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Abstract
Modulation of defensin expression may be one way to improve animal health and to reduce zoonotic diseases. Defensins are

small, cationic, and amphipathic cysteine-rich antibiotic peptides found in plants, insects, mammals and birds. Whereas a- and u-

defensins appear to be absent in birds, several b-defensins have been isolated from avian heterophils. In addition, b-defensins were

found to be constitutively or inducibly expressed at mucosal surfaces of the respiratory, intestinal and urogenital tracts. In this

review the current knowledge of the defensin repertoire of birds, their tissue-specific expression, regulation and corresponding

biological functions are described.
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1. Introduction

Birds are important reservoirs of zoonotic pathogens.

Human pathogens, such as Salmonella and Campylo-

bacter spp., may reside in the chicken intestinal tract

without giving rise to clinical symptoms, but are major

causes of food poisoning (Helms et al., 2006; Kessel

et al., 2001). Domesticated birds are also an important

reservoir of avian influenza A virus subtypes that pose a

threat to both animal and human health (e.g. H5N1) and

have been linked to regularly reoccurring outbreaks of

influenza in Asia (Kung et al., 2007). Thus, animal

health and public health will greatly benefit if the innate

immune system of domesticated birds can be boosted to

limit or even prevent colonization and spreading of

zoonotic pathogens.

Prime targets for boosting of innate immunity are

defensins, a family of small cationic peptides with

broad spectrum antimicrobial activity against bacteria,

fungi, protozoa and enveloped viruses (Zasloff, 2002).

Defensins, a subset of antimicrobial peptides, are

cystine-rich peptides that vary in length from 18 to

approximately 45 amino acids and are enriched in

hydrophobic and cationic aa residues (Selsted and

Ouellette, 2005). In addition to their direct antimicro-

bial activities, immunomodulatory properties have also

been demonstrated. Defensins can promote adaptive

immunity by selective recruitment by chemotaxis of

monocytes (Territo et al., 1989), T lymphocytes

(Chertov et al., 1996), immature dendritic cells (Yang

et al., 1999) and mast cells (Niyonsaba et al., 2002) to

sites of inflammation. Furthermore, they are able to

induce histamine release from peritoneal mast cells

(Befus et al., 1999) and to enhance macrophage

phagocytosis (Fleischmann et al., 1985; Ichinose

et al., 1996).

Anti-inflammatory properties have also been attrib-

uted to defensins, such as inhibition of formylpeptide

receptor-mediated chemotaxis of polymorphonuclear

leukocytes (Grutkoski et al., 2003) and the binding of

bacterial endotoxins (Motzkus et al., 2006). In addition,

defensins may enhance wound repair by inducing

fibroblast (Murphy et al., 1993) and epithelial cell

proliferation (Aarbiou et al., 2002, 2004; Murphy et al.,

1993). In vertebrates, three different defensin sub-

families (a, b and u) exist, differing in disulfide bridge
pairing and positioning of their conserved six cysteine

residues, Cys1–Cys6, Cys2–Cys4, Cys3–Cys5 for a-

defensins versus Cys1–Cys5, Cys2–Cys4, Cys3–Cys6

for b-defensins (Selsted and Ouellette, 2005). The

observation that a- or u-defensins have not been found

in phylogenetically much older vertebrates, such as

birds and fish, suggests that all defensin subfamilies

must have evolved from an ancestral b-defensin gene by

duplication and diversification (Semple et al., 2003).

Several b-defensins have been described for avian

species, in particular for galliformes, either isolated

from heterophilic granulocytes or discovered by in

silico analysis (Table 1). In the following sections the

current status of knowledge regarding avian defensins is

described, with the emphasis on localization, putative

functions, biosynthesis and regulation, and where

necessary, the relation to their mammalian counterparts.

For practical purposes, the nomenclature of chicken b-

defensin and related sequences from other avian species

in this review is based on the recently proposed update

of the avian b-defensin nomenclature by Lynn et al.

(2007).

2. Genomic organization

At least 14 chicken b-defensin genes are located in a

�86.0 kb single b-defensin cluster on chromosome

3q3.5–q3.7 (Lynn et al., 2007; Xiao et al., 2004).

Chicken b-defensin genes consist of four exons (Fig. 1),

with the exception of the AvBD12 gene where the last

two exons have fused (Xiao et al., 2004). Defensins are

synthesised as inactive precursors, i.e. prepropeptides,

consisting of a short signal peptide, a propiece and the

mature peptide. The propiece is often but not always

anionic. For example, AvBD1 and -2 do not contain a

negatively charged propiece (Brockus et al., 1998). The

1st exon corresponds to the 50UTR region, the 2nd exon

encodes the signal peptide and part of the propiece,

while the remaining part of the short propiece and

majority of the mature peptide are encoded by the 3rd

exon. The remaining part of the mature peptide and the

30UTR region are encoded by the 4th exon (Fig. 1). The

chicken 3q3.5–q3.7 b-defensin locus appears to have

evolved by a series of gene duplications, followed by

substantial divergence of the exon(s) encoding the

mature peptide with substantial ‘‘positive selection’’,



A. van Dijk et al. / Veterinary Immunology and Immunopathology 124 (2008) 1–18 3

Table 1

Nomenclature of avian defensins

Designation Synonyms Genbank References

Chicken

AvBD1 Gal-1/1a; CHP-1 AAB30584 Evans et al. (1994) and Harwig et al. (1994)

AvBD2 Gal-2 AAB30585 Harwig et al. (1994)

AvBD3 Gal-3 Q9DG58 Zhao et al. (2001)

AvBD4 Gal-7; Gal-4 AAS99318 Lynn et al. (2004) and Xiao et al. (2004)

AvBD5 Gal-9; Gal-5 AAS99320 Lynn et al. (2004) and Xiao et al. (2004)

AvBD6 Gal-4; Gal-6 AAS99315 Lynn et al. (2004) and Xiao et al. (2004)

AvBD7 Gal-5; Gal7 AAS99316 Lynn et al. (2004) and Xiao et al. (2004)

AvBD8 Gal-12; Gal-8 AAU07922 Higgs et al. (2005) and Xiao et al. (2004)

AvBD9 Gal-6; Gal-9 AAS99317 Lynn et al. (2004) and Xiao et al. (2004)

AvBD10 Gal-8; Gal-10 AAS99319 Lynn et al. (2004) and Xiao et al. (2004)

