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Abstract

Present day risk assessment on the spreading of airborne viruses is often based on the clas-

sical Wells-Riley model assuming immediate mixing of the aerosol into the studied environ-

ment. Here, we improve on this approach and the underlying assumptions by modeling the

space-time dependency of the aerosol concentration via a transport equation with a

dynamic source term introduced by the infected individual(s). In the present agent-based

methodology, we study the viral aerosol inhalation exposure risk in two scenarios including

a low/high risk scenario of a “supermarket”/“bar”. The model takes into account typical

behavioral patterns for determining the rules of motion for the agents. We solve a diffusion

model for aerosol concentration in the prescribed environments in order to account for local

exposure to aerosol inhalation. We assess the infection risk using the Wells-Riley model for-

mula using a space-time dependent aerosol concentration. The results are compared

against the classical Wells-Riley model. The results indicate features that explain individual

cases of high risk with repeated sampling of a heterogeneous environment occupied by

non-equilibrium concentration clouds. An example is the relative frequency of cases that

might be called superspreading events depending on the model parameters. A simple inter-

pretation is that averages of infection risk are often misleading. They also point out and

explain the qualitative and quantitative difference between the two cases—shopping is typi-

cally safer for a single individual person.

1 Introduction

According to a recent study, the emerging new SARS-CoV-2 variants are extremely infectious

with the basic reproduction number Ro* 6 − 8. There is an urgent need to better understand

the aerosol spread of such hyper-contagious respiratory viruses. In fact, the exposure of healthy

people to infected individuals is a complex and multidisciplinary problem. Questions abound

from how to provide scientifically reliable and preferably quantitatively meaningful and justi-

fied guidelines for the public and for the policies to restrain disease spreading to the desired tar-

get level to the fundamental statistics of spreading. The average reproduction number R0 and
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its variance are challenging to estimate a posteriori to say nothing about predictive, a priori

modelling. In this work, we take a semi-quantitative approach to this problem by estimating

exposure and risk from COVID-19 infected persons in certain relevant contexts. Following

numerous earlier works [1–7] supported by growing body of experimental evidence [8–15], the

airborne spread of SARS-CoV-2 via aerosolized virus is presently well established [16–18].

The main point of the present study is that the exposure and the resulting infection risk

must be expressed in terms of probability distributions if one aspires for improved accuracy.

From these, one of course is able to compute relevant quantities such as the average risk for

exposure or contagion (with extra approximations). Here, we consider two interesting scenar-

ios: a “super-market” and a “bar” [19–25]. The main difference in these two cases relates to the

behavioral patterns of the “agents” or customers in both scenarios. This then becomes evident

in the risk for such agents.

Our main objectives relate to the gaps left by the attempts to estimate quantitatively the sta-

tistics of risk. They are four-fold. First, from the practical viewpoint of understanding the risk

involved with human activities clear quantitative differences are found: shopping is way less

risky than going to a bar for typical person. Second, these risks can be tuned both by personal

behavior (dwell time at the activity) and by an effort to decrease such risks (customer density,

air ventilation to avoid any peaks in virus air concentration). Third, the concept of “super-

spreaders” corresponds in our modelling to the tails of the distributions of the number of per-
sons infected / exposed by an infected person. Finally, fourth, our simulation model and the

results show that a combined approach involving physical detail (aerosols, geometry) and a

consistent Monte Carlo modelling of a large cohort of individuals allows to obtain quantita-

tively relevant results. This indicates that a priori approaches in the same vein would often be

of value for risk management.

This paper is organized as follows: Section 2 reviews the modelling details and the assump-

tions made for the choice of parameters. Section 3 looks at the two scenarios from the view-

points of virus concentration fields, the statistics of exposure, and their coupling. It also

presents alternative ways of assessing the results based on the Wells-Riley equation [26] and

on the question if the contagion/exposure may be understood by simpler models. Conclusions,

recommendations, and comparisons to other work are provided in Section 4.

