr
an

sp
or

te
r 

ac
tiv

ity

 R
N

A
 p

ol
ym

er
as

e 
bi

nd
in

g
 s

in
gl

e−
st

ra
nd

ed
 D

N
A

 b
in

di
ng

 F
at

ty
 a

ci
d 

de
gr

ad
at

io
n

 M
is

m
at

ch
 r

ep
ai

r
 m

R
N

A
 s

ur
ve

ill
an

ce
 p

at
hw

ay
 N

at
ur

al
 k

ill
er

 c
el

l m
ed

ia
te

d 
cy

to
to

xi
ci

ty
 O

th
er

 g
ly

ca
n 

de
gr

ad
at

io
n

 P
rim

ar
y 

im
m

un
od

ef
ic

ie
nc

y

 S
pl

ic
eo

so
m

e
 T

 c
el

l r
ec

ep
to

r 
si

gn
al

in
g 

pa
th

w
ay

 T
au

rin
e 

an
d 

hy
po

ta
ur

in
e 

m
et

ab
ol

is
m

 T
h1

 a
nd

 T
h2

 c
el

l d
iff

er
en

tia
tio

n
 T

h1
7 

ce
ll 

di
ffe

re
nt

ia
tio

n
 V

al
in

e,
 le

uc
in

e 
an

d 
is

ol
eu

ci
ne

 d
eg

ra
da

tio
n

 a
da

pt
iv

e 
im

m
un

e 
re

sp
on

se
 c

hr
om

os
om

e 
se

gr
eg

at
io

n
 c

ili
um

 o
rg

an
iz

at
io

n
 D

N
A

 r
ep

ai
r

 D
N

A
 r

ep
lic

at
io

n
 le

uk
oc

yt
e 

ce
ll−

ce
ll 

ad
he

si
on

 lo
co

m
ot

or
y 

be
ha

vi
or

 m
ei

ot
ic

 c
el

l c
yc

le

 m
od

ul
at

io
n 

of
 s

yn
ap

tic
 tr

an
sm

is
si

on
 m

on
oa

m
in

e 
tr

an
sp

or
t

 m
R

N
A

 p
ro

ce
ss

in
g

 m
ul

tic
el

lu
la

r 
or

ga
ni

sm
al

 r
es

po
ns

e 
to

 s
tr

es
s

 n
cR

N
A

 p
ro

ce
ss

in
g

 n
eu

ra
l n

uc
le

us
 d

ev
el

op
m

en
t

 n
eu

ro
tr

an
sm

itt
er

 tr
an

sp
or

t

 n
uc

le
ic

 a
ci

d 
ph

os
ph

od
ie

st
er

 b
on

d 
hy

dr
ol

ys
is

 n
uc

le
ob

as
e−

co
nt

ai
ni

ng
 c

om
po

un
d 

tr
an

sp
or

t

 p
re

sy
na

pt
ic

 p
ro

ce
ss

 in
vo

lv
ed

 in
 c

he
m

ic
al

 s
yn

ap
tic

 tr
an

sm
is

si
on

 r
eg

ul
at

io
n 

of
 c

el
l a

ct
iv

at
io

n

 r
eg

ul
at

io
n 

of
 c

el
l−

ce
ll 

ad
he

si
on

 r
eg

ul
at

io
n 

of
 c

el
lu

la
r 

am
id

e 
m

et
ab

ol
ic

 p
ro

ce
ss

 r
eg

ul
at

io
n 

of
 n

eu
ro

tr
an

sm
itt

er
 le

ve
ls

 r
ib

on
uc

le
op

ro
te

in
 c

om
pl

ex
 lo

ca
liz

at
io

n

 r
ib

on
uc

le
op

ro
te

in
 c

om
pl

ex
 s

ub
un

it 
or

ga
ni

za
tio

n
 R

N
A

 lo
ca

liz
at

io
n

 R
N

A
 s

pl
ic

in
g

 a
xo

n
 c

el
l b

od
y

 c
en

tr
os

om
e

 c
ili

um
 c

on
de

ns
ed

 c
hr

om
os

om
e

 d
en

dr
ite

 D
N

A
 r

ep
ai

r 
co

m
pl

ex
 e

nd
on

uc
le

as
e 

co
m

pl
ex

 im
m

un
ol

og
ic

al
 s

yn
ap

se

 m
ic

ro
tu

bu
le

 o
rg

an
iz

in
g 

ce
nt

er
 p

ar
t

 m
ye

lin
 s

he
at

h
 n

eu
ro

n 
pr

oj
ec

tio
n 

te
rm

in
us

 n
uc

le
ar

 b
od

y
 n

uc
le

ar
 c

hr
om

os
om

e 
pa

rt
 p

os
ts

yn
ap

se
 p

re
sy

na
ps

e
 r

ec
ep

to
r 

co
m

pl
ex

 s
id

e 
of

 m
em

br
an

e
 s

pe
rm

 p
ar

t
 s

pl
ic

eo
so

m
al

 c
om

pl
ex

 te
th

er
in

g 
co

m
pl

ex
 tr

an
sp

or
te

r 
co

m
pl

ex

Nervous

Male_Reproductive

Female_Reproductive

Endocrine

Digestive

Brain

Blood_Vessel

Blood

Nervous

Male_Reproductive

Female_Reproductive

Endocrine

Digestive

Brain

