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Abstract

Background Short-term prediction of COVID-19 epidemics is crucial to decision making. We
aimed to develop supervised machine-learning algorithms on multiple digital metrics
including symptom search trends, population mobility, and vaccination coverage to predict
local-level COVID-19 growth rates in the UK.

Methods Using dynamic supervised machine-learning algorithms based on log-linear
regression, we explored optimal models for 1-week, 2-week, and 3-week ahead prediction
of COVID-19 growth rate at lower tier local authority level over time. Model performance was
assessed by calculating mean squared error (MSE) of prospective prediction, and naive
model and fixed-predictors model were used as reference models. We assessed real-time
model performance for eight five-weeks-apart checkpoints between 1st March and 14th
November 2021. We developed an online application (COVIDPredLTLA) that visualised the
real-time predictions for the present week, and the next one and two weeks.

Results Here we show that the median MSEs of the optimal models for 1-week, 2-week, and
3-week ahead prediction are 0.12 (IQR: 0.08-0.22), 0.29 (0.19-0.38), and 0.37 (0.25-0.47),
respectively. Compared with naive models, the optimal models maintain increased accuracy
(reducing MSE by a range of 21-35%), including May-June 2021 when the delta variant
spread across the UK. Compared with the fixed-predictors model, the advantage of dynamic
models is observed after several iterations of update.

Conclusions With flexible data-driven predictors selection process, our dynamic modelling
framework shows promises in predicting short-term changes in COVID-19 cases. The online
application (COVIDPredLTLA) could assist decision-making for control measures and plan-
ning of healthcare capacity in future epidemic growths.
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Plain language summary

Understanding how COVID-19 case
numbers will change in the short
term in local contexts is helpful for
planning public health measures.
Here, using population data on Goo-
gle searches on COVID-19 symp-
toms, mobility (i.e, movement of
people between locations), and vac-
cination coverage, we develop sta-
tistical that
changes in COVID-19 case numbers
for the next one to three weeks in

methods forecast

different local authorities in the UK.
We further develop an online appli-
cation that provides visualisations of
these forecasts. We show that our
programmes achieve better pre-
dictive accuracy compared with two
existing models. This highlights the
promise of our methods in forecast-

ing future local COVID-19 outbreaks.
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and economic burden in the UK and globally. In the UK,

SARS-CoV-2 has caused about 22 million cases, 960 thou-
sand hospital admissions, and 201 thousand deaths as of 12th
August 20221, Given the continuous spread of SARS-CoV-2, short-
term predictions are important to assist effective decision making
for control measures and planning of healthcare capacity?.

Population aggregated digital big data based on personal digital
devices and applications have been widely used to predict
COVID-19 epidemics as they capture well the changes in popu-
lation behaviours without disclosing personal information, in a
near-real-time manner. Population-level mobility and internet
searches are two of the most important digital data metrics that
are commonly used in modelling infectious disease outbreaks.
Population-level mobility data are publicly accessible from several
sources, including Google COVID-19 Community Mobility
Reports®, Apple COVID-19 Mobility Trends®, and Facebook Data
for Good’, and have been increasingly used to understand
changes in public physical contacts during the COVID-19
pandemic3®. Between the sources, data are collected and pro-
vided differently. Our earlier work found that mobility at different
types of locations are associated with varying degrees of changes
in transmission of SARS-CoV-2, and visits to retail and recreation
areas, workplaces, and transit stations are key drivers of COVID-
19 epidemic in the UK!0, Moreover, online search queries on
Google have been used to detect and predict influenza and other
infectious diseases before the COVID-19 pandemic!!-13. The
search trends of infection-related symptoms reflect infected
people searching their symptoms in real time, thus can also be
used as an early warning of the confirmed cases that are subject to
the testing capacity and delays!41°,

