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Abstract. Oocytes of Xenopus laevis undergo matura- 
tion when injected with an affinity-purified antibody 
against the COOH-terminal decapeptide of the et sub- 
unit of the G-protein Gs, an antibody that inhibits Gs 
activity. Germinal vesicle breakdown, chromosome 
condensation, and polar body formation occur, with a 
time course similar to that for oocytes treated with 
progesterone. The as antibody-injected oocytes also ac- 
quire the ability to be activated by sperm. Coinjection 
of the catalytic subunit of cAMP-dependent protein ki- 
nase, or incubation with cycloheximide, inhibits matu- 

ration in response to injection of the eq antibody; these 
experiments show that the as antibody acts at an early 
point in the pathway leading to oocyte maturation, be- 
fore formation of maturation promoting factor, and like 
progesterone, its action requires protein synthesis. Im- 
munogold electron microscopy shows that as is present 
in the yolk platelet membranes as well as the plasma 
membrane. These results support the hypothesis that 
progesterone acts by inhibiting oq, and suggest that the 
target of progesterone could include yolk platelet mem- 
branes as well as the plasma membrane. 

ESPITE the recent flood of information about pro- 
teins that regulate the cell cycle (Masui, 1992; 
Murray and Hunt, 1993), the mechanisms by which 

hormones reinitiate the meiotic cell cycle in oocytes have 
remained elusive. In particular, receptors for the hor- 
mones have not been identified (see Liu and Patino, 1993, 
for a description of progress). However, a role for a G-pro- 
tein in the hormonal stimulation of oocyte maturation has 
recently been demonstrated for the stimulation of starfish 
oocyte maturation by 1-methyladenine (Shilling et al., 1989; 
Tadenuma et al., 1991, 1992; Chiba et al., 1992, 1993; Jaffe 
et al., 1993). 1-Methyladenine is produced by the follicle 
ceils surrounding the oocyte and acts on the oocyte's ex- 
ternal surface (Kanatani, 1985; Yoshikuni et al., 1988). Ex- 
posure to the hormone activates Gi, and the dissociated [3~/ 
subunit of Gi activates the subsequent events of oocyte 
maturation. The effector protein for [3~t is unknown. 

Whether a G-protein functions in vertebrate oocyte 
maturation is less clear, although studies of frogs provide 
some indications of this. Frog oocyte maturation is initi- 
ated by progesterone produced by the follicle cells (see 
Masui and Clarke, 1979; Schuetz and Glad, 1985). The oo- 
cyte's response to progesterone does not require transcrip- 
tion, and some experiments indicate an action at the 
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plasma membrane level (see Masui and Clarke, 1979). 
Some if not all of the hormone's action appears to be me- 
diated by a decrease in cAMP, based on the following evi- 
dence: (a) cAMP levels in the oocyte decrease by 20-40%, 
within 1-2 min after applying the hormone (see Mailer et 
al., 1979; Cicirelli and Smith, 1985; Cork et al., 1990), and 
adenylyl cyclase activity also decreases (Finidori-Lepicard 
et al., 1981; Sadler and Mailer, 1981). (b) Injection of the 
cAMP-dependent protein kinase catalytic subunit inhibits 
progesterone-induced oocyte maturation (Mailer and Krebs, 
1977; Daar et al., 1993). Likewise, conditions that raise 
cAMP (cholera toxin, GTP-~/-S injection) inhibit proges- 
terone-induced maturation (Mailer et al., 1979; Cork et al., 
1990). (c) Injection of the cAMP-dependent protein ki- 
nase type II regulatory subunit, or an inhibitor of cAMP- 
dependent protein kinase, causes oocyte maturation (Mailer 
and Krebs, 1977; Huchon et al., 1981; Daar et al., 1993). 

Because of these experiments implicating cAMP in the 
stimulation of oocyte maturation by progesterone, and be- 
cause of the regulation of adenylyl cyclase by G-proteins 
(see Hepler and Gilman, 1992), the role of a G-protein in 
transducing the progesterone signal has been examined. In 
support of the involvement of a G-protein, progesterone 
inhibits adenylyl cyclase activity in oocyte membranes that 
are stimulated by the G-protein activators GppNHp or 
cholera toxin, but not adenylyl cyclase activity in oocyte 
membranes that are stimulated by forskolin or manganese, 
agents that act directly on adenylyl cyclase (Sadler and 
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Mailer, 1981, 1983; Jordana et al., 1984). A pathway in- 
volving hormonal stimulation of G i was suggested by the 
finding that in some conditions pertussis toxin, which in- 
hibits receptor-mediated activation of the Gi and Go 
classes of G-proteins, inhibits or slows oocyte maturation 
in response to progesterone (Sadler et al., 1984; Pellaz and 
Schorderet-Slatkine, 1989; but see Goodhardt et al., 1984; 
Mulner et al., 1985). However, pertussis toxin does not af- 
fect adenylyl cyclase inhibition by progesterone in isolated 
oocyte membranes (Goodhardt et al., 1984; Olate et al., 
1984; Sadler et al., 1984). Also, unlike typical G-protein- 
mediated processes, in which the rate of GTP exchange 
onto a subunits increases with receptor stimulation, apply- 
ing progesterone to isolated oocyte membranes decreases 
the rate of GTP exchange with the membranes (Sadler 
and Mailer, 1983). These unusual properties led to the sug- 
gestion that progesterone might act by inhibition of G~ 
(Sadler and Mailer, 1983, 1985; Jordana et al., 1984; A1- 
lende, 1988). 