AvBD11 Gal-11 AAT45551 Xiao et al. (2004)

AvBD12 Gal-10; Gal-12 AAS99321 Lynn et al. (2004) and Xiao et al. (2004)

AvBD13 Gal-11; Gal-13 AAT48937 Higgs et al. (2005) and Xiao et al. (2004)

AvBD14 Gal-14 AM402954 Lynn et al. (2007)

Turkey

AvBD1 THP-1 AAC36053 Evans et al. (1994)

AvBD2 THP-2 AAC36054 Evans et al. (1994)

AvBD3 GPV-1 AAG09213 Zhao et al. (2001)

Mallard duck

AvBD2 Duck b-def. AAV52799 Lynn et al. (2007)

AvBD9 Duck b-def.-6-like ABN50328 Lynn et al. (2007)

King pigeon

AvBD4 King pigeon b-def. ABI20694 Lynn et al. (2007)

Ostrich

AvBD1 Osp-2 P85114 Sugiarto and Yu (2006)

AvBD2 Osp-1 P85113 Yu et al. (2001)

AvBD4 Ostrich gallinacin-4 ABK40533 Lynn et al. (2007)

AvBD7 Osp-3 P85115 Sugiarto and Yu (2006)

AvBD8 Osp-4 P85116 Sugiarto and Yu (2006)

King penguin

AvBD103a Sphe-1 P83429 Thouzeau et al. (2003)

AvBD103b Sphe-2 P83430 Thouzeau et al. (2003)
i.e. involving mutations that disproportionately favour

the selection of charged aa residues. This is further

emphasized by the finding of phylogenetically more

conserved genes, such as cathepsin B and HARL2754,

in close proximity of chicken, mouse and human b-

defensin clusters (Xiao et al., 2004) and suggests that

vertebrate b-defensins originate from a single ancestral

gene.

Single-nucleotide polymorphisms (SNPs) are com-

monly found in b-defensin genes, and although present

only at a low frequency in the coding region, the

occurrence of SNPs may seriously affect an individual’s

predisposition to disease (Braida et al., 2004), by

altering the efficiency of transcription and translation or

by generating an altered protein sequence with

diminished biological functions (Jurevic et al., 2002).

SNP analysis of the chicken b-defensin cluster revealed
a much higher SNP rate (13.2 SNPs/kb) for the 3.25 kb

region containing the AvBD2, -3, -4, -5 and -7 genes,

than the rate across the whole chicken genome (5 SNPs/

kb) as was previously reported (Wong et al., 2004).

However, all 43 identified SNPs were intronic, with the

exception of a nonsynonymous SNP found in the

AvBD5 gene that resulted in an amino acid substitution

of proline to threonine. In addition to the variability in

gene nucleotide sequence, studies in humans have

shown that specific defensin genes may be completely

absent in some individuals (Ballana et al., 2007).

Moreover, in contrast to other innate immune genes,

defensins may show a high degree of polymorphism in

gene copy number (Hollox et al., 2003; Linzmeier and

Ganz, 2005, 2006), the latter of which has been linked to

predisposition to Crohn’s disease of the colon in

humans (Fellermann et al., 2006). Few studies have
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Fig. 1. Genomic organization of avian and mammalian defensins and corresponding mature peptide structures. Differential transcription and

subsequent translation of exons (E1–4) into the 50 and 30 untranslated regions (UTR) and peptide encoding regions for: signal peptide (diagonal

striped bars), propiece (dotted bars) and mature peptide (solid blue bars; red and green bars depict homo- or heterodimers based formation of a single

cyclic u-defensin peptide). Despite differences in genomic organization, 3D structures of mature avian b-defensins and mammalian a- and b-

defensins are very similar: AvBD103b, king penguin avian b-defensin 103b (Sphenicin-2); hBD-1, human b-defensin-1; HD-5, human a-defensin-

5; RK-1, rabbit kidney defensin-1; RTD-1, rhesus u-defensin-1. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of the article.)
addressed the disease predisposition of birds in relation

to innate immune gene polymorphisms. Hasenstein

et al. (2006) addressed the association of avian b-

defensin gene polymorphisms in 1-week-old F1 chick-

ens with their phenotypic immune response to S.

enteriditis challenge. In this study, AvBD2 and -5 gene

polymorphisms were moderately associated with caecal

and spleen bacterial loads at 1 week post-challenge. The

significant associations observed between polymorph-

isms of the AvBD3 and AvBD7 genes and S. enteriditis

vaccine antibody response at 21 days, suggest that avian

b-defensin genes may facilitate the transition from an

innate immune response to an adaptive immune

response in newly hatched birds (Hasenstein et al.,

2006). Thus, polymorphisms in avian innate immune

genes, encoding signalling pathway components as well

as innate immune effectors, can be directly associated

with disease resistance. Hence, the allelic selection of
genes involved in host immunity by selective breeding

may confer an increased efficiency of the innate

immune system (Georges, 2001). However, it remains

to be elucidated to which extent gene polymorphisms

(SNPs) and variations in b-defensin copy number play a

role in the resistance of birds to Salmonella infections.

3. Structural features

Deduced primary amino acid sequences for avian

mature defensins indicate that, similar to mammalian b-

defensins (Pazgier et al., 2006), these peptides consist of

36 aa or more residues with the consensus sequence

motif: xn-C-x2–4-G-x1–2-C-x3–5-C-x9–10-C-x5–6-CC-

xn. NMR spectroscopy analysis of synthetic king

penguin AvBD103b in aqueous solution revealed a

three-dimensional structure most similar to mammalian

b-defensins (Landon et al., 2004) (Fig. 1). The overall
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fold consisted of a three-stranded b-sheet and an a-

helical N-terminus in the structure and contained a

hydrophobic patch (Phe19-Pro20-Ile22-Val37-Trp38),

shown by comparative structure analysis to be well

but not strictly conserved in other avian defensins. The

10 Arg residues and lack of Glu or Asp residues renders

king penguin AvBD103b highly cationic (10+). Some

avian b-defensin genes, e.g. AvBD3, -11 and -13,

contain a large postpiece, although the AvBD13

nucleotide sequence reported by Higgs et al. lacks this

postpiece suggesting that there might be strain-specific

splice variants or isoforms of the AvBD13 gene (Higgs

et al., 2005). Comparative analysis of the nucleotide

sequences of chicken and turkey AvBD3 (91% identical

on a nucleotide level), the latter of which lacks a

postpiece, revealed that a two-base insertion just before

the chicken AvBD3 original stop codon, causes a frame

shift, and an additional 15 bp insertion was responsible

for the generation of an anionic postpiece in chicken

AvBD3 (Zhao et al., 2001). The AvBD11 postpiece

contains a defensin-like motif: x9-C-x4-G-x-C-x6-C-x7-

C-x6-CC-x3, which might be a consequence of gene

duplication. Interestingly, of the newly identified

human b-defensins mapped to chromosomes 6 and

20 (hBD-18 to 21, hBD-23, hBD-25 to 29 and hBD-

31), those clustered on chromosome 20 all contained

similar long C-terminal tails (Schutte et al., 2002).

