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Hepatocellular carcinoma (HCC) has the second highestmortality rate worldwide among all cancers. Previous studies have revealed
the significant involvement of long noncoding RNAs (lncRNAs) in numerous human cancers including HCC. Both oncogenic
and tumor repressive lncRNAs have been identified and implicated in the complex process of hepatocarcinogenesis. They can be
further explored as prospective diagnostic, prognostic, and therapeutic markers for HCC. An in-depth understanding of lncRNAs’
mechanism in HCC is therefore required to fully explore their potential role. In the current review, we will concentrate on the
underlying function, molecular mechanisms, and potential clinical implications of lncRNA in HCC.

1. Introduction

Among all cancers, hepatocellular carcinoma (HCC) has the
second highest mortality rate worldwide [1]. The risk factors,
including HBV or HCV infection, alcoholism, liver cirrhosis,
andmetabolic diseases, contribute toHCC [2].Themolecular
mechanism of hepatocarcinogenesis is highly complex and
involves an interplay between dysregulated cell cycle, apopto-
sis, tumor cell invasion, and metastasis [2]. Despite advances
in diagnosis and therapy, the incidence and mortality of
liver cancer continue to increase [3]. It is vital therefore
to illustrate the molecular mechanism of HCC in order to
improve diagnosis, treatment, and overall prognosis.

With the development of human genome sequencing
technology, about 20000 protein-coding genes have been
identified, which account for less than 2% of the entire
genome [4]. In fact, greater than 90% of the human DNA
would be converted into noncoding RNAs (ncRNAs), which,

despite not being translated into proteins, are involved in
several cellular functions [5, 6]. The long ncRNAs (lncRNAs)
with more than 200 nucleotides play significant roles in
cell growth and differentiation, chromatin organization, and
regulation of gene expression [7, 8]. lncRNAs are classified
into intronic, intergenic, sense, and antisense types based
on their genomic location [9] and into signaling, decoy,
guide, and scaffold lncRNAs on a functional basis [10].
Signaling lncRNAs mainly act as transcription factors or
as intermediates in various signaling pathways [10], and
decoy lncRNAs act as “molecular sponges” by binding to
and sequestering transcription factors away from their target
genes [10]. Guide lncRNAs can regulate gene expression
through chromatin remodeling by recruiting chromatin-
modifying enzymes [10]. Finally, the scaffold lncRNAs act as
recruiting platforms for multiple proteins and form lncRNA-
ribonucleoprotein (lncRNA-RNP) complexes, which subse-
quently regulate downstream signaling [10].
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Numerous lncRNAs have been identified recently with
the help of high-throughput sequencing and microarrays.
Most of them are aberrantly expressed in tumors like HCC,
breast cancer, lung cancer, colorectal cancer, and others [11].
lncRNAs are known to regulate cell proliferation, epithelial-
mesenchymal transition (EMT), angiogenesis, metastasis,
autophagy, and so forth. Considering their cancer specific
expression and detectable presence in clinical samples like
blood and urine, lncRNAs are potential diagnostic markers
for tumors.Therefore, a better understanding ofHCC specific
lncRNAs will greatly contribute to the diagnosis and treat-
ment of HCC.

lncRNAs exhibit both tumor suppressive and oncogenic
roles. In the present review, we will concentrate mainly on
the functions, molecular mechanisms, and potential clinical
implications of HCC-related lncRNAs that are abnormally
expressed and therefore have critical roles in hepatocarcino-
genesis.

2. Upregulated/Oncogenic lncRNAs in HCC

2.1. HULC. “Highly upregulated in liver cancer” or HULC,
a 500 bp lncRNA, was the earliest lncRNA reported to be
highly expressed in HCC [12]. In addition to the tumor
tissues, significantly greater levels of HULC were also found
in HCC cell lines and plasma of patients [12–16], indicating
its potential role as a biomarker of HCC. HULC is involved in
multiple cellular processes like proliferation, EMT, angiogen-
esis, autophagy, and chemoresistance (Table 1). Furthermore,
HULC overexpression was linked with tumor size [17],
clinical TNM stage [16], and recurrence and overall survival
(OS) in HCC [18].

