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Abstract

Many ectotherms have altered their geographic ranges in response to rising global temperatures. Current range
shifts will likely increase the sympatry and hybridisation between recently diverged species. Here we predict future
sympatric distributions and risk of hybridisation in seven Mediterranean ischnurid damselfly species (/. elegans, I.
fountaineae, I. genei, I. graellsii, I. pumilio, I. saharensis and I. senegalensis). We used a maximum entropy
modelling technique to predict future potential distribution under four different Global Circulation Models and a
realistic emissions scenario of climate change. We carried out a comprehensive data compilation of reproductive
isolation (habitat, temporal, sexual, mechanical and gametic) between the seven studied species. Combining the
potential distribution and data of reproductive isolation at different instances (habitat, temporal, sexual, mechanical
and gametic), we infer the risk of hybridisation in these insects. Our findings showed that all but /. graellsii will
decrease in distributional extent and all species except I. senegalensis are predicted to have northern range shifts.
Models of potential distribution predicted an increase of the likely overlapping ranges for 12 species combinations,
out of a total of 42 combinations, 10 of which currently overlap. Moreover, the lack of complete reproductive isolation
and the patterns of hybridisation detected between closely related ischnurids, could lead to local extinctions of native
species if the hybrids or the introgressed colonising species become more successful.
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volans) [6], and fishes such as westslope cutthroat trouts
(Oncorhyncus clarki lewisi and O. mykiss) [7]. Interspecific
matings can actually initiate a first generation of hybrids (F,) if
reproductive isolation barriers are not complete [1].
Furthermore, if F, hybrids backcross with at least one of the
parental genotypes and the resulting backcrossed individuals
subsequently mate with the most similar parental genotype,
novel genes can be rapidly introduced into the new genetic
background [8]. The consequence of this situation is a massive

Introduction

Numerous studies addressing species’ responses to climate
change, mostly in animals, have provided evidence of altered
geographic ranges in response to rising global temperatures
[1,2]. In Europe, for example, many cases of range shifts
among insects have been attributed directly to increasing
temperatures [1]. One consequence of range shifts is an
increased sympatry between recently diverged species, likely
increasing the potential for interspecific interactions and hence

hybridisation [3].

Several contemporary examples of hybridisation between
native and introduced species after range expansion include
insects such as the brown argus butterflies in Britain [4],
mammals such as grizzly and polar bears (Ursus arctos and U.
maritimus) [5], flying squirrels (Glaucomys sabrinus and G.
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introgression of genes between local and invading species [9],
forming stable and long-lasting hybrid zones [10-12]. Several of
the adaptive processes through hybridisation are
reinforcement, adaptation and speciation [13,14]. However,
another possible consequence is the local extinction of native
species which occur when the new hybrid or the invading
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species is more successful and thus displaces the native
species [4].

Odonates (dragonflies and damselflies) are good dispersers
that frequently leave their native habitat after emergence to
colonize new ponds and/or rivers [15,16]. Members of this
order are undergoing a northward range expansion, apparently
in response to climatic changes [17,18]. In Great Britain all but
three of the 41 non-migratory species have shifted their
distribution northward at their range margin by 12-346 km [17].
In odonates, premating reproductive barriers seem to evolve
independent of niche diversification [19-21], i.e. speciation can
occur without niche diversification. However, studies in
ischnurid damselflies (Coenagrionidae) have revealed
extensive hybridisation between sister species and local
extinction for the native species [e.g. 22,23].

In this paper, we have explored the risk of extirpation of
native species by the invasion of close relatives in response to
climate change in seven Mediterranean ischnurid, odonate
species (I. elegans, I. fountaineae, I|. genei, I. graellsii, |I.
pumilio, |. saharensis and I. senegalensis). Among odonates,
Mediterranean ischnurids are a good model to understand how
insects can cope with on-going climate and environmental
change because: 1) the Mediterranean region is expected to
experience a major loss of biodiversity due to the joint action of
invasive species, habitat fragmentation and climate change
[24], and 2) many aspects of ischnurid ecology have been
investigated in detail such as range expansions [17], ecological
factors shaping their distributions [25] [for environmental and
climatic determinants for the distribution in Ischnura elegans
see 25], and reproductive isolation [23,26-29].