In the present paper, we investigate the role of G-pro- 
teins in frog oocyte maturation by injecting oocytes with 
affinity-purified antibodies against the COOH-terminal 
decapeptides of G-protein a subunits, which inhibit the ac- 
tivity of these G-proteins in mammalian cells (Simonds et 
al., 1989b; Nair et al., 1990; Meinkoth et al., 1992; Aridor 
et al., 1993; Wilson et al., 1993). We show that an antibody 
against ~s, which inhibits as activity in frog oocyte mem- 
branes, stimulates maturation when injected into frog oo- 
cytes. The a s antibody acts at an early point in the pathway 
leading to oocyte maturation, before formation of matura- 
tion promoting factor (MPF) 1, and its action requires pro- 
tein synthesis. We investigate the intracellular localization 
of oq in the oocyte and find that it is present on mem- 
branes of the yolk platelets as well as the plasma mem- 
brane. These results support the previously proposed hy- 
pothesis that progesterone could act by inhibiting as, and 
raise the possibility that the target of the hormone is not 
limited to the plasma membrane. 

Materials and Methods 

Oocytes 
Pieces of ovary were removed from hypothermically anesthetized Xeno- 
pus laevis (Nasco, Fort Atkinson, WI). Stage 6 oocytes were either manu- 
ally dissected from their follicles, or were isolated by treatment with 2% 
collagenase; the collagenase-treated oocytes were washed in 100 mM K 
phosphate, pH 6,5, and 0.1% BSA, and sorted using a stereoscope (Dues- 
bery and Masui, 1993). Staining of live oocytes with 10 p~g/ml bisbenzi- 
mide H33342 fluorochrome (Calbiochem, La Jolla, CA) to visualize DNA 
showed that some follicle cells remained on manually dissected but not on 
collagenase-isolated oocytes. Oocytes were kept at 18-20°C on agarose- 
lined dishes in a medium composed of 50% Leibovitz's L-15 medium, 10 
mM Hepes, pH 7.2, 50 p,g/ml gentamycin (all components from GIBCO 
BRL, Gaithersburg, MD). Oocytes were used within 1 d after isolation. 
Progesterone (Sigma Chemical Co., St. Louis, MO) was dissolved in 
EtOH (10 mg/ml) before dilution in the above medium. 

Formation of a white spot at the animal pole, an indicator of germinal 
vesicle breakdown (GVBD), was observed and photographed using a 
Wild M5A stereoscope (Kramer Scientific, Yonkers, NY). GVBD was 
confirmed by fixing oocytes in 4% TCA, and then cutting them with a 
scalpel and examining them with a stereoscope. Chromosomes and polar 

1. Abbreviations used in this paper: GVBD, germinal vesicle breakdown; 
MPF, maturation promoting factor. 

bodies were detected by incubating live collagenase-defolliculated oocytes 
in 10 ixg/ml bisbenzimide H33342 fluorochrome in modified Ringers (100 
mM NaC1,1.8 mM KCI, 1.0 mM MgCI2, 2.0 mM CaCI2, 5.0 mM Hepes, pH 
7.8) for 30 min, Oocytes in the dye solution were mounted animal pole up 
between a slide and a coverslip separated by a .03" thick silicon rubber 
spacer ("calendared sheet," North American Reiss Corp., Blackstone, 
VA) cut to make a central well and secured with silicon grease. The prep- 
arations were observed and photographed with a Zeiss Axioskop, using a 
40×, 0.75 NA neofluar objective (Carl Zeiss, Inc., Thornwood, NY). Pho- 
tographs were made using T-MAX 400 film (Eastman Kodak Corp., 
Rochester, NY). Fertilization of in vitro matured oocytes was done as de- 
scribed by Kline et al. (1991). In brief, oocytes at 3 h after white spot for- 
mation were treated with pepsin and cysteine to loosen the vitelline enve- 
lope, which was then removed with forceps. The vitelline-free oocytes 
were inseminated with sperm in an extract of egg jelly. 

Oocytes from starfish (Asterina miniata) were collected as described by 
Jaffe et al. (1993). 

G-Protein Specific Antibodies and Other Biochemicals 
G-protein a-subunit specific antibodies were produced by immunizing 
rabbits with peptides corresponding to mammalian G-protein a subunits 
(see Table I). The RM, EC, GO, GC, and AS antibodies, as well as the 
RM peptide antigen, were provided by Allen Spiegel (National Institutes 
of Health, Bethesda, MD). The KQ antibody was provided by Keith Mos- 
tov (University of California, San Francisco, CA). The sc-387 antibody 
was purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). 
The sequences of the peptides used to produce the antibodies, and the 
similarity of the corresponding sequences of Xenopus G-protein a sub- 
units are summarized in Table I. Antibodies were affinity purified with a 
column of the corresponding peptide (Simonds et al., 1989b). For microin- 
jection, the antibodies were spin-dialyzed and concentrated into 100 mM 
K aspartate, 10 mM Hepes, pH 7.0, using 30 kD Millipore Ultrafree-MC 
filter units (Millipore Corp., Bedford, MA). Protein concentrations were 
determined using the BCA assay (Pierce Chemical Co., Rockford, IL) 
with BSA as a standard. Rabbit IgG (Sigma) was used for nonimmune 
control injections. 

Cycloheximide was obtained from Sigma Chem. Co. The catalytic sub- 
unit of cAMP-dependent protein kinase was obtained from Promega 
Corp. (Madison, WI). Bovine transducin [3~, subunits were provided by 
Yee-Kin Ho (University of Illinois, Chicago, IL) and were spin-dialyzed 
into the same buffer as the antibodies. 

Microinjection 
For microinjection, oocytes were supported on a microscope slide in a 
pool of modified Ringers retained by a U-shaped plastic frame. Microin- 
jections were made using either an oil-filled constriction pipette (Hira- 
moto, 1974) or a "Nanoject" automatic injector (Drummond Scientific 
Co., Broomall, PA). Injection volumes for the constriction pipette were 
calibrated by measuring the decrease in the length of the column of solu- 
tion in the capillary from which the pipette was loaded (30-50 nl). Injec- 
tion volumes for the "Nanoject" injector were calibrated by measuring the 
diameter of a sample of injectate expelled into air (50 hi). For calculation 
of protein concentrations in the cytoplasm, the volume of the stage 6 oo- 
cyte was taken to be 1.0 ~1; antibody concentrations were calculated based 
on the molecular weight of IgG (150 kD). 