Integrating the two metrics above that capture different types
of population behaviours may improve the prediction from the
perspective of COVID-19 early warning>!®. Kogan and
colleagues!'® developed an early warning approach to monitor
COVID-19 activity with multiple digital databases among three
states of the US, which showed that the predictions of COVID-19
cases and deaths were improved by integrating multiple digital
traces. However, no dynamic models were applied in that study
that allowed for data-driven adjustment over time (e.g., a fixed set
of COVID-19 symptom search terms was used), and the pre-
dictions were made for March-September 2020, before the
emergence of variants of concern and the mass roll-out of the
COVID-19 vaccination. The Zoe COVID study!” found that
there was addition of new symptoms over time, e.g., after the
vaccination or potentially associated with the emergence of new
variants. Moreover, the COVID-19 vaccination coverage may be
also relevant to the prediction given that the mass rollout of
COVID-19 vaccines could have reduced COVID-19
transmission!8. As the COVID-19 situation changes rapidly, it
is essential for COVID-19 prediction modelling studies to develop
flexible algorithms adaptive to the most up-to-date data.

In this study, we predicted the short-term changes in the
COVID-19 epidemics at finer geographical scale in the UK, through
a dynamic supervised machine learning algorithm that could reflect
the best real-time prediction informed by data on internet searches
on COVID-19 symptoms, mobility, and vaccination coverage. The
programmes achieved better predictive accuracy compared with
two reference models, showing promises in forecasting future local
COVID-19 outbreaks. Furthermore, we developed a publicly
accessible web application to present the predictions.

The COVID-19 pandemic has caused a substantial health

Methods
Overview. Our primary objective was to develop data-driven
machine-learning models for 1-, 2- and 3-week ahead predictions

of growth rates in the COVID-19 cases (defined as 1-, 2- and
3-week growth rate, respectively) at lower-tier local authority
(LTLA) level in the UK. In the UK, COVID-19 cases are reported
by publication date (i.e., the date when the case was registered on
the reporting system) and by the date of collection of specimen.
Therefore, there were six prediction targets in our study, 1-, 2-
and 3-week growth rates by publication date and those by the
date of collection of specimen (Table 1). We focused on predic-
tion by publication date in the main models, considering that the
delayed reporting for COVID-19 cases by the collection date of
specimen could affect real-time assessment of model performance
(i.e., the prediction would be biased downwards due to delayed
reporting).

Data sources. We analysed the Google Search Trends symptoms
dataset?, the Google Community Mobility Reports!®20, COVID-
19 vaccination coverage and the number of confirmed COVID-19
cases for the UK!. These data were formatted and aggregated
from daily to weekly level where needed, and then linked by week
and LTLA. We considered only the time series from 1st June 2020
(defined as week 1) for modelling, given that case reporting was
relatively consistent and reliable at LTLA level after 1st June 2020.
The modelling work initially began on 15th May 2021 and was
continuously updated using the latest available data since then;
when models were fit, only the versions of the data that were
available in real time were used. In this study, we used 14th
November 2021 as the time cut-off for reporting (ie., data
between 1st June 2020 and 14th November 2021 were included
for modelling) although our model continues to update regularly.

The Google symptom search trends show the relative
popularity of symptoms in searches within a geographical area
over time?!. We used the percentage change in the symptom
searches for each week during the pandemic compared to the pre-
pandemic period (the three-year average for the same week
during 2017-2019). We considered 173 symptoms for which the
search trends had a high-level completeness in the analyses. These
search trends were provided by upper-tier local authorities, and
were extrapolated to each LTLA. The Google mobility dataset
records daily population mobility relative to a baseline level for
six specific areas, namely workplaces, residential areas, parks,
retail and recreational areas, grocery and pharmacy, and transit
stations?2. The weekly averages of each of the six mobility metrics
for each LTLA were the model inputs. The mobility in LTLAs of
Hackney and City of London were averaged, given that they were
grouped into one LTLA in other datasets. Cornwall and Isles of
Scilly were combined likewise. The COVID-19 vaccination
coverage dataset records the cumulative percentage of population
vaccinated with the first dose of vaccine and that for the second
dose on each day. Before the start of the vaccination rollout (7th
December 2020 for first dose and 28th December 2020 for second
dose), the coverage was deemed to be zero. We used the weekly
maximum cumulative percentage of people vaccinated for the
first dose and second dose for each LTLA in our models. Missing
values on symptom search trends, mobility, and vaccination
coverage were imputed using linear interpolation for each
LTLA?3. Thirteen LTLAs were excluded as data were insufficient
to allow for linear interpolation.