We carried out our study in two steps. First, we constructed
distribution model projections for the present time and the
years 2020, 2050 and 2080 following the IPCC climate
predictions [30], to detect expanding, contracting and new
overlapping ranges of the seven Mediterranean ischnurids.
Second, we did a comprehensive data compilation of
reproductive isolation (habitat, temporal, sexual, mechanical
and gametic) between the seven studied species. Merging
these two information pieces allowed us to infer the risk of
hybridisation in these animals. This methodology illustrates one
way to predict hybridisation risk related to the rise of global
temperatures that could be applied to other taxonomic groups.

Materials and Methods

Study area and environmental predictors

The spatial framework included all European (west of
Russia) and North African countries where members of the
genus Ischnura occur (Figure 1). As bioclimatic variables we
used the WorldClim 1.4 (www.worldclim.org) data set [31] at 5
x 5 km cell size. We visually inspected the variables and
eliminated those with strange patterns in the study area, mostly
due to the difficulty of getting reliable interpolated precipitation
values across the Sahara desert (bio_2, bio_3, bio_8, bio_9,
bio_15, bio_18 and bio_19). To establish a set of uncorrelated
climatic variables, we intersected the remaining variables with
10,000 points randomly selected in the extension of the study
area, ran an exploratory data analysis and a correlation
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analysis, and eliminated one of the variables in each pair with a
Pearson correlation value > 0.7. The final data set includes
only Annual Mean Temperature (bio_1), Temperature Annual
Range (bio_7) and Annual Precipitation (bio_12). We
generated a second set of models with the first 2-6
components as predictors after running a Principal Component
Analysis, and a third set using all WorldClim variables.

Species distributional data

Presences from the strictly Mediterranean countries
consisted of 11,376 records [32-44]. This data set is biased
with regard to /. elegans and I. pumilio in two ways: it lacks
presences from their northern and eastern European
distributions, and it has a large number of presences
concentrated in areas that have been more thoroughly sampled
studied. To correct for these biases, we completed distribution
gaps with presences downloaded from GBIF (www.gbif.org;
accessed 3-Mar-2013) and data gathered from several country-
level data sets or publications without records in GBIF:
Armenia  (Vasil Ananian and Marc Tailly, and
www.armenodon.org); Azerbaijan and Georgia (Marc Tailly);
Finland (Sami Karjalainen), Latvia (Kalnin§ M. and [45]);
Lithuania (Rafat Bernard); Poland (Rafat Bernard and [46]);
Romania (Cosmin O. manci); Czech Republic [47], Slovenia
(Ali Salamun), Slovakia (Dusan Sacha), and Ukraine (Elena
Dyatlova). After merging all presences together, we perform a
subsample of /. elegans presences to reduce the geographical
sampling bias. The final data set thus included seven species
(Figure 1): I. elegans (4089 unique presences at 5 x 5 km pixel
size), I. fountaineae (109), I. genei (184), I. graellsii (1081), I.
pumilio (2139), I. saharensis (178) and I. senegalensis (78). In
most of the Mediterranean area, I. elegans and I. pumilio occur
in sympatry. Species of the I. elegans group (I. elegans, I.
genei, I. graellsii and I. saharensis) and I. fountaineae overlap
locally: I. elegans and [. graellsii in Spain; I. elegans and |.
genei in Elba and Giglio Islands; and /. graellsii and |.
saharensis in Morocco [36,48]. Additionally, /. fountaineae, I.
saharensis and I. graellsii overlap in Morocco, while I. elegans,
I. fountaineae, I. pumilio and I. senegalensis overlap in the
Middle East [36,48]. Table 1 shows range, habitat, flight
season and IUCN Red List Status for each species.