These C-terminal tails differ substantially in amino

acid composition and do not exhibit homology with

other sequences (Pazgier et al., 2006). It has been

suggested that the accumulated negative charges

present in some of these large postpieces could

function similarly to the anionic charges present in

the a-defensin propiece (Rodrı́guez-Jiménez et al.,

2003). The net anionic charges in the propiece of

a-defensins are thought to balance out the cationic net

charge of the mature peptide, which might be

important for folding and prevention of intracellular

binding to membranes (Liu and Ganz, 1995; Michael-

son et al., 1992; Valore et al., 1996; Wu et al., 2007).

The biological function of these large postpieces and

their putative role during folding and intracellular

trafficking remains to be elucidated.

4. Biosynthesis and tissue-specific processing

Although mechanisms ruling the synthesis, storage

and activation of avian b-defensins are unknown, they

can be expected to parallel that of mammalian

defensins. Avian b-defensins have been isolated from

heterophils of chickens, turkeys and ostrich (Evans

et al., 1995; Harwig et al., 1994; Sugiarto and Yu, 2006)
or were found to be constitutively or inducibly

expressed by epithelial cells (Zhao et al., 2001).

Myeloid b-defensins are synthesized in the bone

marrow, where in the Golgi apparatus and maturing

granules of promyelocytes the prodefensins are

processed by as yet unknown proteases and stored into

specific granules as mature peptides (Yount et al.,

1999). The abundant mRNA levels of AvBD4 to -7

found in chicken bone marrow, and the absence of

significant AvBD4 to -7 expression in leukocyte

extracts (Xiao et al., 2004), suggest that, similar to

mammalian defensins (Landon et al., 2004; Yount et al.,

1999), myeloid avian b-defensin mRNA synthesis is

largely absent in mature leukocytes. After biosynthesis

and intracellular trafficking through the Golgi appara-

tus, the �19 aa signal peptide, that functions to anchor

the prodefensin peptide in the endoplasmic reticulum

(ER) membrane, is rapidly proteolytically cleaved to

generate a prodefensin peptide with little or no

microbicidal activity (Satchell et al., 2003). The large

(�40 aa) a-defensin propiece has demonstrated to be

essential for subcellular trafficking and sorting of pro-

a-defensins into specific secretory granules of poly-

morphonuclear leukocytes (neutrophils) (Liu and Ganz,

1995). The fact that b-defensins possess only a relative

small propiece suggests that the subcellular trafficking

of pro-b-defensins may be different. Non-myeloid

biosynthesis of b-defensin has been described to some

detail for mammalian epithelial cells (Dale et al., 2001;

Oren et al., 2003). In birds, non-myeloid b-defensin

expression has been found for epithelial cells (Ohashi

et al., 2005; Yoshimura et al., 2006; Zhao et al., 2001),

but data describing their biosynthesis in these cells and

tissues has not yet been reported. Paneth cells (known to

contain large amounts of a-defensins) are specialized

secretory cells located at the base of the crypts of

Lieberkühn in some species. Paneth cells or related cells

were reported to be absent in ostrich, but have not been

investigated in other avian species (Porter et al., 2002).

It remains to be examined if birds possess Paneth-like

cells that contribute to intestinal innate immunity.

The proteolytic processing of b-defensin proforms is

host and tissue-specific due to the local repertoire of

proteolytic enzymes and inhibitors and may result in

multiple forms with different properties. For instance,

human epididymis b-defensin-like peptides (HE2,

ESP13.2, Bin1b, E-2, EP2, HE2) are processed by

furin-like convertases, major processing enzymes of the

secretory pathway located in the trans-Golgi network

(Gu et al., 2001; von Horsten et al., 2002). hBD-1

produced by oral keratinocytes is processed into one

major form (47 aa) and several minor forms (40–44 aa)
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(Diamond et al., 2001) by yet unidentified proteases,

whereas multiple truncated forms of hBD-1 occur in

kidney and plasma, the latter of which could be

explained by prodefensin cleavage by a chymotrypsin-

like enzyme (Hiratsuka et al., 2000; Zucht et al., 1998).

Furthermore, details of b-defensin intracellular

trafficking, storage and activation in myeloid and

non-myeloid cells in general, and for avian defensins in

particular, are lacking.

5. Tissue-specific gene expression

Beta-defensin-like sequences have been described

for several domestic and wild bird species, of which the

repertoire and putative functions have been most

extensively investigated in domestic chicken.

5.1. Cell populations

Chicken b-defensins AvBD1 and -2, originally

isolated from peripheral leukocytes (Harwig et al.,

1994), and AvBD4–7, are all strongly expressed in bone

marrow, whereas weak or no mRNA expression was

found for AvBD4–7 in heterophils (Table 2). Together

with the reported isolation of multiple b-defensins from

turkey and ostrich heterophils (Evans et al., 1994;

Sugiarto and Yu, 2006; Yu et al., 2001), this shows that

avian heterophils, like the neutrophils of some

mammalian species (Schneider et al., 2005; Selsted

et al., 1993), contain multiple b-defensins.

5.2. Respiratory tract

In the respiratory tract, high b-defensin expression is

observed for AvBD3 (Zhao et al., 2001) and AvBD9

(van Dijk et al., 2007) in trachea. In lung tissue

moderate to strong expression is found for AvBD1 and -

2 (Lynn et al., 2004; Zhao et al., 2001). Most other b-

defensins are weakly or moderately expressed in these

tissues (Table 2). Air sac membranes have not been

extensively examined for b-defensin presence, but

AvBD3 and -13 expression has been detected (Higgs

et al., 2005; Zhao et al., 2001).