Blood_Vessel

Blood

Nervous

Male_Reproductive

Female_Reproductive

Endocrine

Digestive

Brain

Blood_Vessel

Blood

Nervous

Male_Reproductive

Female_Reproductive

Endocrine

Digestive

Brain

Blood_Vessel

Blood

Pathway

ln
cR

N
A

 ti
ss

ue
 c

la
ss

0.00

0.01

0.02

0.03

0.04

0.05

FDR

Figure 4. Pathway enrichments for tissue-specific lncRNA targets in schizophrenia. Results are split by the tissue category of the lncRNA eQTL signal
and pathway annotation. Red arrows denote brain and blood schizophrenia-related pathways discussed in the main text.

processes. This nonspecificity is likely to be a characteristic
of complex trait genetics in general and could be a reason
why most complex trait variants have very small effect sizes.
Another factor that affects the specificity of INFERNO re-
sults is the currently limited availability of functional ge-
nomics annotation data, which are measured in normal tis-
sues that do not necessarily reflect the disease state for a
given GWAS signal and may not be exact matches for the
relevant tissue context for a given trait. Thus, INFERNO is
best used to prioritize biological processes and tissue con-
texts in an unbiased and systematic fashion for functional
follow-up studies to prove the causality of the prioritized
signals and their relevance to the phenotype of interest.

INFERNO improves on existing noncoding annotation
methods for GWAS signals, the most comparable of which
is HaploReg (15). HaploReg expands GWAS variants by
LD structure only, missing many of the candidate vari-
ants INFERNO can identify using summary statistic-based
expansion, and reports direct annotation overlaps with
Roadmap but not FANTOM5 enhancer annotations. Ad-
ditionally, it lacks a tissue classification framework to in-
tegrate information across disparate annotation sources.

HaploReg provides an enhancer enrichment score by cal-
culating the background frequencies of enhancer overlap
in each cell type for all unique GWAS loci and all 1000
Genomes common variants and comparing these frequen-
cies to those for a query list of variants using a bino-
mial test. This approach ignores LD structure and does
not match variants by any characteristics. INFERNO pro-
vides a more sensitive statistical method for quantifying
the tissue-specific significance of annotation overlaps in a
GWAS signal accounting for LD structure and other ge-
nomic characteristics. Furthermore, INFERNO allows for
the calculation of enrichments both within and across tag
regions, and the tissue classification approach enables the
scoring of enrichments supported by disparate data sources.
INFERNO also performs a more sensitive eQTL analysis
by applying a Bayesian model to identify truly co-localized
signals between GWAS and eQTL data, and additionally
performs co-regulatory network identification for lncRNAs
identified by this algorithm.

