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Abstract

Learning cell identity from single-cell data presently relies on human experts. Here, we present 

Marker Enrichment Modeling (MEM), an algorithm that objectively describes cells by quantifying 

contextual feature enrichment and reporting a human and machine-readable text label. MEM 

outperformed traditional metrics in describing immune and cancer cell subsets from fluorescence 

and mass cytometry. MEM provides a quantitative language to communicate characteristics of new 

and established cytotypes observed in complex tissues.

Introduction

Quantitative cytometry workflows have developed diverse approaches to grouping cells into 

populations and visualizing results in graphs that arrange populations based on phenotype1,2. 

Significant features of populations are typically assumed to be those most highly or 

differentially expressed. This approach works well when feature variability is low and cells 

match established types, but computational analysis of single cell data routinely reveals 

novel cells with non-canonical phenotypes3-5. This is especially common in diseases where 

abnormal expression profiles and signaling responses distinguish clinically significant cell 

subsets6-10. Existing statistical approaches can be used to characterize a population's degree 

of difference from a reference, but may be limited to a normal distribution or may not 

account for intra- and inter-population variability in a single metric.
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The MEM equation (Eq. 1) produces signed value for each population feature by quantifying 

positive and negative, population-specific, contextual feature enrichment relative to a 

reference cell population (Supplementary Note 1).

(Eq. 1)

In Eq. 1, POP denotes the population of interest, REF denotes the reference population to 

which POP will be compared, MAG is feature magnitude (here, median protein expression 

detected by mass or fluorescence flow cytometry), and IQR indicates the interquartile range. 

A reference population (REF) is chosen based on a biological comparison of interest 

(Supplementary Note 1, Supplementary Fig. 1). MEM was designed to quantify enrichment, 

whereas other metrics used in cytometry, such as Kolmogorov-Smirnov (K-S)11, area under 

the ROC curve (AUC)12, and Earth Mover's Distance (EMD)13, capture other differences 

between frequency distributions (Supplementary Note 1). In datasets including healthy 

human blood, bone marrow, and tonsil, murine tissues, and human tumors, MEM identified 

key proteins used by experts to distinguish rare and novel cell subsets.

Results

Four cytometry studies, Dataset A14, Dataset B15, Dataset C4, and Dataset D, collected as 

described by Leelatian and Doxie, et al.16, were used to evaluate the ability of MEM to 

identify biological features of expert and machine identified cell subsets. For datasets A, B, 

and C, populations had been previously identified by experts and by computational tools 

including viSNE17 and SPADE18, which are used in mass cytometry for dimensionality 

reduction and cell clustering1, respectively.

Dataset A was mass cytometry data quantifying expression of 25 proteins on healthy human 

peripheral blood mononuclear cells (PBMC)14. This dataset was chosen for two reasons: 1) 

the 7 cell subsets present are well-established, phenotypically distinct populations that 

served as a gold standard of biological ‘truth’ and 2) the cells in each of the 7 subsets were 

characterized for 25 proteins that displayed varying homogeneous and heterogeneous 

expression patterns. Populations were expert gated following viSNE analysis and each 

population was compared to the other cells in the sample (Fig. 1, Supplementary Table 2). 

MEM returned labels that matched prior expert analysis14 and correctly assigned high 

positive enrichment values to canonical protein features of each subset (Fig. 1b), including 