Models

Algorithm for model selection. We developed a dynamic super-
vised machine learning algorithm based on log-linear regression.
The algorithm could allow the optimal prediction models to vary
over time given the best available data to date, and therefore
reflected the best real-time prediction given all available data.

2 COMMUNICATIONS MEDICINE| (2022)2:119 | https://doi.org/10.1038/s43856-022-00184-7 | www.nature.com/commsmed


www.nature.com/commsmed

COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-022-00184-7

ARTICLE

Table 1 Prediction targets.

Outcome

Mathematic formula

Y1ps: 1-week-ahead change in COVID-19 cases (as 1-week growth rate) compared with week t, by publication date? | Cg%g‘,f
Y2py: 2-week-ahead change in COVID-19 cases (as 2-week growth rate) compared with week t, by publication date log CSZZZHZ
Y3py: 3-week-ahead change in COVID-19 cases (as 3-week growth rate) compared with week t, by publication date log Cg::s;,f

Yis;: 1-week-ahead change in COVID-19 cases (as 1-week growth rate) compared with week t, by collection date of specimen® log
Y2s;: 2-week-ahead change in COVID-19 cases (as 2-week growth rate) compared with week t, by collection date of specimen log-——%2
Y3s;: 3-week-ahead change in COVID-19 cases (as 3-week growth rate) compared with week t, by collection date of specimen log

CaseS;yq

CaseS,;
CaseS;,

CaseS;
CaseS,. 3

CaseS;

@Publication date refers to the date when the case was registered on the reporting system.

CaseP; - number of COVID-19 cases by publication date at week t; CaseS; - number of COVID-19 cases by collection date of specimen at week t.

bCollection date of specimen refers to the date when the respiratory specimen was taken for testing.

Base model Xo1o) + Xvz2e)

rates.

Yiy =LTLA+ Xppaoy + -+ Xy + Xs1ot - + Xsso +

Y1 Yoo Yao): 1-week, 2-week, and 3-week ahead growth

v

Estimation of MSE for each of model 1 to 64:
(1) Fit on time series from weeks 1tot — I — 1.

Search for the optimal lag

Xss(t-t) + Xvie-0 + Xvae-0
combination (J, K, L)

Yiy =LTLA+ Xonae—jy + - + Xmo(e—jy + Xsrge—rpF -+

J, k, L €{0,1,2,3} mmms===p4 x 4 X 4= 64 combinations

(2) Predict for week t — I using fitted model and inputs in week t — I.
(3) Estimate SE for each LTLA.

(4) Repeat (1)-(3) to estimate MSE for weekt = — 2, t —1—3, t —
I—4.

L

v

(5) Estimate 4-week MSE for each LTLA.
(6) Estimate global 4-week MSE (average of all the LTLAs).

Selection of symptoms follows a forward process:

(1) Add one additional symptom from the rest symptoms per time, and

Search for the optimal

Xsae-r) + Xsre—k) T Xore-1) + Xvage-1)
symptoms (X,)

Yoy =LTLA+ Xpny(epy + o + Xme(e—py + Xsremio+ -+

X/ ... : Any of other Google symptoms besides X ... Xsg

estimate the 4-week MSE.

(2) Compare the MSE of the new model with the original model, and
selecting the new model (as the new reference model) if the MSE is
smaller than the original model. Otherwise, the original model is the

|

A 4

reference model.

(3) Repeat this process until completing the assessment for all the
symptoms.