5.3. Skin

Chicken skin was shown to express moderate levels

of AvBD3, -9 and -11 (van Dijk et al., 2007; Xiao et al.,

2004; Zhao et al., 2001). Another avian b-defensin,

designated AvBD14, has been recently deposited in the

Genbank database (AM402954) and has been observed

to be predominantly expressed in chicken skin (Dr. Pete
Kaiser, personal communication). The expression levels

of b-defensins in chicken skin agrees with the reported

basal expression of hBD-1–4 in keratinocytes of normal

human skin, of which the latter three were strongly

increased during induced keratinocyte differentiation

(Harder et al., 2004). hBD-2 is a major constituent of

psoriatic skin, a chronic non-infectious disease in which

surprisingly few cutaneous infections occur (Harder and

Schröder, 2005), whereas hBD-2 and other AMPs are

deficient in atopic dermatitis, in which bacterial and

viral skin infections are a recurrent problem (Ong et al.,

2002). Thus, considering their presence in chicken skin,

avian b-defensins may contribute to skin innate

immune defense in birds.

5.4. Digestive tract

With the exception of AvBD11, weak to strong

mRNA expression of chicken b-defensins is found

throughout the digestive tract. In the proximal digestive

tract, strong expression is observed for AvBD3 and -5

(Lynn et al., 2004) in tongue and AvBD9 (van Dijk

et al., 2007) in esophagus and crop tissue. The crop is an

extension of the esophagus in which food can be stored

for up to 24 h and is well developed in gallinaceous

birds. As chickens practice coprophagy to recover

vitamins, amino acids and other nutrients produced by

their hindgut bacteria (Montrose et al., 1985), an

adequate local innate immune system is required. The

high expression levels of AvBD9 in adult chicken crop

tissue and its variable expression in juvenile broilers

indicate an important role of AvBD9 in crop tissue

defense (van Dijk et al., 2007).

In the glandular and muscular stomach, b-defensins

are practically absent, apart from moderate AvDB9 (van

Dijk et al., 2007) and AvBD13 (Higgs et al., 2005)

expression levels found in the proventriculus. In the

intestinal tract of newly hatched chickens, AvBD1 and

AvBD2 mRNA levels were found to decrease during the

first week and increase during the second week post-

hatch (Bar-Shira and Friedman, 2006). Likewise,

developmental expression studies of chicken AvBD4

mRNA using 1-, 4-, 17- and 38-day-old animals showed

AvBD4 expression to be maximal within the first week

post-hatch and to decline thereafter (Milona et al.,

2007). In the chicken small and large intestine of older

animals, low to medium mRNA levels were found for b-

defensins, previously reported to be expressed in

heterophils and/or bone marrow only (Table 2),

suggesting it to originate from resident myeloid cells.

Considerable AvBD13 mRNA expression was found in

small intestinal tissue, liver and gall bladder (Higgs
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Table 2

Tissue-specific chicken b-defensin gene expression

Tissues AvBD1 AvBD2 AvBD3 AvBD4 AvBD5 AvBD6 AvBD7 AvBD8 AvBD9 AvBD10 AvBD11 AvBD12 AvBD13

Tongue – – s – m/s – – – – – – – –/m

Esophagus – – m – – – – – w/s – – – –

Crop – – – – – – – – –/s – – – –

Proventriculus – – – – – – – – –/m – – – –/m

Gizzard – – – – – – – – –/� – – – –

Small intestine –/w –/m – –/� – –/� –/� – –/w – – – –/s

Large intestine –/w –/m –/� –/� – –/m –/� – –/� – – w –

Caeca m m – – – – – – – – – –

Colon – – – – – – – – – w

Cloaca w –/w – –/� – – – – – –/w – – –

Pancreas w –/w – – – � – � – – m

Liver – –/w – –/w – –/w – m m/s m/s – – m/s

Gall bladder w w – � – w � m s s – s

Trachea – –/w –/s –/w �/w –/� –/� – w/s – – – �/m

Lung m/s m/s – –/w � –/m –/� – –/w –/m – – m

Air sacs – – m – m

Kidneys – – –/w –/� – –/w – – m/s m/s s w m

Testis s s – –/s –/� –/s –/s – –/m m/s – w –

Vas deferens – – – – – m � – – –

Ovary – – w – – – – – –/m m – � �
Oviduct – – – – – – – – – m s s w

Infundibulum m m m – – – – – – m – – –

Uterus –/w –/w � – – – – – – w w s –

Vagina m w m – – – – – – – – – �
Egg yolk – – – – – – – – – m – – –

Skin – – –/m – – – – – –/m –/w m – –

Thymus – – – – – –/w – w – –

Spleen – –/w – – – – – – –/w – – – –/s

Bursa –/m –/m s –/w –/w –/m –/� – w/s �/w – m �/m

Heart – – – – – – – – w –

Skeletal muscle – – – – – –/m – – – –

Brain w w � –/� �/w –/� –/� – w/m –/� – – –

Bone marrow s s w m/s w/s s s – w – – – –

Leukocytes s s – – w w – – – – – –

References Harwig et al.

(1994), Lynn

et al. (2004),

Ohashi et al.

(2005), Zhao

et al. (2001)

and Sadeyen

et al. (2004)

Harwig et al.

(1994), Lynn

et al. (2004),

Ohashi et al.

(2005), Zhao

et al. (2001)

and Sadeyen

et al. (2004)

Lynn et

al. (2004),

Ohashi et

al. (2005),

and Zhao

et al.

(2001)

Lynn et

al. (2004)

and Xiao

et al.

(2004)

Lynn et

al. (2004)

and Xiao

et al.

(2004)

Lynn et

al. (2004)

and Xiao

et al.

(2004)

Lynn et

al. (2004)

and Xiao

et al.

(2004)

Lynn et

al. (2004)

and Xiao

et al.

(2004)

Lynn et

al. (2004),

van Dijk

et al.

(2007) and

Xiao et

al. (2004)

Lynn et al.

(2004)

and Xiao

et al.

(2004)

Xiao et

al. (2004)

Lynn et

al. (2004)

and Xiao

et al.

(2004)

Higgs et

al. (2005)

and Xiao

et al.