Wang et al. reported a decoy role of HULC wherein it
downregulated miR-327 by its molecular sponge function
[13]. HULC-induced miR-327 inhibition lifted the miR-
327-mediated translational suppression of PRKACB, which
consecutively activated the cAMP response element binding
protein (CREB) [13]. CREB induced expression of HULC,
thereby forming a CREB-HULC-PRKACB positive feedback
loop [13]. HULC also acted as a molecular decoy to downreg-
ulate miR-186 which upregulated HMGA2 and lead to HCC
progression. In this model, HULC expression was regulated
by IGF2BP1 by accelerating HULC degradation [16]. Various
studies have elucidated the pathways through which HULC
promotes hepatocarcinogenesis: it activates angiogenesis via
the HULC/miR-107/E2F1/SPHK1 axis [19], enhances EMT
and metastasis via the HULC/miR-200a-3p/ZEB1 axis [18],
induces autophagy via the HULC/USP22/Sirt1 axis [20],
and augments cell proliferation by stabilizing COX-2 [21]
(Table 2). HULC is also involved in hepatitis B virus (HBV)
induced HCC, in which HBx plays an important role [22].
HBx markedly increased cell proliferation by upregulating
HULC and inhibiting p18, while HULC inhibition abolished
HBx-induced cell proliferation accompanied by p18 upregu-
lation [14]. Taken together, HULC is a potential biomarker for
diagnosing HCC.

2.2. HOTAIR. “HOX transcript antisense intergenic RNA” or
HOTAIR is a lncRNA (2.2 kb length) which originates from

the HOXC antisense strand [23]. HOTAIR is overexpressed
in HCC cells and tissues [24–27] and is associated with worse
prognosis, shorter recurrence-free survival, and increased
risk of recurrence after hepatic transplantation [26, 28, 29].
Functionally, HOTAIR enhances proliferation, migration,
glycolysis, autophagy, and chemoresistance in HCC cells
(Table 1).

HOTAIR-mediated inhibition of miRNA-218 induced
Bmi-1 expression and activated downstream P14 and P16
signaling, contributing to hepatocarcinogenesis [25]. FOXC1
upregulated HOTAIR in HCC cells via miR-1 inhibition,
thereby increasing proliferation [30]. In addition, HOTAIR
also increased cell proliferation by regulating OGFr [31].
HOTAIR silencing in Huh7 cells decreased proliferation and
induced cisplatin resistance via inhibition of STAT3 and
ABCB1, which was rescued by inhibiting STAT3 phosphory-
lation [32] (Table 1). Wei et al. showed that HOTAIR-induced
upregulation of GLUT1 and activation of mTOR signaling
pathway facilitate glycolysis in HCC cells [27], indicating a
direct association between HOTAIR and glucose metabolism
in cancer cells. RNAi-mediated HOTAIR knockdown in
HCC cells upregulated the RNA binding motif protein 38
(RBM38) [33] (Table 1). Furthermore, knockdown of RBM38
could restore HOTAIR-knockdown-induced decrease in cell
migration and invasion [33]. Thus, HOTAIR likely enables
HCC metastasis and invasion by inhibiting RBM38. The
PRC2 complex, consisting of SUZ12 and EZH2, plays a key
role in hepatocarcinogenesis [34–36]. HOTAIR also acts as
a scaffold by recruiting PRC2 to the LSD1/Co-REST/HDAC1
complex [37]. In addition, HOTAIR also promotes HBV-
mediated HCC by accelerating the degradation of SUZ12
and ZNF198 [38] (Table 1). Finally, HOTAIR could also
induce autophagy in HCC cells by upregulating ATG3 and
ATG7 [39] (Table 1). Taken together, HOTAIR promotes
hepatocarcinogenesis by multiple mechanisms.

2.3. MALAT1. Overexpressed “metastasis-associated lung
adenocarcinoma transcript 1” or MALAT1 has been initially
discovered in human non-small-cell lung cancer (NSCLC)
[40]. MALAT1 is overexpressed in HCC tissues and cell lines
[41, 42] and is linked with a higher tumor recurrence rate
in patients after hepatic transplantation, indicating a pre-
dictive role of MALAT1 in HCC recurrence [42]. Function-
ally, MALAT1 promotes proliferation, invasion, metastasis,
chemosensitivity, and autophagy in HCC cells (Table 1).