2 Methods

2.1 The classical Wells-Riley model

A common model to estimate infection risks for respiratory diseases in confined spaces is the

Wells-Riley model [11, 26, 27]. It assumes airborne transmission via infecting ‘quanta’ that are

generated and emitted by infected agents in the space. Moreover, the quanta are assumed to be

spatially uniformly distributed and inhaled by the healthy agents. The model then yields an

estimate of probability of infection for the healthy given a time t spent in the indoor space with

I infected people. The derived probability is [26]

PinfectionðtÞ ¼ 1 � e�
Iqpt
Q ; ð1Þ

where p is the pulmonary ventilation rate, Q is the room ventilation rate and q is the infection

quanta generation rate which is a disease dependent parameter.

2.2 Present Monte-Carlo model

Our model incorporates the spreading of aerosols from ‘infected’ agents [1, 28] and the mea-

surement of exposure accumulated by the agents in the system. The concentration of aerosols
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c(r, t) follows the, diffusion equation

@c
@t
¼ DDcþ S �

c
t
; ð2Þ

where we also have the source term S and sink term c/τ. The aerosol concentration applies to a

reference volume of 1 m3. The approach adopted here is supported by Computation Fluid

Dynamics (CFD) simulations performed in a room where the spreading of an aerosol plume is

monitored over time while the air currents generated by the room ventilation are accounted

for (see Fig 1). As seen in the figures, the ideal ventilation effectively subjects the plume to air

currents undergoing isotropic turbulence, in which case the mixing of the plume with the sur-

rounding air can be considered a diffusion event to a good accuracy. This lends credence to

our simple and computationally inexpensive model for the aerosol concentration.

We simulate the concentration field in two dimensions and, thus, we assume that the diffu-

sion occurs in the 2D grid made of cells with the size of the reference volume. The sink term

then fixes the lifetime and decay of the airborne aerosol particles due to air ventilation. We run

the simulations first with a value of τ = 100 s and then enlarge it to investigate the role of slower

air circulation. The connection between parameter τ and “Air Changes per Hour” (ACH), the

common measure of room ventilation, can be derived from Eq 2:

t ¼
1

ACH
; ð3Þ

so e.g. τ = 1200 s corresponds to ACH = 3.

Sources S of the field are point-like and come from the ‘infected’ agents in the system. They

spread aerosols with both continuous emission of 5 aerosols / second, and discrete events [1,

Fig 1. The figure on the left depicts the time-evolution of the concentration (arb. units) of an aerosol plume (red region) emitted

by an infected person at the center of a room, where t = 0 s denotes the inception of the plume. The results displayed here were

obtained in a CFD simulation incorporating the (turbulent) air currents generated by a typical room ventilation setup. The ventilation

effectively dilutes, spreads and gradually removes the plume. The figure on the right illustrates this concentration data at the middle-

cut plane with respect to the room height. The results in these figures indicate that in the event of an ideal ventilation, the plume can be

considered to be subjected to isotropic turbulence. Therefore, the inception and mixing of the aerosol plume with the surrounding air

can be modeled within a reasonable accuracy as a diffusion event with concentration sources and sinks.

https://doi.org/10.1371/journal.pone.0260237.g001
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29], or ‘coughs’, of e.g. S0 = 40000 aerosols with probability pc = 6/3600 per second (i.e. on

average 6 coughs per hour). The navigation of the agents in our model systems follows the

same idea as the implementation in [1], where the agents behave as individuals interacting

only to avoid collisions. As a slight improvement to the earlier model, the agents now avoid

routes next to walls. This allows us to simulate more crowded systems without agents blocking

each other and eventually jamming the entire system. The model describes rather well human

dynamics modified by social distancing rules during the pandemic.

We implemented the simulations in two distinct environments. In ‘bar’ environment (with

size Lbar = 50 × 50) as illustrated in Fig 2a, the customers enter the system and first navigate to

one of the bartenders. After that, they find their designated, reserved seat where they spend a

time drawn from Poisson distribution with mean of 16 minutes. The process of getting a drink

from bar and enjoying it at the table is repeated 1-6 times with uniform distribution. The num-

ber of seats in the bar is restricted and while all seats are taken, no new customers enter the

system.