(2004)

Expression levels: (s)trong, (m)oderate, (w)eak, � trace, – not detected.
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et al., 2005). Similarly, moderate to high mRNA

expression in liver (and gall bladder) was found for

AvBD8, -9, and -10 (Higgs et al., 2005; Lynn et al.,

2004; Xiao et al., 2004), which may reflect an important

role of avian b-defensins in the liver during systemic

infections. Moderate AvBD1 and -2 expression was

detected by real-time PCR in caecal tissue of 3–7-week-

old (Sadeyen et al., 2004) and 30-week-old chickens

(Sadeyen et al., 2006). Other studies on avian b-

defensin expression did not include caecal tissue. Low

levels of AvBD13 mRNA were found in colon (Xiao

et al., 2004) and only weak to moderate mRNA

expression levels were found for AvBD1, -2 and

AvBD10 in the cloaca (Lynn et al., 2004). The cloaca

and colon are a point of entry for potential micro-

organisms as in birds anti-peristalsis of the lower

intestine, the so-called intestinal reflux, is capable of

transporting faeces back into the intestine and past the

ileocaecal junction (Duke, 1986). The caecal pouches

are the main fermentation sites of poorly digestible

substrates and are emptied only once every 8 h on

average. Thus, an efficient local immune barrier can be

expected to be present at this site to prevent or limit

pathogen invasion in the intestinal and urogenital tracts

via this infection route.

5.5. Urogenital tract

In birds, the cloaca is also the collecting point of the

urogenital tract. Ohashi et al. (2005) examined AvBD1,

-2 and -3 mRNA expression in the hen reproductive

tract by semi-quantitative RT-PCR and showed that the

highest levels occurred in infundibulum for all three

gallinacin genes and in vagina for AvBD1 and AvBD3.

Localization of expression sites in vaginal tissue using

in situ hybridisation identified AvBD1, -2 and -3 in

basal cells of the surface epithelium in the mucosal

folds. The onset of egg-laying activity at approximately

18 weeks of age (Wigley et al., 2005) and absence of

significant AvBD1 to -3 expression in the oviduct

reported in 3-month-old hens by Zhao et al. (2001)

suggest that expression levels of these gallinacins in the

oviduct may be developmentally affected by estrogen

levels. AvBD1, -2 and -3 mRNA levels were

significantly higher in the vaginal mucosa of older

birds, i.e. 180-day-old versus 720-day-old hens (Yoshi-

mura et al., 2006). The decreased avian b-defensin

levels found in the regressed oviducts of feed-with-

drawal-induced non-laying birds further supports the

idea of fluctuating avian b-defensin expression levels as

a function of egg-laying activity regulated by gonadal

steroid hormone levels. Stimulation of cultured chicken
vaginal cells with S. enteriditis or LPS increased levels

of AvBD1 to -3 within 24 h. The importance of b-

defensins in the protection of the mammalian male and

female reproductive tracts is well established. Abundant

expression of multiple b-defensin genes in the male

(Palladino et al., 2003; Patil et al., 2005; Sang et al.,

2005, 2006; Yamamoto and Matsui, 2002) and female

(Aono et al., 2006; Quayle et al., 1998; Valore et al.,

1998) reproductive tracts has been reported. The male

reproductive system is largely devoid of an adaptive

immune system and is therefore depending on an

effective innate immune system to prevent infection that

may affect temporary or permanent fertility (Patil et al.,

2005). Mammalian sperm cells are terminally differ-

entiated when they leave the testis, but lack motility and

are incapable of fertilization. During their migration

through the epididymis, spermatozoa undergo physio-

logical and functional maturation as a result of which

they acquire forward motility and the ability to

recognize the zona pellucida (Lakoski et al., 1988).

Several mammalian species have been shown to possess

chromosomally clustered b-defensin genes which are

differentially expressed, predominantly or restricted,

throughout the epididymis (Yamaguchi et al., 2002;

Yenugu et al., 2006) and transcriptionally regulated by

androgens or other testicular factors (Oh et al., 2006;

Yenugu et al., 2006). Epididymal b-defensins have

demonstrated to induce sperm motility and are involved

in the sperm capacitation process (Yudin et al., 2003,

2005; Zhou et al., 2004). It is thought that they may

either form Ca2+ permeable channels or activate L-type

Ca2+ channels in sperm cells, as a result of which Ca2+

could accumulate and induce motility and capacitation

(Zhou et al., 2004). In chicken several b-defensins were

found to be strongly expressed in testis (AvBD1, -2, -4, -

6, -7 and -10), whereas weak expression levels were

observed for AvBD12 in testis and moderate expression

levels were found for AvBD9 in testis and vas deferens

(Table 2). Expression levels of b-defensins in epididy-

mal tissue have not yet been addressed. A recent report

indicates that human b-defensin-2 expression contri-

butes, in cooperation with resident flora, to protection

against vaginal infection (Valore et al., 2006). The high

mRNA levels of multiple avian b-defensins in kidney

and throughout the male and female reproductive tracts

(Table 2) suggest a similar role for avian b-defensins in

the protection of the avian urogenital tract. The role of

b-defensins in avian sperm maturation and capacitation

and existence of avian epididymis-specific b-defensins

remains to be elucidated.

The contrast in b-defensin expression levels

between bursa of Fabricius, spleen and thymus,
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bursa� spleen > thymus, can be explained by their

localization. The bursa is located near the cloaca and

therefore continuously exposed to microorganisms. It is

therefore likely that the local moderate to high

expression of several avian b-defensins in this organ,

aids to its protection against pathogenic microorgan-

isms.

In summary, the cloacal region harbors the site of B-

cell generation, collects urine, and at the same time

forms an important junction of the intestinal and

reproductive tract. Therefore, it would be very

interesting to investigate the role of b-defensins in

the local innate immune defense of this region.

5.6. Other species

Apart from studies involving the king penguin

(Aptenodytes patagonicus) b-defensins, little is known

about the repertoire and functions of avian b-defensins

in wild birds. Although b-defensin sequences related to

known chicken b-defensins have been found for king

pigeon (Columba livia, AvBD4) and mallard duck

(Anas platyrhynchos, AvBD2, -9) and have been

deposited in the Genbank database (Table 1), no related

functional data have been published. Recently, AvBD4

related b-defensin sequences have been found in

gastrointestinal tissues of the blue tit (Parus caeruleus),

herring gull (Larus argentus) and wood pigeon

(Columba palumbus) (Milona et al., 2007). Reverse

transcriptase PCR analyses detected expression of

AvBD4-related sequences in all three non-domesticated

species, with highest expression levels in wood pigeon

gizzard, and additional low expression in small intestine

and liver. For herring gull, low levels were found in

small intestine, gizzard and liver, whereas in the blue tit,

low AvBD4-like expression was observed in small

intestinal tissue, but not in gizzard. Comparative

research in different birds from diverse habitats and

under various conditions may contribute to our under-

standing of the functions of avian defensins.