Search predictor combination (X)
to test whether any input
datasets could be dropped

Yoy =LTLA+ X

X: Any of X, X, X,, messsssss) 7 combinations

4—{ For each of model 1 to 7: Estimate 4-week MSE as described above.

Fig. 1 Schematic figure showing model selection and assessment. SE squared error, MSE mean squared error. In each of the assessment steps, the
optimal model had the smallest MSE. X,,,1¢t) to Ximecry: mobility metrics at six locations. Xg 1) to Xsgey: search metrics of the eight base symptoms. X,¢) and
Xy2tn: COVID-19 vaccination coverage for the first and second dose. Details are in Supplementary Method.

Figure 1 shows the iteration of model selection and assessment.
We started with a baseline model?* that included LTLA (as
dummy variables), the six Google mobility metrics, vaccination
coverage for the first and second doses, and eight base symptoms
from the Google symptom search trends, including cough, fever,
fatigue, diarrhoea, vomiting, shortness of breath, confusion, and
chest pain, which were most relevant to COVID-19 symptoms
based on existing evidence?’. Dysgeusia and anosmia as the two
other main symptoms of COVID-1926 were not included as base
symptoms because Google symptom search data on the two
symptoms were only sufficient to allow for modelling in about
56% of the LTLAs (the two symptoms were included as base
symptoms in the sensitivity analysis described below). We then
selected and assessed the optimal lag combination!*27:28 between
each predictor and growth rate. Next, starting from the eight base
symptoms, we applied a forward data-driven method for
including additional symptoms in the model. This would allow
the inclusion of other symptoms that could improve model
predictability. Lastly, we assessed the different predictor

combinations (Fig. 1; Supplementary Methods and Supplemen-
tary Table 1).

At each of the steps, model performance was assessed through
calculating an average mean squared error (MSE) of the predictions
over the previous four weeks, i.e., 4-week MSE, with the MSE for
each week being evaluated separately by fitting the same candidate
model (Fig. 1 and Supplementary Methods). The calculated 4-week
MSE reflected the average predictability of candidate models over
the previous four weeks (referred to as retrospective 4-week MSE).
Models with minimum 4-week MSE were considered for inclusion
in each step. Separate model selection processes were conducted for
each of the prediction targets.

In addition, we considered naive models as alternative model
candidates for selection; naive models (which assumed no
changes in the growth rate) carried forward the last available
observation for each of the outcomes as the prediction. Similar to
the full models (i.e., models with predictors), we considered a
time lag between zero and three weeks, and used the 4-week MSE
for naive models (Supplementary Table 2).
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Prospective evaluation of model predictability. After selection of
the optimal model based on the retrospective 4-week MSE, we
proceeded to evaluating model predictability prospectively by
calculating the prediction errors for forecasts of growth rates in
the following 1-3 weeks (for the three prediction timeframes),
referred to as prospective MSE (Supplementary Methods and
Supplementary Table 3). As the optimal prediction models
changed over time under our modelling framework, we selected a
priori eight checkpoints that were five weeks apart for assessing
model predictability (we did not assess every week due to the
considerable computational time required): year 1/week 40 (the
week of 1st March 2021), 1/45 (5th April), 1/50 (10th May), 2/3
(14th June), 2/8 (19th July), 2/13 (30th August), 2/18 (4th
October) and 2/23 (14th November). For each checkpoint, we
presented the composition of the optimal models as well as the
corresponding prospective MSE.

Two reference models were used to help evaluate our dynamic
optimal models. We considered naive models (with optimal time
lag based on 4-week retrospective MSE) as the first reference
model, to understand how much the models driven by covariates
could outperform models that assume status quo. As the second
reference model, to further demonstrate the advantages of our
dynamic model selection approach over the conventional model
with a fixed list of predictors, we used the optimal model for the
first checkpoint (i.e., year 1/week 40) and fixed its covariates
(referred to as fixed-predictors model); then we compared its
prospective MSEs for the next seven checkpoints (i.e., year 1/week
45 onwards), allowing the model coefficients to vary.