Preparation of Cortices, Membranes, and Yolk Platelets 
Cortices were isolated from manually or collagenase-defolliculated oo- 
cytes as described by Elinson et al. (1993). In brief, oocytes were cut in 
half with a scalpel in a buffer containing 100 mM Pipes, pH 6.9, 10 mM 
EGTA, 1 mM MgSO4, 10 p~g/ml aprotinin, 10 ~g/ml leupeptin, 100 fxg/ml 
ct2-macroglobulin , 100 Ixg/ml soybean trypsin inhibitor. Four animal halves 
and four vegetal halves were placed membrane side down on a 8-mm 
square piece of nitrocellulose membrane (Schleicher and Schuell, Keene, 
NH). The half oocytes were flattened by pressing down a 12-mm square 
coverslip (Bradford Scientific, Inc., Epping, NH) until pigment granules of 
the cortex began to disperse as viewed with a stereoscope. The filter was 
separated from the coverslip and rinsed twice in the above buffer. Each 
filter contained N50 ~g protein. Electron microscopy of these filters 
showed a morphology similar to that obtained by Elinson et al. (1993); see 
also Fig. 6. 

A membrane fraction to be used for immunoblotting was prepared by a 

The Journal of Cell Biology, Volume 130, 1995 276 



Table L G-Protein a-Subunit Peptides Used to Produce Antibodies 

Antibody G-protein subunit Antigen sequence* Xenopus sequence similarity* 

RM cq RMHLRQYELL 10/10 
KQ a~ KQLQKDKQVYRA 12/12 
EC § 0ti3 KNNLKECGLY 8/10 
GO § C~o ANNLRGCGLY 9/10 
GC § ot o GCTLSAEERAALERSK 16/16 
sc-387 ~ ~o KMVCDVVSRMEDTEPFSAEL 18/20 

AS at, °~iI, °ti2 KENLKDCGLF 9/10 

*For RM, EC, GO, and AS antibodies, the antigens corresponded to the COOH-terminal decapeptides of the indicated mammalian G-protein ct subunits (Simonds et al., 1989a). 
For KQ, the antigen corresponded to amino acids 28-39 (Pimplikar and Simons, 1993). For GC, the antigen corresponded to a peptide near the NH2-terminal (amino acids 2-17) 
(Thambi et al., 1989). For sc-387, the antigen corresponded to amino acids 105-124 (Santa Cruz Biotechnology, Inc., Santa Cruz, CA). All antibodies except KQ and GC were af- 
finity purified. 
* Sequences for Xenopus a s, oti3, a o, and ctil are described by Olate et al, (1990). 
~The EC and GO antibodies react most strongly with ai3 and ao, respectively, but there is some cross-reactivity (Simonds et al., 1989a). The GC antibody is specific for cto; only 
6/16 of the amino acids of the antigen are identical with those ofXenopus oti3. The sc-387 antibody is also specific for ao; only 2/20 of the amino acids of the antigen are identical 
with those ofXenopus cq3. 

procedure modified from that of Tilley et al. (1988). Approximately 1,000 
collagenase-defolliculated oocytes were suspended in 10 ml of 100 mM K + 
glutamate, 10 mM EGTA, 20 mM Hepes, pH 7.2, 3 mM CaC12, 3 mM 
MgCI2, 10 ~g/ml aprotinin, 10 Ixg/ml leupeptin, 100 Ixg/ml soybean trypsin 
inhibitor, and 100 p,g/ml ct2-macroglobulin, in a 15-ml Dounce homoge- 
nizer (Wheaton, Millville, NJ) on ice. The oocytes were lysed with 6-8 
strokes using a loose-fitting pestle (pestle B). The lysate was diluted with g 
ml of the above buffer, layered onto a 0.5-vol sucrose cushion (1.5 M su- 
crose in the same buffer) in a 32-ml tube, and centrifuged at 4°C in a SW- 
27 rotor at 16,000 g (ray) for 10 min. The interface was removed, diluted 
fivefold, and further homogenized with four strokes of pestle B. The een- 
trifugation step was repeated and the interface was removed and diluted 
as described above. This diluted sample was centrifuged in a microfuge 
(4°C) for 10 min at 16,000 g to pellet the membranes. The supernatant was 
removed, and the pellet was resuspended in the above buffer, aliquoted, 
frozen in liquid N 2, and stored at -70°C. About  5 ~g of membrane protein 
was obtained per oocyte. 

A less purified membrane fraction, to be used for measurement of ade- 
nylyl cyclase activity, was prepared by the procedure of Finidori-Lepicard 
et al. (1981). This membrane preparation was chosen because of previous 
work (Finidori-Lepicard et al., 1981) demonstrating that it preserved 
progesterone-responsive adenylyl cyclase activity. Approximately 1,000 
coUagenase-defolliculated oocytes were suspended in 5 ml of 1 mM 
NaHCO3, 3 mM Na2EDTA, in a 15-ml Dounce homogenizer on ice. The 
oocytes were lysed with 10 strokes using a tight-fitting pestle (pestle A). 
The lysate was centrifuged at 4°C in a microfuge at 1,000 g for 15 rain; this 
step pelleted yolk and pigment granules. The supernatant was centrifuged 
at 4°C in a microfuge at 12,000 g for 15 min; this step pelleted a crude 
membrane fraction. The pellet was resuspended in the above buffer, all- 
quoted, frozen in liquid N2, and stored at -70°C. About 6 l~g of protein 
was obtained per oocyte. 