For comparison, we replicated the simulations in a ‘supermarket’ (SM) environment (LSM
= 100 × 100) which is illustrated in Fig 2b. There the customers enter the system and are given

a list of 1-60 positions (again, with uniform distribution) to visit before heading to the cashier

and leaving the system. Therefore, the behaviour of the agent differs drastically between the

two environments: in bar, the walkers are mostly stationary and in close contact with other

customers. While in SM, they stay almost in constant movement.

The main parameter to measure during the simulations is the amount of inhaled aerosols N
by our healthy agents. It is simply calculated as the accumulated aerosol concentration times

the inhalation rate _Vinh ¼ 0:33 dm3s� 1, i.e.

N ¼ _Vinh

Z t1

t0

cðr; tÞdt; ð4Þ

where t0 and t1 are the times the agent enters and leaves the system, respectively, and c(r, t) are

taken in the cells which the agent occupies. In addition to obtain an estimate on possible infec-

tions, we use the ‘critical’ limit of inhaled of aerosols Nc = 100 introduced in [1]. There it was

estimated by comparing known cases of COVID-19 spreading events, that inhaling Oð100Þ

Fig 2. Snapshots from simulations in (a) bar and (b) supermarket environments. Healthy customers are depicted by yellow

dots and infected customers by red diamonds, while the black regions are blocked, e.g. walls or shelves. In bar, the purple

squares illustrate the seats available for the customers and the green squares are at the bar ‘counter’ where the agents get

their next beverage. In supermarket, the green squares at the lower edge of the system are cashiers from where the

customers leave the system. The colorbar shows the aerosol concentration in the systems. Opposed to the Wells-Riley

model that assumes uniform distribution of infecting quanta, the aerosol concentrations in our model systems are non-

uniform and highly dependent on the movement of the infected agent.

https://doi.org/10.1371/journal.pone.0260237.g002
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aerosols with a viral load could be a dose leading to transmission. However, we emphasize that

this is only a rough estimate which gives us some way to compare our simulation results to pre-

vious models and real world. Another approach would be to use an estimate similar to the

Wells-Riley model, and normalize the number of particles intaken by a person by a reference

quantity. This could be then used to estimate for each agent a probability based on the stochas-

tic history, based eg. on an exponentially growing likelihood, but the result would not be quali-

tatively different (essentially our choice amounts to state that for large enough aerosol loads

the approaches are comparable).

To isolate the effect of single spreaders, we perform simulations where we first run the sys-

tem to a steady-state (i.e. * constant level of customers) which is dependent on the number of

seats in bar or the influx of customers in SM. These values are chosen so that the eventual cus-

tomer density ρ is comparable between the systems, as shown by Table 1. Once the system

reaches the steady-state, we send in a single infected agent leading to an assumption of one

spreader in the system instead of a proportion. The inhaled aerosols are then collected for the

healthy customers that visit the system the same time or right after the infected customer. The

simulations were repeated for 10000 times in bar and 500 times in supermarket.

2.3 The Computational Fluid Dynamics (CFD) model

As indicated above, the primary results presented here are complemented by a full three-

dimensional CFD simulation of an aerosol plume emitted by a person, exposed to air currents

generated by the ventilation in a room. The approach is established on our previous work

implementing a CFD solver labeled NS3dLab [30]. In this framework, the Navier-Stokes equa-

tions are solved on a continuum level utilizing the Chorin-Temam projection method while

the aerosol plume is modeled by incorporating an additional transport equation for a passive

scalar field normalized to the interval [0, 1]. The solver utilizes a pseudo-spectral approach in a

periodic configuration, a skew-symmetric (kinetic energy conserving) form of the convection

terms and a fourth order explicit Runge-Kutta time discretization. Further technical details are

documented in [30].

The case presented in Fig 2 is initialized by setting the kinematic viscosity of the interstitial

fluid to the value of air at NTP conditions. Additionally, two ventilation apertures are located

near the floor level of the room (with cross-sectional dimensions of 0.3 m x 0.2 m). The inflow

of air at these apertures is velocity controlled and a value of 1.0 m/s is used for a realistic venti-

lation setup. Additionally, a fine grid consisting of 224 x 224 x 88 nodal points is applied to

model the space enclosed by the room (8 m x 8 m x 3 m), implying the simulation is performed

close to the Direct numerical simulation (DNS) limit. Further, the passive scalar field is initial-

ized to 1 in a spherical volume (radius 1 m) in front of the infectious person. This serves as a

qualitative description of the behavior of an orally emitted aerosol plume in a closed indoor

space with ventilation induced air flows.