Based on the assumption that odonate distribution is mainly
affected by ecophysiological traits [49], we did not use
topographical variables to determine species topographic
limits. For instance, distributional range limits for the odonates
Calopteryx splendens and C. virgo are mainly driven by
physiological temperature and precipitation optima [21]. This
led Wellenreuther et al. [21] to propose that future climate
change will largely affect odonate distribution ranges. On the
other hand, bioclimatic (mean annual temperature and
precipitation) but not geographic variables (altitude and
distance to coast) have been detected to explain genetic
population structure in the damselfly Ischnura elegans [25], and
to explain current and future distributions in Schistolobos
boliviensis and Tuberculobasis inversa [50]. Mediterranean
ischnurids are ecologically similar, and species share similar
habitat types characterized by running and standing waters
and, except for I. pumilio and I. genei, all are tolerant to
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Figure 1. Distribution map of the seven Mediterranean Ischnura species treated in this study (I. elegans, I. fountaineae, I.
genei, I. graellsii, I. pumilio, I. saharensis and I. senegalensis).
doi: 10.1371/journal.pone.0080531.g001

Table 1. Range, habitat, flight season and IUCN (2012.2) Red List Status for the species used in this study.

Species Range Habitat Flight season References
: Running and standing waters i .
I. elegans From Ireland to the Mediterranean and to Japan . (March) April-October (November). 1-3 generations/year [36,85]
Tolerant to brackish waters

From SW Asia to the Middle East and the West ~ Running and standing waters X

1. fountaineae X - March-November Several generations/year [36,85]
of Maghreb Tolerant to high salinity

) Tyrrhenian endemic: Corsica, Sardinia, Sicily, . ' i

1. genei i Running and standing waters  April-October [36,37,85]
Tuscan archipelago, Malta
Western Mediterranean area: Iberia and Running and standing waters X

I. graellsii i March-November. 1-4 generations/year [36,85]
Maghreb Tolerant to brackish waters
From the Azores to W Mongolia and the North of . . i X

1. pumilio Running and standing waters ~ April-October. 1-3 generations/year [36,85]
the Maghreb

i Sahara from Mauritania and Niger to North East  Running and standing waters .

I. saharensis i . February-December. At least 2 generations/year [36,85]

Libya and the Maghreb; Canary Islands Tolerant to brackish waters
. From Africa to Japan and western New Guinea.  Running and standing waters :
I. senegalensis All year round where possible [36]IUCN

One valid record from Tenerife

Tolerant to brackish waters

doi: 10.1371/journal.pone.0080531.t001

brackish waters (ranges, habitat and flight seasons are detailed

in Table 1).

Construction of species distribution models

Species distribution models were generated with Maxent
3.3.3k [61], a deterministic algorithm that has been shown to be
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among the best modelling methods [52,53]. Models were
constructed setting several parameters to default (‘Auto
features’, convergence = 10°, maximum number of iterations =
500) and varying the prevalence (0.5, 0.6 and 0.7) and
regularization value B (1, 2 and 3) to find which combination
generated the best outcomes (highest Area Under the curve, or
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Table 2. Performance of the models, measured as the
average testing AUC of 10-crossvalidation replicates, and
change in range area.

Species AUC A2a-2020 A2a-2050 A2a-2080
I. elegans 0.9115 -11.85 -26.01 -33.44
I. fountaneae 0.9285 -25.38 -40.81 -45.13
I. genei 0.9951 -70.01 -77.86 -77.13
1. graellsii 0.9643 23.53 34.35 57.20
1. pumilio 0.9218 -6.77 -23.20 -23.17
I. saharensis 0.9081 -28.16 -45.06 -57.44
I. senegalensis 0.9091 -46.78 -70.18 -83.29

Percentage of range loss and range gain with respect to current potential range for
each future projection (2020, 2050 and 2080) under scenario A2a; each year is
represented by a consensus model where only pixels predicted present by the four
GCMs are considered as presence of the species.

doi: 10.1371/journal.pone.0080531.t002

AUC) while minimizing the number of model parameters, as
well as producing ‘closed’, bell-shaped response curves
guaranteeing model transferability. A regularization multiplier
higher than 1.0 allows that variables’ average values in the
projections spread from the empirical average of the
background points (the situation if it is set to 1.0), avoid model
overfitting [54], and smooth the response curves. Regarding
background, we experimented with several selection schemes:
1) randomly selecting 10,000 point from areas adjacent to
presences and pertaining to the same Koppen-Geiger
bioclimatic region and elevation range as the species being
modelled [55-57]; 2) randomly selecting 10,000 points; or 3)
randomly selecting 40,000 points in the whole of the study area
(Figure 1). In total, 81 models were generated for each species
(3 variables schemes x 3 regularization x 3 prevalence x 3
background schemes). Performance of the models was
assessed by means of the AUC in a ROC statistic through 10-
fold cross-validation (Table 2), and minimizing the number of
model parameters.