MALAT1 is upregulated by Sp1 and Sp3 and downregu-
lated by MIT (Sp1 binding inhibitor), indicating a possibility
of targeting MALAT1 in HCC patients by MIT [43]. High
expression of MALAT1 is linked with 5-FU resistance in
HCC cell line [44]. In addition, HIF-2𝛼 inhibits miR-216b
through MALAT1, where the HIF-2𝛼-MALAT1-miR-216b
axis promotes autophagy with LC3-II upregulation and p62
downregulation, contributing to HCC chemosensitivity [44]
(Table 1). MALAT1 also promotes arsenite-induced glycolysis
via stabilizing HIF-1𝛼 in human hepatic L-02 cells [45].
Moreover, MALAT1, negatively regulated by p53, enhanced
proliferation during liver regeneration through stimulation
of the Wnt/𝛽-catenin pathway [46] (Table 1). The mTOR
signaling pathway is essential for the oncogenic role of
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MALAT1, which further mediates SRSF1 upregulation and
mTOR activation [47]. MALATI promotes tumor growth,
invasion, and metastasis of HCC as a decoy lncRNA through
the MALAT1/miR-143-3p/ZEB1 axis and inhibiting miR-
146b-5p [48, 49]. It can also act as a ceRNA for miR-195
and reverse miR-195-mediated EGFR inhibition and fur-
ther promote cell proliferation by activating the PI3K/AKT
and JAK/STAT pathways, indicating a role of MALAT1-
miR-195-EGFR axis in HCC [50] (Table 1). Like HULC
and HOTAIR, MALAT1 is also involved in HBx-mediated
hepatocarcinogenesis [51]; it is upregulated by HBx and
enhances proliferation and metastasis by activating LTBP3
[51], forming the HBx-MALAT1-LTBP3 axis. Taken together,
MALAT1 regulates multiple cellular processes through its
decoy or ceRNA functions, indicating a potential target for
HCC therapy.

2.4.HOTTIP. “HOXA transcript at the distal tip” orHOTTIP
is greatly expressed in HCC tumor tissues and cells [52] and
is linked with a greater threat of metastasis and poor OS
[52]. Studies have shown the effect of HOTTIP on HCC
proliferation,metastasis, and glutaminemetabolism (Table 1)
[52–54].

HOTTIP downregulates miR-125b, miR-192, and miR-
204 and enhances the cell growth and migration through
the miR-192/-204-HOTTIP axis [53, 54], while HOTTIP
inhibition decreases growth ofHCCcells [52, 54]. In addition,
HOXA13 and GLS1 are further revealed to be the likely target
genes of miR-192/-204-HOTTIP axis, and overexpression of
miR-192 and miR-204 is associated with increased survival
in the patients [54]. Taken together, these findings imply the
oncogenic role of HOTTIP in hepatocarcinogenesis through
miRNA interaction.

2.5. MVIH. “Microvascular invasion in HCC” or MVIH is
situated at chromosome 10 and was firstly identified by Yuan
et al. in HCC [55]. High levels of MVIH in HCC were
correlated with enhanced invasion and poor prognosis with
decreased RFS and OS [55]. As shown in Table 1, MVIH
plays important roles in proliferation, migration, apoptosis,
metastasis, and angiogenesis in HCC [55–57].

MVIH exerts its proangiogenic action by inhibiting PGK1
secretion [55]. It also acts like a sponge for miR-199, and
MVIH-mediated inhibition of miR-199 leads to increased
proliferation and apoptosis inhibition in HCC cells [56].
Recently, MVIH was reported to control proliferation and
migration of HCC cells via modulation of ARID1A-mediated
regulation of CDKN1A [57]. Taken together, these findings
underscore the oncogenic role of MVIH in HCC.

2.6. PVT1. Murine PVT1was first identified in the liverwhere
it accelerated proliferation and cell cycling and enhanced
stem-cell-associated properties [58]. Human PVT1 is over-
expressed in HCC tumor tissues and cell lines and is linked
with advanced TNM stage and poor prognosis as well as
RFS [58–60], and upregulation of PVT1 can also predict
HCC recurrence [59]. As shown in Table 1, PVT1 plays an
oncogenic role inmultiple cellular processes like proliferation

and invasion and increases the stemness of HCC cells [58, 60,
61].