5.7. Induction of avian b-defensin expression

Whereas b-defensin genes may be constitutively

expressed in some tissues, their expression can be

upregulated in other tissues in response to microbial

infection or by proinflammatory stimulants. In mam-

mals, b-defensins have shown to be expressed by

peripheral blood cells, dendritic cells, keratinocytes,

and the epithelial cells lining the respiratory, gastro-

intestinal and urogenital tracts (Bals et al., 1999; Duits

et al., 2002; Ohara et al., 2004; Oren et al., 2003) and to
be induced or upregulated by cytokines IL-1a (O’Neil

et al., 2000), IL-1b (Singh et al., 1998), TNF-a (Harder

et al., 2001), IFN-g (Duits et al., 2002), TGF-1 and

insulin-like growth factor 1 (Sørensen et al., 2003), LPS

(Fang et al., 2003), bacteria (Fang et al., 2003; Harder

et al., 2001; O’Neil et al., 2000; Veldhuizen et al., 2006),

yeast (Pivarcsi et al., 2005) and other stimulants such as

PMA (Krisanaprakornkit et al., 2000), isoleucine

(Fehlbaum et al., 2000) and 1,25-dihydroxyvitamin

D3 (Wang et al., 2004).

Induction also seems to be the case for the avian b-

defensins, as seen for AvBD3, which was significantly

upregulated in tracheal tissue of Haemophilus para-

gallinarum-challenged animals, but not in other tissues

(Zhao et al., 2001). The presence of transcription factor

binding sites known to be involved in mammalian b-

defensin regulation in the chicken AvBD9 promoter

region and the observation of highly variable AvBD9

levels in crop tissue of 13-day-old chicken broilers,

indicate a possible tissue-specific upregulation of the

AvBD9 gene (van Dijk et al., 2007). Small intestinal

AvBD4, -5 or -6 mRNA levels were not upregulated in

response to an oral challenge with Salmonella serovars

(Milona et al., 2007).

Because tissue-specific b-defensin expression and

upregulation might be breed-dependent, Sadeyen et al.

(2006, 2004) investigated the relationship between this

and gene expression of innate immune response factors

in S. enteriditis carrier state. Two inbred chicken lines

differing in resistance to caecal colonization by S.

enteriditis have been described (Bumstead and Barrow,

1988). In both young and adult animals, AvBD1 and

AvBD2 levels were indeed higher (�10-fold) for the 61

line (resistant phenotype) as compared to the 15I line

(susceptible phenotype), which would indicate a

possible relation between defensin levels and Salmo-

nella carrier status. However, young animals of the 61

line actually had higher bacterial loads in the caeca

(Sadeyen et al., 2004), which suggests that elevated

AvBD1 and -2 levels were not directly responsible for

the increased resistance against Salmonella caecal

carrier status.

In male king penguins (A. patagonicus), gastric b-

defensin expression can be upregulated when fasting

during the breeding season (Thouzeau et al., 2003).

King penguins only feed at sea, which can entail a 400–

500 km journey, and while on land they must live off

their reserves. After egg-laying, females return to sea to

forage and egg-incubation is taken over by the male.

Usually, females come back in time to feed the chick at

hatching, but their mates cope with a delayed return of

their partner by fasting, thus preserving food in their



A. van Dijk et al. / Veterinary Immunology and Immunopathology 124 (2008) 1–1810
stomach for 2–3 weeks, enabling them to feed the

newborn chick for about 10 days (Gauthier-Clerc et al.,

2000). Analysis of the stomach contents of male

penguins identified two b-defensins, AvBD103a and

AvBD103b and other yet unidentified antimicrobial

substances (Thouzeau et al., 2003). AvBD103a and -

103b concentrations in the stomach contents were

compared between food conserving and normally

digesting birds during the egg-incubation period.

AvBD103b was detected in the stomach of all birds,

whereas AvBD103a was detected in only three samples

of one conserving bird (Thouzeau et al., 2003). Stomach

b-defensin concentrations were markedly higher in

food conserving birds than in digesting birds, i.e.

increasing 13-fold from the onset (74 nM) to the end of

the fast period (943 nM). Defensin levels in digesting

birds remained invariably low (24 nM). By comparison,

in mammals defensin concentrations of more than

3 mM have been found in the granules of mammalian

leukocytes (Ganz, 1987; Ganz et al., 1985), whereas the

concentration of cryptdins (released by Paneth cells) in

the crypt lumen was estimated to be �2.4 mM (Ayabe

et al., 2000). Approximately 4.5–23 mM of porcine b-

defensin-1 was found in pig dorsal tongue scrapings

(Shi et al., 1999).

Comparison of the published data from different

research groups (Table 2) show that avian b-defensin

expression levels are highly variable. It should be noted

though that the reported expression levels of avian b-

defensins are almost solely based on reverse transcrip-

tase PCR data, which provides at the most a semi-

quantitative estimation of tissue mRNA levels. Besides

differences in used breeds, animal age and immune

status, tissue-specific gene expression levels may even

vary considerably between individual animals. There-

fore, determination of actual peptide levels in healthy

and challenged animals in situ may shed some light on

their local biological importance in immune home-

ostasis and response to infection.

6. Antimicrobial activity

The few avian b-defensins that have been studied for

their antimicrobial activities display a wide range of

microbicidal or microbistatic activities against Gram-

negative and Gram-positive bacteria, and fungi (Table 3).

It should be noted that the MIC values mentioned in this

section, are highly dependent on the type of assay,

incubation medium and incubation time used.

Evans et al. (1995) demonstrated bactericidal and

fungicidal activity of chicken and turkey heterophil

AvBD1, at peptide concentrations of 0.4–3.4 mM and
0.4–1.8 mM, respectively, against avian pathogens.