A fraction enriched in yolk platelets and lacking plasma membrane was 
prepared by collecting cytoplasm from individual collagenase-defollicu- 
lated oocytes. Oocytes were cut open with a scalpel in the same buffer as 
used for the cortices. A core of cytoplasm was collected from each oocyte, 
using a mouth-controlled suction pipette (~0.4 mm diameter). Cytoplasm 
from 40 oocytes was pooled in a microfuge tube and spun at 1,000 g for 1 
min, to pellet the yolk. About  15 t~g of protein was obtained per oocyte. 

Immunoblotting 
Gel electrophoresis and immunoblotting were done as described by Jaffe 
et aL (1993). For samples of cortices prepared on nitrocellulose filters, the 
filters were loaded directly into dry sample wells, followed by addition of 
sample buffer. Affinity-purified antibodies were used at a concentration 
of 1.6-3.8 i~g/ml. The KQ antiserum was used at a dilution of 1:2,000. The 
GC antiserum was used at a dilution of 1:200. As a positive control, we 
made immunoblots from Xenopus brain membranes, prepared by homog- 
enizing a brain and collecting a 12,000-g pellet. 

Adenylyl Cyclase Assays 
Adenylyl cyclase activity was assayed at 37°C for 90 min using a 60-1xl in- 
cubation volume that contained 50 mM Tris-HCl, pH 7.5, 1 mM cAMP, 5 

mM MgC12, 1 mM EDTA, 1 mM 3-isobutyl-l-methylxanthine, 2 mM [3-mer- 
captoethanol, 100 pLM [ct -32 P]ATP (300-500 cpm/pmol), 10 mM creatine 
phosphate, 24 ptg creatine kinase, 25 IxM GTP~S, and 200 p,g of mem- 
brane protein (see above). The reaction was stopped by the addition of 
100 ~1 of 25 mM Tris-HCl, pH 7.5, 1.3 mM ATP, 2% (wt/vol) SDS, 0.2 
mM [3H]cAMP (1,000 cpm/nmol), and heating 5 min at 95°C. The 
[32p]cAMP was isolated by the method of Salomon et al. (1974). 

Immunogold Electron Microscopy of  Isolated Cortices 
Cortices prepared on nitrocellulose filters as described above were fixed 
for I h in 2% paraformaldehyde in 100 mM Pipes, pH 6.9, 10 mM EGTA, 
1 mM MgSO4 (P10EM buffer) and washed with P10EM. After blocking 
with 0.1 M glycine and then with 1% BSA in P10EM, the cortices were in- 
cubated for 4 h in 10 ~g/ml of primary antibody in P10EM + 1% BSA, 
washed, blocked with 1% BSA, and incubated overnight in a 1:20 dilution 
of 5 nm gold-labeled goat anti-rabbit IgG (Amersham Corp., Arlington 
Heights, IL) in P10EM + 1% BSA. The cortices were then washed, fixed 
for 30 min in 2.5% glutaraldehyde in cacodylate buffer, washed, fixed for 
30 min in 1% OsO4 and 0.8% ferricyanide, washed, incubated in 0.5% 
uranyl acetate for 30 min, washed, dehydrated, embedded, sectioned, and 
observed with a Philips CM-10 electron microscope. 

For quantitation of the immunogold labeling, micrographs of 18 adja- 
cent but nonoverlapping areas of the plasma membrane and adjacent cor- 
tical cytoplasm were taken at an initial magnification of 21,000 and en- 
larged to 57,000. Gold particles over the total area of cortical cytoplasm, 
associated with the cytoplasmic face of the plasma membrane, and associ- 
ated with the cytoplasmic surface of the yolk platelet membranes were an- 
alyzed. Counting, as well as area and linear measurements, were done on 
a digitizing tablet using SigmaScan software (Jandel, San Rafael, CA). 

Results 

G-Protein as and a~ Subunits Were Present in Frog 
Oocyte Membrane Fractions 

To identify the G-proteins present in frog oocyte mem- 
branes, we made immunoblots of two oocyte fractions, 
"cortices," which consisted of the plasma membrane with 
the associated vitelline layer, as well as some adhering cy- 
toplasmic components (Elinson et al., 1993), and a mem- 
brane fraction prepared by homogenization followed by 
centrifugation on a sucrose cushion (Tilley et al., 1988) (see 
Materials and Methods). Both were prepared from fully 
grown (stage 6) oocytes that had been defolliculated with 
collagenase, in order to avoid possible follicle cell contami- 
nation. The antibodies were made against peptides of 
mammalian G-protein cx subunits; the peptide sequences 
were identical or almost identical to the corresponding se- 
quences of Xenopus oocyte ~ subunits (Table I). 
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Using these antibodies, as and si3 were identified in frog 
oocyte membranes. The RM antibody against the COOH-  
terminal decapeptide of mammalian/Xenopus oq showed 
labeling of a 43-kD band in both cortices and the mem- 
brane fraction (Fig. 1). In addition, the RM antibody de- 
tected a band at 38 kD in the membrane fraction. The 43- 
kD band, but not the 38-kD band, was also recognized by 
an antibody against amino acids 28--39 of et s (KQ, see Ta- 
ble I). Based on this, the 38-kD polypeptide could be ei- 
ther ct s lacking N5 kD at its NH2 terminus, or a different 
protein containing a sequence similar to the COOH-termi- 
nal decapeptide of et S. The EC antibody against the COOH-  
terminal decapeptide of mammalian oti3 showed labeling of 
a 39-kD band in both cortices and the membrane fraction 
(Fig. 1), as well as a 50-kD band in the membrane fraction. 