Functionally, through interaction between PVT1 and
NOP2, PVT1 enhances the expression of NOP2 via stabilizing
NOP2, thus promoting proliferation, cell cycle, and stemness
of HCC cells [58] (Table 1). In addition, PVT1 can also induce
miR-214 inhibition via interaction with EZH2 to promote cell
proliferation and invasion [60], forming a PVT1/EZH2/miR-
214 axis (Table 1) [60]. The clearly oncogenic role of PVT1
indicates its potential use as a biomarker in diagnosing and
predicting recurrence in HCC.

In addition to the lncRNAsmentioned above, several oth-
ers are upregulated during hepatocarcinogenesis, including
DANCR, HEIH, and Linc-ROR (Table 1).

3. Downregulated/Tumor Suppressive
lncRNAs in HCC

3.1. H19. H19 is situated on chromosome 11p15.5 [62] and
plays a key role in various cancers including HCC, where
the abnormal expression of H19 is linked with late stages of
cancer and poorDSF and outcome [63–65]. Functionally,H19
regulates proliferation, migration, invasion, EMT, metastasis,
and chemoresistance in HCC cells [64, 66–68] (Table 2).

H19 is upregulated in doxorubicin-resistant R-HepG2
cells [66] and induces drug resistance by modulating MDR1
[66]. H19 overexpression enhanced the tumor growth in in
vivo models of HCC, while H19 inhibition decreased [67].
HCC patients with elevated expression of H19 in the tumor
tissues showed poor DFS, suggesting a predictive role of H19
in HCC prognosis [65]. However, some studies have shown
H19 to be significantly downregulated inHCC [64, 65], which
is correlated with poor prognosis [64]. In addition, H19 could
also activate miR-200 and suppress tumor metastasis and
EMT [64] (Table 2). H19 inhibition by miR-675 promoted
metastasis of HCC via the AKT/GSK-3beta/Cdc25A pathway
[68] (Table 2). Taken together, H19 seems to act as a tumor
suppressor as well as an oncogene in HCC.

3.2. MEG3. “Maternally expressed 3” or MEG3 is a mater-
nally inherited lncRNA presented on chromosome 14q32.3
[69] and was first identified by Miyoshi et al. [70]. MEG3
expression is reportedly low in humanHCC cells [71–73] and
is linked with reduced OS, suggesting a predictive role of
MEG3 in HCC prognosis [73]. As shown in Table 2, MEG3
could regulate proliferation and apoptosis in HCC cells [72–
75].

MEG3 can be negatively regulated by UHRF1 via modu-
lating DNA methylation, since its promoter region is highly
methylated [73]. One mechanism of MEG3 mediated tumor
suppression is the activation of p53 by increasing its stability
and modulating the downstream genes [72, 74] (Table 2).
Using a novel delivery system, MEG3 was introduced into
HCC cells and resulted in tumor growth inhibition via the
p53 signaling, indicating a bona fide tumor suppressive role
of MEG3 in HCC [74]. Furthermore, it acted as a molecular
sponge for miR-664 and could inhibit cell proliferation by
modulating miR-664-mediated regulation of ADH4 [76]
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Table 3: LncRNAs as biomarkers in HCC.

lncRNA Expression in HCC Potential implications Sample References
HULC Up Detection, metastasis, prognosis, Plasma [15, 17]
Linc00152 Up Detection, metastasis Plasma [17, 148]
uc001ncr Up Detection, HBV-related HCC Serum [149]
AX800134 Up Detection, HBV-related HCC Serum [149]
PVT1 Up Detection Serum [150]
uc002mbe.2 Down Detection Serum [150]
RP11-160H22.5 Up Tumorigenesis Plasma [148, 151]
XLOC014172 Up Tumorigenesis, metastasis Plasma [148, 151]
LOC149086 Up Tumorigenesis, metastasis Plasma [151]
HEIH Up Detection, HCV-related HCC Serum, exosomes [103]
UCA1 Up Detection, prognosis Serum [88]
DANCR Up Detection Plasma [108]
lncRNA-CTBP Up Detection Serum [152]
Linc00974 Up Detection, metastasis Plasma [100]

(Table 2). Taken together, MEG3 is a tumor suppressor and
might be considered a prospective diagnostic, predictive and
therapeutic biomarker in HCC.