Sensitivity analyses. As sensitivity analysis, the base symptoms
were expanded to further include dysgeusia and anosmia, as well
as headache, nasal congestion, and sore throat that have been
recently reported as common symptoms of COVID-1917 to assess
how the predictive accuracy was influenced.

Web application. We developed a web application COVID-
PredLTLA using R ShinyApp, presenting our best prediction results
at local level of the UK given all available data to date. COVID-
PredLTLA  (https://leoly2017.github.io/COVIDPredLTLA/), offi-
cially launched on 1st December 2021, uses real-time data from the
above sources and currently updates twice per week. The application
presents the predicted percentage changes (and uncertainties where
applicable) in the COVID-19 cases in the present week (nowcasts)
and the one and two weeks ahead (forecasts) compared with the
previous week, using the optimal models (which technically could be
naive models or any of the full models), by two forms (publication
date and the collection date of specimen) for each LTLA.

Analyses were done with R software (version 4.1.1). We
followed the STROBE guidelines for the reporting of observa-
tional studies as well as the EPIFORGE guidelines for the
reporting of epidemic forecasting and prediction research. All the
data included in the analyses were population-aggregated data
available in the public domain and therefore, ethical approval was
not required.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results

Summary of input time series. We included 367 LTLAs with
complete data. The time series of COVID-19 growth rates, mobi-
lity, the eight base symptoms and COVID-19 vaccination coverage
are in Fig. 2. The COVID-19 growth rates by the collection date of
specimen are in Supplementary Fig. 1. COVID-19 growth rates by

publication date and by the collection date of specimen showed
similar trends over most of the period except in the first five weeks
when the curve by publication date changed abruptly, while the
curve by the collection date of specimen was flatter (Fig. 2 and
Supplementary Fig. 1). All forms of COVID-19 growth rates
peaked between weeks 1/10 and 1/20, weeks 1/25 and 1/30, as well
as weeks 1/50 and 2/3. The 3-week growth rate showed the largest
variation over time, followed by 2-week and 1-week growth rates.
The search trends of fever and cough showed a pronounced peak at
week 1/15, gradually increased between weeks 1/45 and 2/3, and
fluctuated between weeks 2/3 and 2/23; vomiting had a similar
trend but varied to a smaller extent. Smaller variations were
observed over time for the other five symptoms. Mobility at parks
was higher between weeks 1/5 and 1/20, and between 1/45 and 2/
18; mobility at retail and recreation areas and transit stations
showed a similar trend except for an additional small peak during
week 1/25 to 1/30. Time length at residential areas and mobility at
grocery and pharmacy was generally stable in the first half of the
study period; then time length at residential areas slightly decreased
(224 in week 1/30 versus 5.7 in week 2/23), while mobility at
grocery and pharmacy slightly increased (—19.8 in week 1/30
versus 7.3 in week 2/23). The COVID-19 vaccination coverage
increased steadily since the rollout, with the average cumulative
uptake of about 82% for the first dose and 75% for the second dose
at week 2/23 in population aged 12 and over.

Optimal model specifications. For the full models, application of
time lags and inclusion of additional Google search symptoms
(besides the eight base symptoms) improved the predictive
accuracy considerably based on the retrospective 4-week MSE
(Supplementary Data 1, 2 and Supplementary Figs. 2, 3). Speci-
fically, inclusion of additional Google search symptoms further
improved the predictive accuracy after time lags were applied.
The optimal lag combination and symptoms varied by checkpoint
and timeframe of the prediction. Some symptoms were selected in
more than one of the eight checkpoints, including those com-
monly seen in respiratory infections, i.e., headache, ear pain,
otitis, and tonsillitis (Supplementary Data 3-5).