Continuous outcomes (Maxent models) were transformed to
presence/absence models using the ‘10 percentile training
presence’. Although recent research has shown that ‘maximum
training sensitivity plus specificity’ is a preferable threshold
selection method in presence-only models [58], the origin of
our data set caused georeferencing issues in a number of
presences, and we prefer to err in the side of caution accepting
that a 10% of our presences could be problematic.

The best models for current climatic conditions were used to
generate high resolution maps of likely range shifts due to
climate change. We used the A2a scenario to generate future
projections, as this scenario seems to be the more realistic at
present [59]. As there are a number of Global Circulation
Models available, and no one can be considered superior to
the rest, we generate future projections for the four GCM with
data available for the time slices 2020, 2050 and 2080 at the
CGIAR Research Program on Climate Change, Agriculture and
Food Security (CCAFS) spatially downscaled using the Delta
Method  (http://www.ccafs-climate.org): CCCMA-CGCM2,
CSIRO-MK2.0, UKMO-HADCMS3, and NIESS99). The final
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presence/absence model for each species and time slice was
the area where the four models predicted presence for the
species considered (Figure 1). To confirm that combinations of
novel climates were not cause of concern in the projections, we
generated the multivariate environmental similarity surfaces
(MESS); this grid was reclassified and values below zero were
masked to show areas of novel climate space relative to the
range under which the model was fitted (Figures S1-S7).

We simulated predicted current and future ranges, i.e. we
simulated the areas with current and future climate conditions
equivalent to those of its present range. This does not mean
that the species will occupy all these areas as we did not take
into account their population dynamics, dispersal abilities or
habitat availability [see 60 for similar trends]. Thus, in order to
reduce any effect of model bias, predicted future distribution
extent and predicted overlapping ranges among the likely
hybridizing species were calculated relative to the species’
range simulated in the same way for the current climate for the
seven studied species. Expansion or contraction of the
distribution ranges for the three time slices were estimated as
the number of predicted km? that each species will occupy for
each one divided by the number of km? that each species will
occupy at the current predicted binary distribution. Increases or
decreases of the overlapping ranges were estimated at a
similar form: the number of predicted km? that each pair of
species will overlap for each time slice divided by the number
of predicted km? that each pair of species will overlap at the
current predicted binary distribution.

Species’ relevant biology and data collection of
reproductive isolation

Ischnurines can share the same geographic area but still be
isolated by a fine-scale, subtle habitat-species association [23].
Moreover, species can also be isolated in time due to species-
specific phenology and daily mating activity. When species
overlap in space and time, they can become isolated via sexual
isolation, which refers to mate preferences toward conspecifics
[61,62]. Furthermore, in odonates, prior to mating, the male
must grasp the female by her prothorax (tandem) using his
anal appendages [63]. After that, a female must bend her
abdomen to allow genital contact (mating). The incompatibility
to achieve the tandem and the mating position is named
mechanical incompatibility [64,65]. Once mating has finished,
females will lay eggs if the insemination, gametes’ recognition
and fertilization are successful, i.e. if there is not gametic
isolation. In this study, we did a comprehensive data
compilation of reproductive isolation between the seven studied
species. Data was grouped on the above categories of
isolation: habitat, temporal, sexual, mechanical and gametic
based on a previous study, on which reproductive barriers (19
pre- and postmating barriers) between two ischnurids (/.
elegans and I. graellsii) were measured and categorised [see
23]. In addition, when two species have not been in contact
before, or there is not information about reproductive isolation,
their hybridisation potential was predicted based on the positive
correlation between genetic divergence and reproductive
isolation. This correlation was previously detected in
damselflies [66] and other organisms [67-71]. We predict the
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Figure 2. Suitability map for current climatic conditions and unique presences used to generate the models of the seven
Mediterranean Ischnura species treated in this study: /. elegans (A); I. fountaineae (B); I. genei (C); I. graellsii (D); I. pumilio
(E); I. saharensis (F); I. senegalensis (G). Suitability increases from dark blue (0) to green (0.5) to red (1).

doi: 10.1371/journal.pone.0080531.g002

risk of hybridisation in those species (susceptible to hybridise)
potentially experiencing sympatry according to our future
climatic predictions. Data for each species according to range,
habitat, and flight season have been compiled in Table 1.