3.3. Dreh. “Downregulated expression by HBx” or Dreh was
first identified by lncRNA microarray on WT and HBx-
transgenic mice [77]. It is low expressed in the tumor tissues
of HBV-related HCC patients and corresponding cell lines
[77, 78]. Patients with decreased expression of Dreh showed
poor survival [77]. As shown in Table 2, Dreh is linked with
the proliferation and metastasis of HBV-related HCC.

A previous study revealed a negative correlation of Dreh
expression with HBx and HBs [78]. Dreh is downregulated
by HBx via downregulation of vimentin, which results in the
suppression of HCC growth and migration [77, 78] (Table 2),
thus underscoring the tumor suppressive role of Dreh in
HBV-related HCC.

3.4. LET. “Low expression in tumor” or LET is present
in significantly low levels in HCC tumor tissues [79] and
is linked with metastasis [79]. As shown in Table 2, LET
influences the invasiveness and metastasis of HCC cells.

LET is downregulated by HDAC3 [79], and LET inhibi-
tion increases the stability of NF90, thus promoting hypoxia-
induced invasion [79] (Table 2). This was successfully val-
idated in an HCC clinical sample with abnormal histone
acetylation, downregulation of LET, and upregulation of
NF90.These findings suggest a tumor suppressive role of LET
centered around regulating metastasis under hypoxia.

As shown in Table 2, along with the lncRNAs discussed
above, several others have been indicated to influence hepa-
tocarcinogenesis, such as ZNFX1-AS1, PTENP1, and XIST.

4. lncRNAs as Diagnostic Biomarkers and
Drug Targets in HCC

Increasing evidence shows critical roles of various lncRNAs
in hepatocarcinogenesis, either as tumor suppressors or as
oncogenes. Abnormal expression of lncRNAs is significantly

linked with cancer proliferation, metastasis, OS, DFS, RFS,
and the tumor TNM stage. Multivariate analyses have further
revealed that lncRNAs can independently predict recurrence
and outcomes of HCC. With the rapid development of
molecular diagnostics such as sequencing technology, qRT-
PCR, microarrays, and RNA immunoprecipitation, lncRNAs
can be easily detected in various body fluids, thus paving the
way for lncRNA as novel diagnostic and prognostic markers
of HCC. For example, the oncogenic HULC is significantly
upregulated in plasma of patients as well the HCC tumor
tissues; thus, it could serve as a novel diagnostic biomarker
for HCC (Table 3) [15, 17]. In addition to plasma, serum
and exosomes can also be used for lncRNA detection. For
example, HEIH, an oncogenic lncRNA expressed highly in
HCC tissues, was also found to be overexpressed in the serum
and exosomes of patients with HCV-related HCC (Table 3).
In addition to HULC and HEIH, many other lncRNAs could
also serve as biomarkers of HCC which are shown in Table 3.

Since various lncRNAs are abnormally expressed in HCC
and affect many downstream genes and related signaling
pathways through oncogenic or tumor suppressive action,
restoring these lncRNAs to their normal expression level is a
therapeutic option worth considering, especially as an alter-
native to the chemotherapeutic drugs which usually result
in chemoresistance [80]. Pharmaceutical companies have
recently shown a great interest in lncRNA-targeted therapy
and have already taken actions [81, 82]. lncRNAs could be
upregulated by exogenous overexpression and directly tar-
geted by their specific siRNAs or antisense oligonucleotides
[83, 84]. For example, the tumor suppressor MEG3 intro-
duced into HCC tumor through a novel delivery system
effectively induced apoptosis in HCC cells [74], presenting
a potential lncRNA-targeted therapy with fewer side effects.
Therefore, clarifying the specific mechanism of lncRNA
action will greatly promote the advancement of lncRNA-
based diagnosis and therapy for HCC.
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