Several other approaches for characterizing noncod-
ing genetic variants have been proposed such as Reg-
ulomeDB, GWAVA, EIGEN, LINSIGHT and CADD
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(10,11,13,77,78). These methods are designed for differ-
ent purposes than INFERNO, as they generate phenotype-
agnostic scores to prioritize regulatory variants without any
information about specific regulatory mechanisms, tissue
context, or target genes. INFERNO has at least two funda-
mental differences from these methods. First, INFERNO
uses a tissue categorization framework to characterize the
relevant tissue contexts of regulatory elements and target
genes affected by noncoding variants comprehensively and
unbiasedly. Second, rather than assigning a single score for
each variant generically, INFERNO is designed to incorpo-
rate GWAS signals with functional genomics data so that
the results are more specific to a phenotype of interest.

Application of INFERNO to schizophrenia and IBD
GWAS data identified significant overlaps of enhancers in
relevant tissue categories to each trait and eQTL signals
from the same categories targeting disease-related genes.
The lack of schizophrenia enrichment in the brain cate-
gory may reflect the cell type- as opposed to brain region-
specificity of schizophrenia genetic predisposition, as a
range of regions are included in the category, each of which
are generated from homogenized samples containing a mix
of cell types. INFERNO also identified both cross-tissue
and tissue-specific lncRNA signals targeting several bio-
logical processes known to be related to each phenotype
including the MAPK signaling pathway, spliceosome, and
Herpes simplex infection for schizophrenia and adaptive
immunity and leukocyte differentiation for IBD. The lack
of overlap with differentially expressed schizophrenia genes
may be due to the fact that genetic perturbations of reg-
ulatory mechanisms may not manifest as differentially ex-
pressed genes between cases and controls. The wide range
of tissue contexts and biological processes identified by
INFERNO reflects the complexity of these polygenic and
complex traits, although the IBD enrichments were more
specific to immune-related tissues than the heterogeneous
schizophrenia enrichments. The prior literature supporting
these regulatory signals supports the utility and sensitivity
of INFERNO for interpreting GWAS results and guiding
post-GWAS followup studies.

INFERNO is limited by the amount of currently avail-
able functional genomics datasets, as certain tissue cate-
gories are overrepresented relative to others (Supplemen-
tary Figures S1 and S2). The statistical power of INFERNO
will be further improved as functional datasets are gener-
ated in more tissues and cell types and as genomics tech-
nology continues to be refined and improved. Other co-
localization approaches that account for different causality
models but are more computationally intensive have been
proposed such as eCAVIAR (79), and their incorporation
into INFERNO will also improve its power to character-
ize noncoding association signals. Another future direction
is to extend INFERNO to identify structural variation and
copy number variants that contribute to traits through ex-
pression regulation.

DATA AVAILABILITY

The processed datasets supporting the conclusions of
this article are available in the full INFERNO an-
notation file available at http://inferno.lisanwanglab.org/

full INFERNO annotations.tar.gz. The web server is avail-
able at http://inferno.lisanwanglab.org/. The INFERNO
software is open source and available at https://bitbucket.
org/wanglab-upenn/INFERNO/. The INFERNO pipeline
runs on Linux, is implemented using bash, Python 2.7 and
R, and runs either on LSF-based cluster computing systems
or linearly on a Linux machine. Further software versions,
specific annotation sources and pre-processing scripts, and
package requirements are documented in the Bitbucket
repository and web server. INFERNO is freely available
under the MIT license. The schizophrenia GWAS data are
available from the Psychiatric Genomics Consortium, the
IBD GWAS data are available from the International IBD
Genetics Consortium.
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