However, these peptides were not able to kill P.

multocida or neutralize Infectious Bronchitis Virus, an

enveloped coronavirus of chickens. A (20 aa) fragment

of turkey AvBD2 inhibited the growth of S. aureus, but

not of E. coli (Evans et al., 1994). Synthetic chicken

AvBD9 peptide showed strong microbicidal activity

against the Gram-negative bacterium C. jejuni

(3.7 mM), Gram-positive bacteria, C. perfringens, S.

aureus (1.9–3.7 mM) and the yeasts C. albicans and S.

cerevisiae (1.9 mM), but was less potent against E. coli

(7.5 mM) and not bactericidal against S. typhimurium

(>30 mM) (van Dijk et al., 2007). In contrast, synthetic

chicken AvBD13 peptide was only bactericidal at high

peptide concentrations against L. monocytogenes

(114 mM) and S. typhimurium wild-type (114 mM)

and a S. typhimurium Pho P mutant (57 mM), whereas

inhibition of E. coli, S. aureus and S. pyogenes at

peptide concentrations �57 mM was negligible or

absent (Higgs et al., 2005).

In radial diffusion assays, ostrich heterophil b-

defensins, AvBD1, -2, and -7, efficiently inhibited the

growth of E. coli O157:H7 and methicillin-resistant S.

aureus strain 1056 (MRSA) with MICs ranging from

0.2 to 0.6 mM (Sugiarto and Yu, 2006). Ostrich AvBD8

was less potent against these bacterial strains (MIC,

2.4 mM), whereas only Ostrich AvBD1 was fungicidal

against C. albicans.

Analysis of the stomach contents of male king

penguins revealed numerous antimicrobial activities,

including the avian b-defensin peptides AvBD103a and

AvBD103b, which are identical with the exception of an

Arg residue instead of a His residue at position 14 for

AvBD103b. Synthetic penguin AvBD103b peptide

displayed potent bacterical activity against Gram-

positive bacteria (K. rhizophilae, Bacillus spp., Sta-

phylococcus spp., N. asteroides and A. viridans), with

the exception of S. saprophyticus, at peptide concen-

trations less than 4 mM (Thouzeau et al., 2003). Mainly

bacteriostatic activity was observed for AvBD103b

against Gram-negative bacteria, although it displayed

bactericidal activity against an E. coli strain. In contrast

to its impotence against Candida glabrata (>100 mM)

and Candida albicans (50–100 mM), the yeast Candida

tropicalis and filamentous fungi Neurospora crassa and

Aspergillus fumigatus were efficiently killed (3–6 mM)

by AvBD103b.

7. Mechanisms of action

Mature b-defensin peptides have a three-dimen-

sional amphipathic structure, i.e. they possess spatially
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Table 3

Antimicrobial activity of avian b-defensins

Microorganims Chicken

AvBD1

(Evans et al.,

1994, 1995;

Harwig et

al., 1994)

Chicken

AvBD2

(Evans et

al., 1994;

Harwig et

al., 1994)

Chicken

AvBD9

(van Dijk et

al., 2007)

Chicken

AvBD13

(Higgs et

al., 2005)

Turkey

AvBD1

(Evans et

al., 1994,

1995)

Turkey

AvBD2

fragment

(Evans et

al., 1994)

Ostrich

AvBD1

(Sugiarto

and Yu,

2006)

Ostrich

AvBD2

(Sugiarto

and Yu,

2006)

Ostrich

AvBD7

(Sugiarto

and Yu,

2006)

Ostrich

AvBD8

(Sugiarto

and Yu,

2006)

Penguin

AvBD103b

(Thouzeau

et al., 2003)

G (�) Escherichia coli H H H � H � H H H H >,H
Salmonella enteriditis H H
Salmonella typhimurium H H � H >

Pasteurella multocida H �
Campylobacter jejuni H H H
Bordetella avium H H
Klebsiella pneumonia >

Pseudomonas aeruginosa � >

Enterobacter cloaca �
Alcaligenes faecalis �
Vibrio metshnikovii >

Vibrio anguillarum >

G (+) Listeria monocytogenes H H � H
Staphylococcus aureus H H � H H H H H H
Staphylococcus haemolyticus H
Staphylococcus saprophyticus >

Streptococcus pyogenes H �
Clostridium perfringens H
Kocuria rhizophilae H
Bacillus subtilis H
Bacillus cereus H
Bacillus megaterium H
Nocardia asteroides H
Aerococcus viridans H

M Mycoplasma gallisepticum H H

F Candida albicans H � H H H � � � >

Candida tropicalis >

Candida glabrara >

Saccharomyces cerevisiae H
Neurospora crassa >

Aspergillus fumigatus >

V Infectious Bronchitis Virus � �

Microbicidal activity (H), microbistatic activity (>) or no growth inhibition (�) at peptide concentrations below 10 mM. G (�), Gram-negative bacteria; G (+), Gram-positive bacteria; M,

mycoplasma; F, fungi; V, enveloped virus.
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opposite domains of clustered hydrophobic and cationic

aa side chains. Three intramolecular disulfide bridges

restrict conformational changes of these peptides and

are well-conserved in this family. For most mature

defensins, disulfide bridges and their connectivity

appear not to be important for direct antimicrobial

activity, but may play a prominent role in other

functions, such as protection against proteolysis and

chemotaxis (Klüver et al., 2005; Selsted and Ouellette,

2005; Wu et al., 2003). On the other hand, amino acid

composition and positioning are highly variable and

appear to determine the extent to which individual b-

defensins specifically target certain types of micro-

organisms (Torres and Kuchel, 2004). Their ability to

inhibit growth and/or kill microorganisms differs

considerably and is likely achieved via multiple

mechanisms. Fig. 2 shows a hypothetical ‘‘carpet-

wormhole model’’ of action for defensins (Ganz, 2003).

Cationic peptides are able to interact electrostatically

with negatively charged membrane components, such
Fig. 2. Mechanisms of action of cathelicidins and defensins according the ‘‘

during initial electrostatic interaction with outer membrane components (1)

formation of transient pores (2) or in detergent-like membrane disruption (4

may disable protein synthesis and function (3).
as lipopolysaccharides (LPS), lipoteichoic acid (LTA)

and anionic phospholipids and subsequently pass the

membrane via the ‘‘self-promoted uptake pathway’’

(Hancock, 1997). Due to their higher affinity for

divalent cation binding places in the outer membrane,

cationic peptides can competitively displace Ca2+ and

Mg2+ ions, important for microbial membrane stability,

and subsequently by their larger size, perturb the

membrane structure (Hancock, 1997; Hancock and

Chapple, 1999). Driven by the large electric potential of

the membrane, the perturbing peptide migrates through

the membrane and aggregates into multimeric peptide

clusters with their hydrophilic sides facing inwards,

resulting in stable or transient pore formation or may

disrupt the membrane in a detergent-like way (Ganz,

2003; Oren and Shai, 1998). Alternatively, formation of

membrane regions with increased permeability, have

been proposed. Although the above-described mechan-

isms of permeabilization, involving carpet formation

and pore formation, are supported by ultrastructural
carpet/wormhole model’’. Displacement of membrane-stabilizing ions

is followed by accumulation of peptides parallel to the membrane and

). Additionally, intracellular interactions with DNA, RNA or proteins
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studies, this model and alternative models are primarily

based on work done with artificial membranes.