CD4 on CD4+ T cells (▲CD4+6 CD3+5 ▼CD8a−4 CD16−3), IgM on IgM+ B cells (▲MHC 

II+8 IgM+6 CD19+5 ▼CD4−6 CD3−5), CD11c and MHC II on monocytes (▲CD11c+8 

CD33+7 CD14+6 CD61+6 MHC II+4 CD44+3 ▼CD3−5 CD4−4), and CD16 on NK cells 

(▲CD16+9 CD56+2 CD11c+2 ▼CD4−7 CD3−4 CD44−3). Proteins that were not significantly 

enriched on any of the 7 subsets of mature human blood mononuclear cells were correctly 

assigned near-zero MEM scores (e.g. CD34 and CD117 proteins expressed on hematopoietic 
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stem cells, Fig. 1b). Similarly, proteins with little variability across cell subsets were 

assigned low, near-zero MEM scores, even for highly expressed proteins (e.g. CD45 on all 

subsets, CD45RA on non-T cells, Fig. 1b). Incorporating information about feature 

variability allowed MEM to capture negative enrichment that was not reflected in magnitude 

difference (MAGDIFF, Supplementary Note 2). Highly enriched proteins were more 

important to accurate population identification than proteins characterized by high median 

expression alone (Fig. 1c; Supplementary Fig. 2; Supplementary Fig. 3).

To test the hypothesis that features with high MEM scores would be important for 

computational cluster formation, the 25 proteins measured in Dataset A (Figure 1b) were 

sorted in six ways: 1) high to low MEM score, 2) high to low median value, 3) high to low 

MAGDIFF, 4) high to low z-score, 5) high to low K-S statistic, and 6) randomly 

(Supplementary Table 3). Z-score and K-S statistic values are shown in Supplementary Table 

5. The proteins were then sequentially, cumulatively excluded from use in k-means 

clustering and f-measure was calculated to measure clustering accuracy (Fig. 1c and 

Supplementary Fig. 2). The order in which markers were excluded is shown in 

Supplementary Table 3. Random exclusion was performed 15 times and the average result is 

shown (Fig. 1c). Clustering accuracy was most impacted by excluding proteins based on 

MEM score. F-measure dropped to 0.75 after removing the proteins with the top 6 MEM 

scores, whereas a comparable F-measure decrease was only observed after removing the 14 

highest markers based on MAGDIFF, the 13 highest markers based on z-score, and the 12 

highest markers based on K-S statistic values (Supplementary Fig. 2). Removing markers 

based on median was not significantly different from removing markers randomly until the 

15 markers with the highest median signal intensity were excluded (Supplementary Fig. 2). 

The same analysis was performed with viSNE in place of k-means clustering to visualize 

loss of population resolution (Supplementary Fig. 3c). In this case, loss of accuracy was 

reflected in the viSNE map as a loss of separation between “islands” of cells. These results 

indicated that MEM enrichment scores captured markers that were important to cell identity 

better than traditional comparisons based solely on median protein expression.

Dataset B was mass cytometry data quantifying expression of 31 proteins on healthy human 

bone marrow15. Computational and expert analysis had previously identified 23 populations 

of cells that were analyzed here by MEM (Supplementary Note 3). For example, the cell 

subset labeled as HSCs was highly enriched for CD34 (CD34+6) and negatively enriched for 

CD45 (CD45−5). Dataset B also illustrated the general rule that MEM scores will approach 

median values as feature variability within populations decreases (Supplementary Fig. 4). 

MEM captured feature enrichment and heterogeneity better than median in diverse 

populations, as in Fig. 1c.

Dataset C was mass cytometry data quantifying expression of 38 proteins on murine cells 

from eight tissues4 (Supplementary Note 4). In this dataset, “cluster 28” was a novel 

population identified as CD11bint NK cells. The MEM label for cluster 28 within ILCs was 

▲CD11b+5 CD62L+3 ▼CD4−7 CD103−4 Terr119−3 (Supplementary Note 4 and 

Supplementary Fig. 5). This MEM label captured the key feature of this novel innate 

lymphoid cell subset (CD11bint) and highlighted additional features that can be used to 

match this subset to cells identified by others (i.e., to cytotype the population). These results 
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indicate that MEM labels complement unbiased population discovery and effectively 

characterize cyto incognito19 by providing unbiased descriptions that correctly capture key 

features of novel cell types.