Although RNA for ot o and sil is present in stage 6 Xeno- 
pus oocytes (Onate et al., 1992), neither s o nor Sil protein 
was detected by immunoblotting of the oocyte mem- 
branes. The GO antibody against the COOH-terminal de- 
capeptide of s o detected labeling of a band at 39 kD in 
both cortices and the membrane fraction, but the GO anti- 
body recognizes both s o and Si3 (Simonds et al., 1989a). 
Therefore, blots were also probed with the GC antibody, 
which is specific for ao (see Table I). The GC antibody did 
not detect a band in either oocyte fraction, but it was 
strongly reactive with a 39-kD band of Xenopus brain 
membranes. These results indicated that detectable levels 
of So were not present in these oocyte fractions, and that 
the GO signal represented cross-reactivity with si3. This 
conclusion was confirmed by blotting with another anti- 
body specific for % (sc-387; see Table I); this antibody did 
not recognize a specific band in either oocyte fraction, but 
did recognize a specific band in Xenopus brain mem- 
branes. Likewise, although the AS antibody against eql/2 
recognized a specific band in Xenopus brain membranes, it 

did not detect a specific band in either oocyte cortices or 
the oocyte membrane fraction. The absence of detectable 
% and all/2 protein in the oocyte suggests that, although 
injection of brain So can stimulate GVBD (Kroll et al., 
1991), neither et o nor oq1/2 participates in the natural pro- 
cess of oocyte maturation. 

Oocytes Injected with an Antibody That Inhibited as 
Underwent Germinal Vesicle Breakdown with a Time 
Course Similar to That with Progesterone 

To examine the possible function of the s s and ~ti3 subunits 
in the stimulation of oocyte maturation, we injected oo- 
cytes with affinity-purified antibodies against their COOH- 
terminal decapeptides. Fully grown (stage 6) oocytes were 
isolated from ovaries of nonhormonally primed frogs, ei- 
ther by manual dissection or by treatment with collage- 
nase (see Materials and Methods). Injection of the RM 
antibody at concentrations of >0.2 ~M caused GVBD, as 
indicated by formation of a white spot at the animal pole 
(Figs. 2 and 3). The time course for stimulation of white 
spot formation by as antibody (0.3-2.0 }xM) was similar to 
that seen for oocytes treated with progesterone (3 p~M) 
(Fig. 4). We confirmed that the white spot was indicative 
of GVBD by cutting open fixed oocytes; germinal vesicles 
were not present. Injections of <0.1 p~M of the ss antibody 
did not cause GVBD (Fig. 3). Likewise, injections of 2.2 
ixM of the EC antibody (against s~), or 3.3 ~M of nonim- 
mune IgG, did not cause GVBD (Fig. 3). As additional 
controls, oocytes were injected with the filtrate collected 
during spin dialysis and concentration of the ss antibody 
(20 oocytes, 4 animals), or with RM antibody preincu- 
bated with the RM peptide (10 oocytes, 1 animal; Fig. 3); 
these solutions did not cause GVBD. 

The RM antibody has been shown to inhibit % activity 
in membranes from mammalian cells (Simonds et al., 
1989b; Nair et al., 1990). To determine if this antibody in- 
hibited as in frog oocyte membranes, we examined its ef- 
fect on GTP-~-S-stimulated adenylyl cyclase activity in 
isolated membranes (Table II). Like progesterone (10 
}xM), the RM antibody (2 ~M) caused a decrease in ade- 
nylyl cyclase activity, indicating an inhibition of ss. As a 
control, we used the EC antibody, which did not affect 

Figure 1. Immunoblots of oocyte cortices (A), membranes (B), 
and yolk platelets (C) with antibodies against G-protein ~ sub- 
units. For each: (lane 1) RM antibody against as, (lane 2) EC an- 
tibody against oti3. The amount of protein loaded per gel lane: 
cortices, 50 p~g; membranes, 70 p~g; and yolk platelets, 100 Ixg. 

Figure 2. White spot formation in oocytes injected with as anti- 
body. Oocytes were injected with 50 nl of i mg/ml antibody solu- 
tion (0.3 p.M cytoplasmic concentration). White spots formed at 
11.5 h after injection; the photograph was taken at 2.5 h after 
white spot formation. Bar, 1.0 ram. 
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Figure 3. Concentration dependence of as antibody stimulation 
of GVBD. The x-axis indicates the antibody concentrations in the 
cytoplasm. The y-axis indicates the % of oocytes undergoing 
GVBD, as indicated by formation of a white spot at the animal 
pole or by the absence of a germinal vesicle in TCA-fixed oo- 
cytes. Oocytes were scored for GVBD at 24 h after injection. A, 
RM antibody against as (n = 273 oocytes, 21 animals); A, RM an- 
tibody against a s preincubated with an equal amount (wt/wt) of 
the RM peptide (n = 10 oocytes, 1 animal). O, EC antibody 
against oti3 ( n  = 38 oocytes, 4 animals); II, nonimmune IgG (n = 7 
oocytes, 2 animals). 

adenylyl cyclase activity (Table II). These results support 
the conclusion that injection into oocytes of the R M  anti- 
body against as causes maturation by inhibiting as. 

a s Antibody-injected Oocytes Formed Condensed 
Chromosomes and a Polar Body at the Animal Pole 

To examine whether meiotic maturation in et~ ant ibody-  
injected oocytes proceeded beyond germinal vesicle break- 
down, live collagenase-defolliculated oocytes were stained 
with a DNA-specific dye (H33342) and examined by fluo- 
rescence microscopy. Control oocytes treated with 3 wM 
progesterone and examined 9-18 h later (3-8 h after for- 
mation of  a white spot) showed a radial array of con- 
densed chromosomes at the animal pole (38/38 oocytes 
from four animals) (Fig. 5 A). The morphology of the 
chromosome array was typical of metaphase (see Gard, 
1992) and was ~20--40 txm in diameter. 30/38 oocytes also 
showed a polar body containing a mass of condensed chro- 
matin, located near the chromosomes (Fig. 5 A' ) .  