Results

Predicted current and future distribution of the studied
species

For each species, we selected for further analyses the
models combining high performance (high AUC) and
transferability (i.e. low number of parameters and “closed”
curves). For all species, optimal models were those trained
with the uncorrelated original variables and 10,000 background
points. Optimal models for I. elegans, I. genei, I. pumilio and .
senegalensis were generated using the three variables (Annual
Mean Temperature, Temperature Annual Range and Annual
Precipitation), while Temperature Annual Range was not used
for I. fountaineae, I. graellsii and I. saharensis. Using more
background points either diminished model performance or
increase model complexity, and using PCA components as
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variables strongly increased models’ complexity, compromising
transferability.

Optimal model performance based on the AUC had a mean
score of 93.4%, ranging from 0.900 + 0.024 for /. elegans to
0.995 £ 0.002 in [. graellsii. Predicted current distribution
modelling for the seven species indicated extensive areas of
suitable habitat in the Mediterranean region which are not
currently occupied (Figure 2).

Distribution models projected to scenario A2a for the three
periods 2020, 2050 and 2080 (Figures S1-S7) indicated an
extensive decrease of suitable habitat for all species (from 6.77
to 83.29%), except for I. graellsii (Table 2), which is predicted
to increase its potential distribution (from 23.53 to 57.20%).
The future distribution models for the three periods were
consistent, showing a progressive decrease or increase of the
suitable habitats for all species.

Moreover, future distributional models indicated a shift of the
suitable areas toward northern latitudes for all species except
for I. senegalensis (see Figures S1-S7). Pairwise overlapping
distribution ranges were estimated for the seven species.
Future distributional models predicted an increase of the
potential overlapping ranges in 12 out of the 42 species
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combinations (Table 3). Ischnura graellsii is the only species
that will increase its potential distribution, and is thus the
species which will increase its overlapping range with most
other species: I. elegans, I. fountaineae, I. genei, I. pumilio and
I. saharensis. I. genei is the species that will be overlapped by
the most others (3 species), although I elegans (2), |
fountaineae (2), I. saharensis (2) I. senegalensis (2) and I.
pumilio (1) will also be overlapped (Table 3).

Reproductive isolation between the studied species

We detected interspecific interactions between 10 species
combinations comprising five out of the seven studied, with
hybrids being detected in seven species combinations
[23,26,27,66,72-75] (see Table 4). Risk of hybridisation
between the remaining species combinations and cross
directions (31) was based on genetic distances. Pairwise
genetic distances between Ischnura elegans, |. fountaineae, |.
genei, I. graellsii and I. saharensis fall within the threshold for
hybridisation, and thus are susceptible to hybridise if they come
into contact [see 66 for further details]. In other words, although
the number of species is relatively low, our review implies that
hybrid production may be fairly common in these animals.

Discussion

Species distribution models are used to address a wide
variety of ecological and evolutionary issues [76]. Here we
explore the role that global change could play in the extirpation
of native species by the invasion of close relatives, either
because hybrids or range overlapping. Our projections, under
different Global Circulation Models, predicted a general
northward and westward displacement, and a decrease in
potential distribution ranges for all species except I. graellsii.
According to these results, range shifts will give rise not only to
new overlapping areas for current sympatric species, but also
create new sympatric distributions for species that have
evolved in allopatry [3,4,26]. Our results predicted that 12 out
of the 42 Ischnura species combinations that overlap in their
actual potential occupied ranges would increase their
overlapping range at least in one direction, although only 10
pairs currently overlap.

Our predictions are in agreement with previous studies which
have detected a shift of range borders of several African and
Mediterranean odonate species which are extending
northwards to central and northern Europe [18], and also
westward under the influence of climate change. For instance,
I. elegans and I. pumilio are undergoing a northward range
expansion in the United Kingdom [17], and /. elegans has
spread to the west regions of Spain [26-28]. However, not all
studied species will undergo range expansions: I. senegalensis
will gradually lose most of its current suitable area in inland
Africa without a parallel northward expansion in Europe. This is
because the extremely hot conditions where it currently lives
will not be reached in Europe before 2080. Similarly to what is
expected for /. elegans and I. pumilio, a poleward range shift of
future distributions caused by rising temperatures has been
predicted for several Mediterranean species (e.g. bats), and
some possible consequences are extinction and decline
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Table 3. Change in overlapping areas.