Table 1. Average customer density in bars with varying number of seats and in supermarkets with varying customer influx. In SM, increase in ρ from larger influx is

not linear as the system approaches jamming due to waiting times at cashiers.

Bar: Seats ρ(customers/m2) SM: Influx (customers / hour) ρ(customers/m2)

32 0.013 360 0.009

48 0.020 720 0.018

64 0.027 1080 0.029

1440 0.061

https://doi.org/10.1371/journal.pone.0260237.t001
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2.4 ‘Zeroth order approximation’ for exposure

For simplification, we also derive a mean-field-like ‘zeroth order approximation’ for accumu-

lated exposure by an average agent, N0. We start by assuming a static source of aerosols at the

center of a 2D system with size L similar to our simulations. The source emits aerosols with a

constant rate that is comparable to the average rate of our infected agents, i.e. 5 + pc � S0 aero-

sols / second. Then, after the concentration field around the source reaches steady-state c(r, t
!1), we add a customer that samples the field at a distance of two random points in a square,

r0� 0.521L, for a time equal to the average spent in the system by the agents, i.e. ht1 − t0isim.

Combining these we obtain,

N0 ¼
_Vinh � cðr0; t !1Þ � ht1 � t0isim ð5Þ

for the zeroth order approximation. This is now system-dependent (bar/SM) as r0 and ht1 −
t0isim vary between the two simulation systems.

3 Results

3.1 Aerosol exposure

The resulting distribution of inhaled aerosols by healthy customers in both environments is

illustrated in Fig 3. The figure shows distinctly the two environments: in bar, the tail of the dis-

tribution is near exponential, and interestingly, with no clear difference caused by varying the

amount of customers. In SM, the distributions vary with the customer density, as with less cus-

tomers the distributions cease more sharply. More importantly one can focus on the levels of

inhaled aerosols implied by the figure. Although clearly most customers survive with expo-

sures close to zero aerosols in both bar and SM, there is a significant amount of bar customers

with N> Nc. Meanwhile SM simulations result in only few cases of critical spreading which

agrees with the observations made in [1]. In the following section, we focus on the statistics of

these critical spreading events.

Fig 3. The distribution of accumulated exposure by healthy customers in supermarket simulations with varying

customer density and in bar simulations with different number of seats.

https://doi.org/10.1371/journal.pone.0260237.g003
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3.2 Statistics of super-spreading and infection risk

One fundamental question in the spreading of the aerosols is how many critical spreading

events originate from a single infected customer. To study this, Fig 4 shows the distribution of

customers with N> Nc caused by a single spreader during one bar simulation. Now the figure

shows the effect of more customer spots, as the average of caused critical exposure events is

0.74, 1.17 and 1.69 with 32, 48 and 64 customers in bar, respectively. Naturally this follows

from the fact that, although the exposure distribution in Fig 3a stays the same, in the more

crowded bar the customers sit more densely and more customers get affected by the spreader.

The figure also gives an idea of what super-spreaders, i.e. the most efficient spreaders of the

aerosols, can inflict: with the capacity of 64 customers, single spreader is observed to cause up

to ten critical spreading events, while with the lowest capacity of 32 customers the number of

critical events is still found to be as high as eight. This becomes quite evident in Fig 3b, where

the slow-down of ventilation brings big changes in the tails of the customer numbers. Even

though the increasing value of τ does not change the shape of the distributions it pushes the

largest observed tail values almost linearly to higher and higher values.