Like the progesterone-treated oocytes, oocytes injected 
with the eq antibody (0.3-2.0 IxM final concentration in the 
cytoplasm) and examined 8-19 h later (3-7 h after forma- 

lOO 

80 

a 60 rn 
> 
0 

40 

20 

0 

100-  

Figure 4. Time course of GVBD in oocytes injected with ct s anti- 
body (RM) or exposed to progesterone. Oocytes were injected 
with 0.3 0,M RM antibody (&) (n = 15 oocytes), or exposed to 3 
~M progesterone (O) (n = 20 oocytes). The time of GVBD was 
counted as the time of appearance of the white spot at the animal 
pole. These results are typical of seven similar experiments, using 
RM antibody concentrations ranging from 0.3 to 2.0 txM. 

tion of  a white spot) showed an array of  condensed chro- 
mosomes at the animal pole (35/35 oocytes, 4 animals) 
(Fig. 5 B). The array of chromosomes usually appeared 
quite similar to that seen in progesterone-treated oocytes. 
16/35 oocytes also showed a polar body associated with the 
chromosomes (Fig. 5 B'). 

as Antibody-matured Oocytes Activated in Response 
to Sperm 

To examine whether oocytes that underwent meiotic mat- 
uration in response to injection of  the as antibody also ac- 
quired the ability to be activated by sperm, we removed 
the vitelline envelope from these oocytes at 3 h after white 
spot formation, and exposed them to a suspension of  
sperm in egg jelly extract (see Materials and Methods). 
Such oocytes responded to sperm like oocytes matured by 
exposure to progesterone. A few minutes after sperm ad- 
dition, a dark spot appeared at one position on the animal 
half of  the oocyte, and from this point, a wave of  contrac- 
tion passed over the oocyte surface (8 oocytes, 2 animals). 
These results indicated that the oq antibody-matured oo- 
cytes could be activated by sperm. 

a s Antibody Stimulated Oocyte Maturation at a Step 
before MPF Formation and Required Protein Synthesis 

Both the protein synthesis inhibitor cycloheximide (Wasser- 

Table I1. Inhibition of Adenylyl Cyclase in Oocyte Membranes by an Antibody against ct s 

Adenylyl cyclase activity 
Sample (pmol cAMP/mg/rnin)* Percent of GTP-~/-Sample 

GTP-~/-S (25 I~M) 2.13 --- 0.13 
GTP-'y-S (25 txM) + progesterone (10 p,M) 0.98 - 0.08 t 46 
GTP--y-S (25 ~M) + RM antibody (2 IxM) 1.51 - 0.18 § 71 
GTP-'y-S (25 ~M) + EC antibody (2 p,M) 2.17 _+ 0.16 102 

* Mean --. standard error of the mean, for three experiments performed in triplicate. 
*Significantly different from the GTP-"/-S value (p < 0.01, analyzed with Instat for Macintosh, GraphPad, San Diego, CA). 
Significantly different from the GTP-3,-S value (p < 0.05). 
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Figure 5. DNA staining of live oocytes 
that had been exposed to progesterone 
(3 ixM) (A and A'), or injected with the 
RM antibody against as (0.3 p~M) (B 
and B'). In A and B, the microscope 
was focused at the level of the second 
metaphase chromosomes. In A' and B', 
the microscope was focused at the level 
of the tightly condensed chromatin in 
the polar body (same oocytes as in A 
and B). Bar, 50 p.m. 

man and Masui, 1975) and the catalytic subunit of cAMP- 
dependent kinase (Mailer and Krebs, 1977; Daar et al., 
1993) inhibit oocyte maturation in response to progester- 
one, but not in response to injection of MPF. We used 
these inhibitors to determine the point in the pathway at 
which the as antibody stimulated oocyte maturation. Oo- 
cytes injected with the as antibody at a concentration of 
0.7 ~M, and then incubated in the presence of cyclohexi- 
mide (10 ~g/ml), did not undergo GVBD (Table III). 
Likewise, oocytes coinjected with the as antibody (0.7 IxM) 
and the catalytic subunit of cAMP-dependent kinase (0.6 
I~M) did not undergo GVBD (Table III). These results in- 
dicated that the as antibody acts at an early point in the 

Table IlL Effect of lnhibitors of Progesterone-induced GVBD 
on a s Antibody-induced GVBD 

Injection Percent GVBD ~ 

RM + cycloheximide* 0 (20, 2) 
RM* 100 (20, 2) 
RM + PKAcat* 0 (24, 3) 
RM + PKAca t buffer ~ 100 (24, 3) 

* Oocytes were injected with the RM antibody against ~x s (0.7 p,M) and then incubated 
with or without cycloheximide (10 Ixg/mi). GVBD was scored at 24 h after injection. 
*Oocytes were injected with a mixture of the RM antibody against as (0.7 I~M) and 
the catalytic subunit of cAMP-dependent protein kinase (PKAcat) (0.6 p~M); control 
oocytes were injected with the RM antibody (0.7 p,M) mixed with the phosphate 
buffer in which the PKAcat was supplied. GVBD was scored at 24 h after injection. In 
two of the three experiments, the oocyte pigment became somewhat spotty after injec- 
tion of the solutions containing PKAc~t. This was not seen in the buffer-injected con- 
trol oocytes. 
~Numbers in parentheses indicate the number of oocytes and the number of animals. 

pathway leading to oocyte maturation, before MPF forma- 
tion, and its action requires protein synthesis. 

as Was Localized on the Oocyte Plasma Membrane  and 
Yolk  Platelet Membranes 

To determine the localization of as, we used a gold-labeled 
secondary antibody to visualize the binding of the a~ anti- 
body to cortices prepared as described in the Materials 
and Methods. Gold particles were associated both with the 
cytoplasmic face of the plasma membrane and with the cy- 
toplasmic face of yolk platelet membranes (Fig. 6, A and 
B; Table IV). There were clumps of gold particles on the 
membranes, suggesting that the G-proteins were present 
in patches. Although these were the main sites of labeling, 
occasional gold particles were present on endoplasmic 
reticulum membranes (Table IV, see * footnote). Gold 
particles were not present on mitochondrial membranes. 