Overlapped Overlapping Potential Potential Potential Potential
species species actual 2020 2050 2080
1. elegans 1. fountaineae 5.28 4.99 1.95 0.09
1. genei 4.12 1.41 1.34 1.57
1. graellsii 28.09 28.98 28.08 33.87
I. saharensis 1.44 0.49 0.04 0.00
1. pumilio 86.24 87.23 88.65 90.78
1. senegalensis 3.30 2.27 0.49 0.08
I. fountaineae  I. elegans 5.72 6.38 2.64 0.12
1. genei 1.38 0.54 0.03 0.00
1. graellsii 11.68 15.94 10.82 2.99
I. saharensis 92.68 86.45 78.25 74.83
1. pumilio 5.16 3.54 0.88 0.04
1. senegalensis 35.48 27.78 20.73 9.76
1. genei I. elegans 89.23 89.87 96.92 99.34
1. fountaineae 27.66 27.12 1.60 0.03
1. graellsii 93.10 94.43 92.68 97.53
I. saharensis 9.39 4.57 0.15 0.06
1. pumilio 86.68 82.28 97.94 99.82
I. senegalensis 35.21 32.10 2.00 0.00
1. graellsii 1. elegans 71.55 52.69 39.39 36.53
1. fountaineae 27.49 22.66 11.21 2.45
1. genei 10.94 2.69 1.79 1.67
I. saharensis 16.28 10.11 5.05 1.35
1. pumilio 74.75 60.40 40.48 40.62
1. senegalensis 12.45 5.26 1.08 0.08
|. saharensis 1. elegans 1.28 0.54 0.04 0.00
I. fountaineae 76.48 74.10 69.56 79.61
1. genei 0.39 0.08 0.00 0.00
1. graellsii 5.71 6.10 4.33 1.74
1. pumilio 1.67 0.20 0.03 0.02
I. senegalensis 33.79 26.98 20.33 7.30
1. pumilio 1. elegans 95.11 90.96 94.18 86.74
1. fountaineae 5.25 2.88 0.69 0.03
1. genei 4.41 1.35 1.44 1.51
1. graellsii 32.36 34.65 30.66 35.99
I. saharensis 2.06 0.19 0.03 0.01
1. senegalensis 3.45 1.41 0.18 0.01
I. senegalensis I. elegans 3.19 3.64 1.17 0.30
I. fountaineae 31.75 34.86 36.82 28.69
1. genei 1.57 0.81 0.07 0.00
1. graellsii 4.74 4.65 1.85 0.29
I. saharensis 36.65 39.49 40.63 20.17
1. pumilio 3.03 217 0.42 0.03

Percentage of overlapping areas between each future projection (2020, 2050 and
2080) under scenario A2a and the actual potential occupied range. The values
highlighted in bold indicate where the overlapping of predicted future distributions
increase relative to overlapping of predicted current distributions.

doi: 10.1371/journal.pone.0080531.t003

patterns under A1F1 emission scenario [77]. Whether this will
be the case for our study species, is unclear. However, notice
that our study assumes eco-physiological parameters but not
biotic factors to drive ranges, and thus, likely future
distributions. Distributions may be affected in at least some of
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Table 4. Summary of heterospecific interactions, and the susceptibility to hybridise.

Species Q elegans Q genei ¢ graellsii Q saharensis Q fountaineae Q@ pumilio Q senegalensis
J elegans Hy, Hyy Hy, Hyy Yes yes AT, Tand M No

J genei AT, Tand M Hi, Yes Yes Yes No

J graellsii Hy, Hy Yes Hy, Hy Yes Yes No

& saharensis Yes yes Hy, Hy yes No No

J fountaineae Yes Yes Yes Yes No No

& pumilio AT No AT, Tand M No No No

J senegalensis No No No No No No

Attempt to tandem (AT) (male attempt to grasp the female but tandem (T) is impeded due to incompatibility of both sexes’ secondary genitalia), mating (M) (mating takes

place but female does not oviposit), hybrids | (H)) (i.e. hybrids obtained under laboratory conditions) and hybrids Il (Hy;) (hybrids genetically detected in field conditions)

[23,26-28,73-75]. When no data about reproductive isolation was found, mainly in allopatric species combinations, we approximate the risk of hybridisation based on genetic

distances [see 66]: “Yes” means that species may produce hybrids, and “No” means that species cannot produce hybrids if they come into contact.’.

doi: 10.1371/journal.pone.0080531.t004

these species, implying that competition would limit invasion by
one species thereby reducing or eliminating the potential for
hybridisation.