To compare our results to Wells-Riley model (Eq 1), we obtain the ventilation rate Q by

using the ACH associated to τ and calculating the system volume as the area (non-blocked,

excluding shelves etc.) times some typical room height (3 m). Additionally, we estimate q from

the aerosol generation rate of our infected customers: On average, the infected spread 5 aero-

sols/s � 3600 s/h + 6 � 40000 aerosols/h where the first term is from continuous emission and

second from the discrete cough events. Then we convert this to estimate of q by dividing the

sum with the critical exposure Nc thus leaving us with the number of ‘infecting’ quanta gener-

ated per hour by the infected, q = 25801/h. To compare Eq 1 to our simulations, we compute

the infection probability as the proportion of customers with N> Nc from all customers that

spent time t in the system simultaneously with the infected. This leads to a small error as the

healthy customers can possibly accumulate exposure also after the infected has left the system

because of lingering aerosols, but there is no reasonable way to take this into account. Thus we

expect some level of underestimation from the Wells-Riley equation compared to the simu-

lated risks. Finally, the pulmonary ventilation rate is approximated as p � _Vinh.

Fig 5 illustrates the infection probability for customers visiting the simulated systems as a

function of time spent simultaneously with the infected customer and the Wells-Riley equa-

tion. In Fig 5a, the data is from bar simulations with varying number of customers and good

Fig 4. Distribution of the number of customers with critical exposure N> Nc caused by single spreader (a) from bar

simulations with τ = 100 s and varying amount of customers and (b) from bar simulations with 32 customers and varying

ventilation conditions via parameter τ.

https://doi.org/10.1371/journal.pone.0260237.g004
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ventilation τ = 100 s. Our simulated risk of critical exposure events follows Wells-Riley equa-

tion with small t but starts to overshoot after t> 0.5 h. As seen in Fig 5b, decreasing the venti-

lation rate in bar simulations by increasing τ, increases the infection risks significantly. The

Wells-Riley equation, although not perfectly aligned with our results, follows the simulated

risks quite closely, but in general we see that the mean-field like Wells-Riley underestimates

easily the risk. This was partly expected due to the model details but is also due to the fact that

the agents sample the environment in a way that enhances the risk. Thus, our model captures

well the two common recommendations of risk avoidance: First, by shortening exposure times

and spending less time in e.g. bar, the infection risks are lower. And second, better ventilation

is crucial in lowering the risks. The SM simulations (Fig 5c) show no clear dependency

between t and infection probability which is no surprise as critical spreading events in the sim-

ulations were highly unlikely. Notable here is also that the times customers spend in the SM

simulations are much shorter than in the bar simulations.

Comparing our previous estimate of q to previous value obtained for COVID-19 [27], our

estimate is significantly larger (a factor of *100). However, this arises from the model choices:

In Wells-Riley model, q is a hypothetical measure of how many infectious doses are emitted by

one infected person, and in our model we measure this by the aerosol amount scaled by the

critical load Nc. Here Nc is a rough estimate and as the eventual number of new infections and,

Fig 5. Approximate infection risk for healthy customers in (a) bar simulations with different customer densities, (b) bar

simulations with varying ventilation (parameter τ) and (c) supermarket simulations with time t spent in the system with single

infected customer. The infection probability in our simulations is estimated as the proportion of customers with N> Nc.

Comparison of simulation results to Wells-Riley equation is also included: the approximated value for quanta generation rate

q = 25801/h is derived in the text, and the ventilation rate Q is calculated according to corresponding τ and Eq 3.

https://doi.org/10.1371/journal.pone.0260237.g005
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therefore, the risk of getting infected are dependent on the used value of Nc, our q is corre-

spondingly only an approximation. To obtain a closer estimate of Nc would require extensive

experiments that are out of scope for this work. In any case, the bar results validate the use of

our estimate of q, as by fitting q from the data of Fig 5b we obtain qfit = 26401/h which is almost

same as our derived estimate.

As a final remark on the critical spreading events, we study how many critical exposure

events originate from spreaders with increased aerosol output. This is closely connected to

possible super-spreading events as person-dependent higher infecting rate is most likely linked

to individual qualities such as aerosol emission during coughing and speaking. Therefore, we

fix ventilation parameter τ = 400 s in bar with 32 customers and set the source term from

coughing to multiples of control value S0 = 40000 aerosols. The distribution of critical events

from single spreader with heightened emission of aerosols is presented in Fig 6. The figure

shows that higher aerosol concentrations from coughs lead to same effect as slower room ven-

tilation rate in Fig 5b: the distributions retain their shape but shift towards larger values. From

the modeling perspective this is natural as both larger aerosol source terms and decreased ven-

tilation lead to higher aerosol concentrations in the system.