Cortices incubated with nonimmune rabbit IgG showed 
far fewer goldparticles than cortices incubated with the as 
antibody (Fig. 6 C, Table IV). Cortices incubated with the 
antibody against ai3 showed labeling similar to that seen 
with the as antibody, with gold particles on both the 
plasma membrane and yolk platelet membranes (Table 
IV). In addition, the ai3 antibody labeled endoplasmic 
reticulum membranes (Table IV, see * footnote). 

To confirm the presence of as and ai3 in the yolk plate- 
lets, we prepared a yolk platelet fraction of the oocyte cy- 
toplasm (see Materials and Methods). Electron micro- 
scopic examination of the pellet showed that >90% of the 
material in this fraction was yolk platelets, and that mem- 
branes were present around the yolk platelets. Immuno- 
blots of this fraction with the as and ai3 antibodies showed 
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Figure 6. Immunogold label- 
ing of as in oocyte plasma 
membrane and yolk platelet 
membranes. (A) A section 
showing labeling of the 
plasma membrane and a 
yolk platelet membrane by 
the RM antibody against as. 
(B) A section showing label- 
ing of a yolk platelet mem- 
brane by the RM antibody 
against eq. (C) A control sec- 
tion showing the absence of 
labeling by nonimmune IgG. 
Bars, 100 nm. 

specific labeling of 43- and 39-kD bands, respectively, as 
was seen in the cortex and membrane fractions (Fig. 1). 

G-Protein Effects on Oocyte Maturation Differed in 
Frog and Starfish 

Because [3~/subunits cause maturation of starfish oocytes 
(Jaffe et al., 1993; Chiba et al., 1993), we examined their 
effect on frog oocytes. Injection of 3-10 IxM of bovine 
transducin [3~/subunits did not cause GVBD (12 oocytes, 2 
animals); the same preparation of [3~, subunits, at a con- 
centration of >1.8 ~M, caused GVBD in 100% of starfish 
oocytes (Jaffe et al., 1993). Injection of transducin [3~/sub- 
units into frog oocytes also had no inhibitory effect on the 
response to 0.1 ~M progesterone. GVBD occurred in 11/ 

19 progesterone-treated oocytes preinjected with 10 ~M 
13~/subunits, compared with 15/20 control oocytes prein- 
jected with BSA or nonimmune IgG (results from two ex- 
periments with oocytes from two different animals, ex- 
posed to progesterone at 3-5 h after injection, and scored 
for GVBD at 20 h after applying progesterone). 

To examine whether the RM antibody against oq stimu- 
lated maturation in starfish oocytes as in frog oocytes, we 
injected it into oocytes of Asterina miniata. The RM anti- 
body recognized a 44-kD protein in starfish oocytes, based 
on immunoblotting (Jaffe et al., 1993), but at a concentra- 
tion of 8 txM (40 times the effective concentration in frog 
oocytes), it neither stimulated GVBD, nor inhibited GVBD 
in response to 1-methyladenine (n = 5 oocytes). These re- 
sults indicated that although G-proteins can function in 
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Table IV. G-Protein c~-Subunit Localization in Xenopus 
Oocytes 

Particles per Particles per p~m 
Particles per p,m 2 Ixm of plasma of yolk platelet 

Antibody of thin section* membrane* membrane § 

R M  (cts) 4.4 --- 0.8 1.5 ± 0.4 6.2 -4- 1.5 

EC (cq3) 8.8 ± 0.8 2.2 - 0.4 3.4 ± 0.9 
control  I g G  1.0 ± 0.2 0.3 -+ 0.2 0.8 ± 0.1 

*Determined by counting the total number of gold particles in 18 areas of electron 
micrographs of thin sections of oocyte cortices, each with an area of about 5 p,m 2. Ar- 
eas for counting were selected to include plasma membrane and associated cortical 
cytoplasm. Mean ± standard error of the mean. Of the total number of particles 
counted, 5% of the RM particles and 19% of the EC particles were associated with 
membranes identified as endoplasmic reticulum by the presence of ribosomes. 
*Determined by counting the number of gold particles in the segments of plasma 
membrane in the micrographs described in * footnote. The length of plasma mem- 
brane in each micrograph was ~3.5 p,m. Microvillar membranes were not included 
because the membrane was not clearly defined in all planes of section. Mean ± stan- 
dard error of the mean. 
~Determined by counting the number of gold particles in the yolk platelet membranes 
in the micrographs described in * footnote. The length of yolk platelet membrane in 
each micrograph was ~ 2  ixm. Mean ± standard error of the mean. 

the regulation of oocyte maturation in both starfish and 
frog, the G-protein types involved differ for the two spe- 
cies. 