At lower peptide concentrations, pore-formation

results in loss of potassium and other small molecules

and leads to membrane depolarization (Lehrer et al.,

1989). Without a membrane proton-motive force, active

transportation of substances across the membrane and

rotation of bacterial flagella will stop leading to

starvation, a loss of motility and, eventually, lysis.

Once transported to intracellular sites, cationic peptides

can interfere with DNA, RNA and protein synthesis by

binding to DNA and RNA molecules (Lehrer et al.,

1989; Tang et al., 1999). In addition, some defensins are

able to bind to membrane glycoproteins and may be

potentially important for anti-viral activity (Wang et al.,

2003). Alternatively, the displacement of divalent

cations in the cell wall by cationic peptides can

promote autolysis by activating the autolytic cell wall

enzymes (muramidases) in bacterial membranes. The

main regulators of autolysins in Gram-positive bacteria

are (lipo)teichoic acids (Ginsburg, 2002). In dividing

Gram-positive cells, activated autolysins remodel the

bacterial peptidoglycan layer by their muramidase

activity (Koch, 2001). Teichoic and teichuronic acids in

the peptidoglycan layer of the Gram-positive cell wall

bind autolysins non-competitively and in that way

inhibit muramidase activity. Cationic peptides bind to

teichoic acids with a higher affinity and can thereby

displace and activate autolysins leading to uncontrolled

degradation of the muramidase layer and often

spontaneous lysis of the cytoplasmic membrane

(Bierbaum and Sahl, 1987). In fact, activation of

autolysins in the cell wall of the Gram-positive bacteria

has been observed in the presence of poly-L-lysine

(Bierbaum and Sahl, 1985). In Gram-negative bacteria,

the regulation of autolysins is not fully understood

(Höltje, 1995).

The antimicrobial activity of many defensins is

diminished in the presence of salts, such as sodium

chloride concentration at physiological concentrations

(�150 mM or 300 mOsm) or by various divalent

cations or plasma proteins (Garcı́a et al., 2001;

Goldman et al., 1997; Singh et al., 1998). Most likely,

mono- or divalent cations inhibit by simple charge

competition of the initial interaction between the

cationic peptide and its anionic targets (Lehrer et al.,

1993). This may depend on the bacterial species

studied. Chicken AvBD9-mediated growth inhibition of

E. coli and S. typhimurium was not affected in the

presence of 20 mM sodium chloride, whereas growth

inhibition of C. perfringens and S. aureus declined to

�50%. Thus, AvBD9 proved to be relatively salt-
insensitive, as 24–49% growth inhibition was retained

for most strains in the presence of 150 mM sodium

chloride (van Dijk et al., 2007). Living in a salt water

habitat, it was not surprising that the antibacterial

activity of synthetic king penguin AvBD103b against E.

coli and S. aureus was not affected by sodium chloride

concentrations up to 160 mM (348 mOsm), which is

close to the osmolarity measured in penguin stomach

contents (324 mOsm) (Landon et al., 2004). This

indicates that these peptides can retain their micro-

bicidal activity in vivo in stomach contents and

contribute to protection against food degrading micro-

organims. At 480 mM NaCl the efficacy against S.

aureus decreased 16-fold and growth inhibition of E.

coli decreased 2- and 4-fold in the presence of 1 and

50 mM MgCl2, respectively (Landon et al., 2004).

Some b-defensins have the propensity to form

oligomeric structures. The capacity to create stable

dimers in solution has been suggested as a possible

reason for the high and salt-independent antibacterial

activity of hBD-3 (Schibli et al., 2002). The solution

structure of AvBD103b obtained by NMR spectroscopy

indicated a monomeric nature for this peptide, although

the authors did not rule out the formation of a

symmetrical dimer (Landon et al., 2004). Thus, despite

the observations that oligomerization may enhance

antimicrobial activity (Campopiano et al., 2004; Schibli

et al., 2002), in the case of AvBD103b and hBD-3, high

cationicity (10+ and 11+, respectively) and overall

hydrophobicity (Klüver et al., 2005) appears to be more

important. Despite the demonstrated inactivation of

some AMPs at physiological salt concentrations in

vitro, AMP gene products correlate well with increased

antimicrobial resistance in animal model experiments

(Salzman et al., 2003). A possible explanation for this

phenomenon was postulated by Dorschner et al. (2006),

who suggested that bicarbonate, which is ubiquitously

present in blood, sweat, and the mucosal surfaces of the

respiratory, urogenital, and gastrointestinal tracts, could

enhance microbial susceptibility to AMP-mediated

killing.

8. Conclusions

The biological functions of avian defensins are still

largely unknown, but are expected to reflect those

described for their mammalian counterparts. Many

questions remain to be answered. The relationship

between copy number, gene polymorphisms and

defensin gene repertoire with disease resistance need

to be sorted out. The occurrence of elongated defensin-

like genes, due to an additional large post-piece, in some
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human and avian defensins suggest biological functions

other than direct antimicrobial activity for these

molecules. Evidence is mounting that heterophils play

an important role in avian innate immune defense

against bacterial infections, but their defensin repertoire

and the role of their extracellular and intracellular

release, subsequent activation and regulation needs to

be further investigated. Similarly, the tissue distribution

and scarce data on upregulation of avian AMP

expression is almost completely based on regulation

at the transcriptional level. Therefore, additional

research on translational regulation and post-transla-

tional processing and modifications should be performed

and coupled to functional studies with respect to tissue-

specific expression. Particularly the cloaca and surround-

ing tissues, where reproductive tract, B cell synthesis and

intestinal contents converge, is an interesting subject for

further studies. Increased knowledge about poultry

defensin biological functions, their localization and

regulation may aid in the selection of breeds that are less

susceptible to colonization of pathogenic bacteria.

Alternatively, local endogenous defensin expression

levels may be stimulated via dietary modulation.
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