3.3 Comparison to expected exposure from the zeroth order approximation

Finally, we compare our simulation results to the zeroth order, i.e. mean-field-like, approxima-

tion discussed in Section 2.4. For simulated cases we choose bar with 64 customers and SM

with 1080 customers/hour with similar average customer densities. Comparing the average

exposure from simulations to N0, we have

hNbar
simi

Nbar
0

� 6
hNSM

simi

NSM
0

� 8 � 105: ð6Þ

Next, we explore the background reasons for the discrepancy between the simulation and

zeroth order approximation results. Instead of a steady-state field c(r, t!1), the healthy cus-

tomers sample a concentration field that follows the spreader and highlights possible coughs

and stops. For example, Fig 7a shows the integrated concentration field,
R T

0
cðr; tÞdt where T is

Fig 6. Distribution of the number of customers with critical exposure N> Nc caused by single spreader from bar

simulations with 32 customers and τ = 400 s. Here the amount of emitted aerosols during a cough is varied from S0 =

40000 to 8 � 40000 aerosols.

https://doi.org/10.1371/journal.pone.0260237.g006
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the total simulation time, from a bar simulation with single spreader. The figure shows the seat

of the spreader as the darkest area near bottom right corner but there are also notable concen-

trations near the bar counter and entrance. Combining the data from multiple simulations, Fig

7b illustrates the distribution of values of
R T

0
cðr; tÞdt=T for individual cells. In both bar and

SM settings, the distributions are power-law-like spanning *13 (bar) to *15 (supermarket)

decades. As the healthy customers accumulate their inhaled aerosols by sampling these distri-

butions, they tend to visit cells that have been on the route of the spreader, e.g. the entrance

and exit of bar in Fig 7a, which leads to larger exposures than the conservative zeroth order

approximation. In SM this effect is even more dramatic, as the steady-state field c(r, t!1) at

distance r0 is negligible. The distributions of the concentration fields also provide insight why

the accumulated exposure distributions of Fig 3 are distinct in the two cases: both bar and SM

have approximately same maxima of Pð
R T

0
cðr; tÞdt=TÞ but in bar case the distribution is nar-

rower than in SM leading to larger exposures.

4 Conclusions

Our goal has been to highlight the strength of agent-based simulations in grasping semi-quan-

titatively the risk levels of COVID-19 exposure in two typical settings. This of course also

allows making observations with potentially practical interest. Due to the memory effects in

our model and most likely also in real environments details prove to be important as Fig 7

demonstrates by the apparent similarity of the aerosol concentrations while the exposure mea-

sures are very different. It matters due to the non-linearity of the infection risk, which as such

is also contained in the Wells-Riley model how many times and for how long a person samples

these environments. The first effect is due to the high variation illustrated in the Figure, and

the second one is inherent of infection models. In colloquial language, bar hopping is

dangerous.

We thus obtain estimates of exposure and infection risk that are in line with expectations.

Brief visits to supermarkets carry relatively low risk. Spending extensive amounts of time leads

to an elevated risk for some but not all patrons due to how the “agents” sample the environ-

ment. This is also very visible in the comparison of the simulation results to the “expected”

exposure. All in all our observations agree of course perfectly with the common recommenda-

tions of why and how to decrease extended close contacts with random people. They also

point to the crucial role of ventilation in order to reduce aerosol concentrations, regardless of

Fig 7. (a) The aerosol concentration summed through one single bar simulation. (b) The distribution of cell values seen in (a)

divided by the corresponding simulation duration T collected from all of the simulations.

https://doi.org/10.1371/journal.pone.0260237.g007
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the environment [31, 32]. This is quite evident when τ is varied, and slow air circulation (ACH

value small) leads to larger and larger risk levels. The largest “superspreading” events that one

finds become thus also more substantial.
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