Discussion 

To investigate the possible role of G-proteins in oocyte 
maturation in vertebrates, we injected frog oocytes with 
antibodies that inhibit G-protein function. An antibody 
that inhibits as (RM) initiates both nuclear and cytoplas- 
mic maturation; that is, it causes oocytes to undergo ger- 
minal vesicle breakdown and progress through the meiotic 
cell cycle, and to acquire the ability to be activated by 
sperm. The concentration of the as antibody required to 
stimulate oocyte maturation is ~0.2 ~M, which is similar 
to the concentration of this same antibody that is needed 
to inhibit as when it is injected into mammalian cells 
(Meinkoth et al., 1992). Like the effect of progesterone, 
the stimulatory effect of the as antibody can be blocked by 
the protein synthesis inhibitor cycloheximide, or by the 
catalytic subunit of cAMP-dependent protein kinase. These 
results indicate that the antibody acts at an early point in 
the pathway leading to oocyte maturation, since these 
agents do not block GVBD in response to injection of 
MPF. Our findings do not establish that inhibition of as oc- 
curs during the initiation of meiotic maturation by proges- 
terone. They do, however, support earlier findings that 
suggested this hypothesis (see Introduction). Interestingly, 
as activity is a factor that can either prevent or stimulate 
the cell cycle in somatic cells, although these cells are ar- 
rested at a different point in the cell cycle, before DNA 
synthesis (Meinkoth et al., 1992; Chen and Iyengar, 1994). 

Possible Mechanisms of  as Activation and Inhibition in 
the Oocyte 

The effect of the RM antibody indicates that as is acti- 
vated in the immature Xenopus oocyte. The activation of 
as could be due to a constitutively active membrane recep- 
tor of the seven transmembrane family that couples to 
G-proteins (see Baldwin, 1994), or from the presence of a 
very high concentration of receptor in which a small frac- 

tion of the receptor is in an active conformation (see Mil- 
ano et al., 1994). These possibilities are suggested by the 
fact that the RM antibody was made against the carboxy 
terminus of as, a region that is important for receptor in- 
teractions (see Conklin and Bourne, 1993). However, the 
presence in the oocyte membrane of endogenous recep- 
tors of this family has not been definitively established 
(see Dascal and Cohen, 1987; Miledi and Woodward, 
1989). If a receptor of the seven transmembrane family is 
responsible for activating oocyte Gs, it would seemingly 
need to be active in the absence of agonist, since there is 
no obvious source of an agonist which could act on an oo- 
cyte without follicle cells, and the presence of follicle cells 
is not required to maintain Xenopus oocytes in the imma- 
ture state. 

Alternatively as could be activated by a protein from 
within the oocyte. An antibody made against the same as 
sequence as RM inhibits GppNHp stimulation of adenylyl 
cyclase, suggesting that the antibody can inhibit the ex- 
change of GDP for GTP, independent of its effect on the 
coupling of seven transmembrane receptors to G-proteins 
(Nair et al., 1990). An example of a cytoplasmic protein 
that can activate G-proteins, including Gs, is tubulin; acti- 
vation occurs when GTP is tranferred from tubulin to the 
G-protein a subunit (Roychowdhury et al., 1993; Roy- 
chowdhury and Rasenick, 1994; Mark Rasenick, Univer- 
sity of Illinois College of Medicine, Chicago, IL, personal 
communication). Tubulin is abundant in the oocyte (Gard, 
1991), and so could be a factor that activates et s. Yet an- 
other possibility is that some fraction of the as in the Xe- 
nopus oocyte is constitutively active. 

Xenopus a s may have differences in nucleotide ex- 
change and activation compared to mammalian as, based 
on sequence differences in the region of residues 70-140 
(Antonelli et al., 1994). While mammalian and Xenopus a s 
are 92% identical, Xenopus as does not activate mamma- 
lian adenylyl cyclase in an in vitro expression system, 
though chimeras which replace the Xenopus region 70-140 
with the corresponding mammalian region are active (An- 
tonelli et al., 1994). The region homologous to residues 
70-140 in the crystal structure of the a subunit, transducin, 
is part of an a-helical domain which forms a lid to the gua- 
nine nucleotide-binding pocket, and may affect GTP bind- 
ing (Noel et al., 1993). 

Since Xenopus % differs from mammalian as, it may be 
regulated by unique mechanisms. It could be speculated 
that progesterone inhibits a s, either by activating a recep- 
tor that inhibits as (see a related example described by 
Negishi et al., 1993), or by inhibiting coupling of a consti- 
tutively active receptor with as. 

Possible Functions of  G-Proteins in Yolk 
Platelet Membranes 

Although G-proteins were initially thought to be exclu- 
sively plasma membrane enzymes, functions of G-proteins 
on intracellular membranes have recently been identified 
in a variety of processes (Bomsel and Mostov, 1992; Jones, 
1994). The presence of as on yolk platelet membranes sug- 
gests that these membranes as well as the plasma mem- 
brane could be sites of progesterone action. Progesterone 
has been thought to act exclusively on the plasma mem- 
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brane based on experiments in which steroids coupled to 
agarose beads or polyethylene oxide (molecular weight 
20,000) were shown to induce maturation in Xenopus oo- 
cytes (Ishikawa et al., 1977; Godeau et al., 1978). How- 
ever, an action mediated by steroid dissociated from the 
polymer cannot be eliminated (see Bronson and Stumpf, 
1991). Furthermore, although injection of progesterone in 
an aqueous solution is ineffective, injection of progester- 
one in paraffin oil results in oocyte maturation (Tso et al., 
1982). 

Localization of as and txi3 on the yolk platelet mem- 
branes may be significant in other aspects of oocyte physi- 
ology. Heterotrimeric G-proteins have recently been im- 
plicated as regulatory factors in endocytosis (Haraguchi 
and Rodbell, 1990), endosome fusion (Colombo et al., 
1992, 1994), and polarized vesicular transport (Bomsel and 
Mostov, 1993; Pimplikar and Simons, 1993). Thus the pres- 
ence of G-proteins on yolk platelet membranes could be 
related to the formation of the yolk platelets by endocyto- 
sis, endosome fusion, and polarized vesicular transport 
(see Danilchik and Gerhart, 1987) during oogenesis. These 
G-proteins could also function in the regulation of ion 
transport across yolk platelet membranes (Fagotto and 
Maxfield, 1994), or in proteolysis of yolk glycoproteins 
during embryogenesis (Mallya et al., 1992). 
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