Range shifts can lead to the formation of or increase in
sympatry between related organisms, which consequently will
increase the potential for sexual interactions and hybridisation.
Five out of the 10 pairs of species predicted to increase in their
potential overlapping ranges, are also predicted to hybridise: /.
elegans and I. genei; I. elegans and . graellsii; I. graellsii and I.
saharensis; I. fountaineae and I. saharensis; and I. fountaineae
and /. graellsii). Several factors such as a) ecological
partitioning [78], b) time of divergence [67-71], c) specific stage
of reproductive isolation [23,26], and d) species abundance
[79] shape hybridisation patterns. We discuss each of these
factors below.

Ecological partitioning among species can prevent
competitive exclusion [78]. However, niche space reduction is
especially true for odonates; in fact, speciation in these animals
takes place without niche divergence [21,80,81]. Two examples
can illustrate these. First, all of our study species share their
habitat preference for running and standing waters, and only /.
elegans, |. graellsii and [. saharensis are able to tolerate
brackish waters. Second, all share an extended reproductive
season from April to October [36]. This lack of microhabitat and
temporal isolation can thus lead to many opportunities for
interspecific interactions (see Table 3) and the creation of
stable and long-lasting hybrid zones when reproductive
isolation breaks [12], as documented for . elegans and I.
graellsii in the Iberian Peninsula [26], I. graellsii and |.
saharensis in North Africa, and I. elegans and I. genei in
Tyrrhenian islands [66]). In relation to divergence time and
specific stage of reproductive isolation, genetic divergence
correlates positively with reproductive isolation between
recently speciated species, and this correlation can be used to
predict hybridisation [67-71]. In damselflies, a positive
correlation between genetic divergence and reproductive
isolation has been detected [66]. In fact, the pairwise genetic
distances between five species (I. elegans, I. fountaineae, |.
genei, I. graellsii and . saharensis) fall within the threshold for
hybridisation [66]. Finally, in relation to species abundance,
females will rarely mate with heterospecific males if these
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males are less abundant than conspecific males, based on a)
the higher inversion on offspring production by females
compared to males [82] and b) mechanical incompatibility that
arises from smaller heterospecific males compared to
conspecific males [83]. Nevertheless, females will mate with
heterospecific males, when these are the most abundant males
in the population, so as to ensure fertilization. However, this
was not the case for I. elegans when invaded I. graellsii
populations [26]. In this case, I. graellsii females mated with
heterospecific males /. elegans which turned out to be less
abundant that conspecific /. graellsii males [26].When hybrid
formation is not prevented by previous barriers, and hybrids
mate among each other and they become more successful
than one or both parental species, original taxa can be
displaced [14]. However, in the majority of the cases one of the
two species is displaced by others via unidirectional
hybridisation, i.e. backcrossed individuals consecutively mate
with the more similar species [84]. Although this panorama
seems speculative, it explains well why Spanish populations of
I. graellsii are currently being displaced by I. elegans via
unidirectional introgression of genes of [ graellsii into I
elegans [23]. However, it is unknown whether the introgression
of genes of I. graellsii in I. elegans is helping I. elegans to
displace I. graellsii or if it is helping I. elegans in the adaptation
to the Iberian Peninsula conditions [26].