Prospective prediction performance. The prospective predictive
accuracy of the optimal full models, measured by prospective
MSE, varied over time (i.e., checkpoints), by the timeframe of
prediction and between LTLAs. The median MSEs for 1-week, 2-
week, and 3-week ahead prediction were 0.12 (IQR: 0.08-0.22),
0.29 (0.19-0.38), and 0.37 (0.25-0.47), respectively, indicating
that the prediction accuracy declined with longer prediction
timeframe (Fig. 3). Geographical variations were noted in pro-
spective MSE over time. MSEs seemed smaller in the central area
of England, while it was larger in Scottish local authorities and
south west of England although the patterns were not completely
consistent over the eight checkpoints (Fig. 4 and Supplementary
Figs. 4-11). Sensitivity analysis that included additional COVID-
19-related symptoms did not yield meaningful improvement in
prospective predictive accuracy (Supplementary Table 4).
Compared with naive models, the median reduction in
prospective MSE of the optimal models was 21-35% across the
three prediction timeframes. For all checkpoints and prediction
timeframes, the predictive accuracy of the optimal models was
consistently better, with only two exceptions where the two models
had similarly low MSEs in week 2/13 for 1-week ahead prediction
and in week 2/18 for 2-week ahead prediction. The predictive
accuracy did not differ much between the optimal models and
fixed-predictors model for most of the checkpoints but at the latest
checkpoint (i.e., week 2/23), the optimal model outperformed the
fixed-predictors model consistently across the three prediction
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The prospective MSE was calculated based on the difference between the observed and predicted COVID-19 growth rate for the week after model

selection.

timeframes (the reduction in MSE ranged 28-58% across the three
prediction timeframes) (Fig. 3).

Compared with retrospective 4-week MSEs used for model
selection, the median inflation of prospective MSE ranged
31-73% across the three prediction timeframes. Despite the
inflation, both retrospective 4-week and prospective MSEs
followed the same decreasing trend over time and the absolute
difference between the two MSEs diminished after the first 3-4
checkpoints (Fig. 5).

Discussion

Our results show that our dynamic supervised machine-learning
algorithm, allowing the optimal model specification to vary based
on the latest data, can help improve short-term predictions of the
weekly growth rates in the COVID-19 cases in the UK. The
optimal predictions were informed by different model specifica-
tions (e.g., different symptom search queries) over time. Com-
pared with the naive model, the predictions, optimised on the
digital metrics, were more accurate on most occasions and
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Fig. 5 Comparison between retrospective 4-week MSE and prospective MSE for optimal models over different time checkpoints. MSE mean squared
error. Darker lines and dots indicate later in time checkpoints. Dashed lines highlight where prospective MSE equals to retrospective 4-week MSE.

managed to reduce MSE by 21-35%. During the times when the
COVID-19 cases increased rapidly (around week 2/3), the models
with predictors maintained increased predictive accuracy com-
pared with the naive models. In addition, we present a publicly
accessible web application COVIDPredLTLA developed to update
the predictions of COVID-19 growth rates by LTLA using near
real-time data.

We focused on predicting the growth rate of COVID-19 cases in
our models. We consider that the COVID-19 growth rate could
better inform the implementation and relaxation of the control
strategies compared with predicted COVID-19 cases*. Fitting,
prediction and assessment are addressed at LTLA resolution;
LTLA-specific predictions could be used to inform control strate-
gies at fine geographical level. We highlight the consistently better
performance of the optimal models compared with naive models,
including the time period (around week 2/3) when there were
substantial rise in the COVID-19 growth rates, likely due to the

rapid circulation of the delta variant in the UK?-31. The model
performance suggests that our model shows promise in predicting
rapid changes in the COVID-19 cases. The model could be helpful
when there are epidemic growths in future that are associated with
the emergence and circulation of new variants and lineages, e.g.,
the omicron variant with high potential for evading or eroding
existing infection- and vaccine-derived immunity, which became
the predominant circulating variant at the time of writing®2. As we
applied a flexible algorithm for selection of symptoms, our model
has the potential for adapting itself to the changes in the spectrum
of symptoms over time!”, e.g., due to the circulation of new var-
iants and the mass rollout of the vaccination programme. Com-
pared with the fixed-predictors model, our dynamic model is more
flexible in nature and showed advantages in predictive accuracy
after a few months of updating from the original model.