Two conclusions can be drawn from our work. First, we
predict a general decrease in suitable distribution area (which
would cause a shift towards northern latitudes), according to
four Global Circulation Models future projections. These
predicted range changes will give rise to new overlapping
ranges and interspecific interactions and hybridisation between
sister species. Based on previous evidence that suggests local
extinction of native species in this genus [23,26,28], we predict
similar extinction outcomes. Second, not only our methodology
can predict hybridisation in these animals but the same
principle can be applied to other taxa as long as enough
information is available with regards to reproductive biology
and isolation barriers.
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Supporting Information

Figure S1. Predicted current binary (presence/absence)
distribution (A) and predicted distribution for three time
periods [2020 (B), 2050 (C), and 2080 (D)] under IPCC
scenario A2a for I. elegans. Panes B, C and D indicate for
each pixel the number of binary models predicting the species
as present according to four General Circulation Models
(GCM), from green (1), yellow (2), orange (3) to red (4). Areas
in the four shades of grey similarly represent areas that have,
for one (light grey) to four (black) of the GCMs, one or more
environmental variables outside the range present in the
training data, and where predictions should be treated with
caution.

(TIF)

Figure S2. Predicted current binary (presence/absence)
distribution (A) and predicted distribution for three time
periods [2020 (B), 2050 (C), and 2080 (D)] under IPCC
scenario A2a for I. fountaineae. Panes B, C and D indicate
for each pixel the number of binary models predicting the
species as present according to four General Circulation
Models (GCM), from green (1), yellow (2), orange (3) to red (4).
Areas in the four shades of grey similarly represent areas that
have, for one (light grey) to four (black) of the GCMs, one or
more environmental variables outside the range present in the
training data, and where predictions should be treated with
caution.

(TIF)

Figure S3. Predicted current binary (presence/absence)
distribution (A) and predicted distribution for three time
periods [2020 (B), 2050 (C), and 2080 (D)] under IPCC
scenario A2a for I. genei. Panes B, C and D indicate for each
pixel the number of binary models predicting the species as
present according to four General Circulation Models (GCM),
from green (1), yellow (2), orange (3) to red (4). Areas in the
four shades of grey similarly represent areas that have, for one
(light grey) to four (black) of the GCMs, one or more
environmental variables outside the range present in the
training data, and where predictions should be treated with
caution.

(TIF)

Figure S4. Predicted current binary (presence/absence)
distribution (A) and predicted distribution for three time
periods [2020 (B), 2050 (C), and 2080 (D)] under IPCC
scenario A2a for I. graellsii. Panes B, C and D indicate for
each pixel the number of binary models predicting the species
as present according to four General Circulation Models
(GCM), from green (1), yellow (2), orange (3) to red (4). Areas
in the four shades of grey similarly represent areas that have,
for one (light grey) to four (black) of the GCMs, one or more
environmental variables outside the range present in the
training data, and where predictions should be treated with
caution.

(TIF)
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Figure S5. Predicted current binary (presence/absence)
distribution (A) and predicted distribution for three time
periods [2020 (B), 2050 (C), and 2080 (D)] under IPCC
scenario A2a for I. pumilio. Panes B, C and D indicate for
each pixel the number of binary models predicting the species
as present according to four General Circulation Models
(GCM), from green (1), yellow (2), orange (3) to red (4). Areas
in the four shades of grey similarly represent areas that have,
for one (light grey) to four (black) of the GCMs, one or more
environmental variables outside the range present in the
training data, and where predictions should be treated with
caution.

(TIF)

Figure S6. Predicted current binary (presence/absence)
distribution (A) and predicted distribution for three time
periods [2020 (B), 2050 (C), and 2080 (D)] under IPCC
scenario A2a for I. saharensis. Panes B, C and D indicate for
each pixel the number of binary models predicting the species
as present according to four General Circulation Models
(GCM), from green (1), yellow (2), orange (3) to red (4). Areas
in the four shades of grey similarly represent areas that have,
for one (light grey) to four (black) of the GCMs, one or more
environmental variables outside the range present in the
training data, and where predictions should be treated with
caution.

(TIF)

Figure S7. Predicted current binary (presence/absence)
distribution (A) and predicted distribution for three time
periods [2020 (B), 2050 (C) and 2080 (D)] under IPCC
scenario A2a for I. senegalensis. Panes B, C and D indicate
for each pixel the number of binary models predicting the
species as present according to four General Circulation
Models (GCM), from green (1), yellow (2), orange (3) to red (4).
Areas in the four shades of grey similarly represent areas that
have, for one (light grey) to four (black) of the GCMs, one or
more environmental variables outside the range present in the
training data, and where predictions should be treated with
caution.

(TIF)
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