As expected, owing to the absence of input digital metrics in
the most recent timeframe, the predictive accuracy dropped for
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longer prediction timeframe for all models in our analysis, which
is similar to a recent COVID-19 forecasting study in Germany
and Poland that utilised different a modelling approach33. This
highlights the challenge in forecasting respiratory infectious dis-
ease epidemics such as COVID-19 that are highly driven by most
recent population behaviours.

We acknowledge several potential limitations. The accuracy
of real-time nowcasts and forecasts are challenged by delayed
datal. We choose the COVID-19 cases by publication date
rather than the date of collection of specimen as the main
outcome. When using date of collection of specimen as the input
data for analysis, historical data may have the strength of
accounting for testing delays, but the real-time data are usually
incomplete with some cases awaiting to be added in the next few
days. This type of reporting delays causes an artificial decrease
in the real-time COVID-19 cases. Google mobility and symptom
searches are further delayed for several days (4-5 days) relative
to the COVID-19 cases. Secondly, the real trend of the cases
could have been blurred by changes in the testing practice and
this impact is difficult to quantify. In the UK, the testing pro-
grammes were scaled up in the first few weeks of the study
period (June-July 2020)3%. Since then the daily cases include
results from a wider population in addition to those with clinical
needs and healthcare workers. In England, the cases include
positive polymerase chain reaction (PCR) test results, positive
rapid lateral flow test results confirmed with PCR tests taken
within 72 h, and positive loop-mediated isothermal amplifica-
tion test results; the other nations only include positive PCR
results>4, Thirdly, certain age subgroups (e.g., older adults) may
be underrepresented in the Google mobility data and symptom
search trends due to their limited access to the internet. Addi-
tionally, we noticed a spike in Google searches for fever in the
first quarter of the study period. The spike could be a signal of
subsequent increase in cases. Since then the subsequent peaks in
fever were notably lower; it could be because public were less
concerned in fever or less had fever after vaccination!>17. We
did not include dysgeusia and anosmia in the main model due to
incompleteness of Google search data on the two symptoms;
among the LTLAs with complete data on dysgeusia and anos-
mia, the MSEs were similar when including them (Supplemen-
tary Table 4). Although the prediction uncertainty intervals are
provided in the online web application, the uncertainty might
only reflect the variations in model parameters (e.g., not
reflecting the variability of input data, which is difficult to
quantify) and should be interpreted with caution. We have not
accounted for other prevention measures, such as wearing
facemasks and hand hygiene, and changes in the climate
factors3®, which might also have influenced the COVID-19
epidemic. Due to data scarcity on the proportion of different
SARS-CoV-2 variants by LTLA, we were unable to assess the
model predictability specifically by variant.

Conclusion

We developed and validated a dynamic supervised machine-
learning modelling framework that predicted local weekly growth
rates in the COVID-19 cases in the UK by integrating digital
metrics of Google mobility and search trends, and the COVID-19
vaccination coverage. Our models were validated against reference
models in the time period when there were rapid increases asso-
ciated with the emergence and circulation of the delta variant, and
thus showed promises in predicting future rapid changes in the
COVID-19 cases. We will continue monitoring the model per-
formance and updating all the predictions regularly using new data
on a publically accessible web application, which could assist
decision-making at local authorities during the ongoing pandemic.

Data availability

All the data used in this study are publicly available: the Google Search Trends symptoms
dataset https://pair-code.github.io/covid19_symptom_dataset/?country=UK; the Google
Community Mobility Reports https://www.google.com/covid19/mobility/; COVID-19
vaccination coverage and COVID-19 cases for the UK https://coronavirus.data.gov.uk/
details/download. The source data for Figs. 2-5 are available as Supplementary Data 6-9.

Code availability

The source R codes for constructing the model are available at Zenodo3.
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