An important aspect of MEM is generation of machine-readable quantitative labels that can 

be used to register population identities across samples and studies. A MEM label for a 

newly discovered population can be compared quantitatively against a reference set of 

established MEM labels or a MEM label reported in a paper. To illustrate this idea, the 

pairwise, normalized root-mean-squared distance (RMSD) of MEM scores was calculated as 

a measure of similarity between 80 populations of cells from 7 different studies including 

healthy CD4+ T cell and B cell (Fig. 2). Cells had highly similar MEM scores within each 

major cell type, regardless of platform (mass or fluorescence flow cytometry), study, or 

tissue source. For example, T cells run on mass cytometry from different blood donors were 

97% ± 1.3 similar to each other, 85% ± 1.9 similar to T cells from blood run on fluorescence 

flow cytometry, and 87% ± 2.1 similar to T cells from tonsil run on mass cytometry (Fig. 2). 

However, these cells were 66.9% ± 13 similar to any B cell population. This indicates that 

MEM scores provide a way to communicate cell identity and to quantify similarities of cell 

types from the text label alone.

Dataset D included 52 populations of tumor infiltrating APCs, tumor infiltrating T cells, and 

non-immune malignant tumor cells identified in human glioma tumors16. To obtain these 

populations, each tumor was analyzed by viSNE and cell subsets were expert gated solely on 

t-SNE cluster density (Supplementary Fig. 6). To determine whether MEM could distinguish 

immune cell subsets from other tumor cell types with limited information, MEM scores 

were calculated using only 9 markers that were expected to be expressed on cancer cells 

(S100B, TUJ1, GFAP, Nestin, MET, PDGFRα, EGFR, HLA-DR, and CD44, Fig. 3a). The 

52 populations were grouped into 13 major cell types based on MEM enrichment of 9 

analyzed proteins, and these groups were interpreted as tumor infiltrating APCs (Fig. 3b, 

blue), tumor infiltrating T cells (Fig. 3b, green), or non-immune tumor cells (Fig. 3b, red). 

To confirm cell identity, four protein features that had been excluded from MEM analysis 

were assessed (Fig. 3c, CD45, CD3, CD45RO, and CD64). CD45 and CD3 were used to 

confirm T cell identity and CD45 and CD64 were used to confirm APC identity. MEM 

correctly identified both immune cell subsets from all tumor types without using key 

immune lineage markers and without using healthy populations (e.g. APCs from blood or 

tonsil) to guide the clustering. Thus, MEM labels distinguished populations of cells based on 

non-traditional features and in a disease context.

Discussion

MEM labels provided a quantitative language to objectively communicate characteristics of 

new and established cell types observed in complex tissue microenvironments. Algorithmic 

comparison of MEM labels correctly identified 80 cell populations from 7 studies of 3 

human tissues measured using different instrumentation and distinguished tumor-infiltrating 

immune cell subsets and malignant cell populations from human glioma tumors. Following 

additional validation in other cell types, tissues, and instrumentation platforms, it may be 

possible for machines and humans to use MEM labels to learn and clearly communicate cell 
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identity (cytotype). Given widespread adoption and reporting, MEM labels could be used to 

communicate cytotypes in a manner analogous to cluster of differentiation (CD) naming of 

antigen targets of antibodies20. MEM can compare populations against a common reference 

(Supplementary Note 5) and guide feature selection for computational and experimental 

analysis. MEM can also be used to monitor changes in tissues over time during treatment. 

Deviation from a stable MEM score for peripheral blood cell subsets would be expected in 

the case of emerging malignant cells9, and lack of change towards a healthy set of MEM 

scores for blood or bone marrow cell subsets might indicate a lack of response to 

chemotherapy for a leukemia patient. MEM is expected to assist in machine learning 

applications by providing quantitative text descriptions of cytotype that can be 

algorithmically parsed and used to classify newly identified cell subpopulations.

Data Availability Statement

The normal human PBMC dataset (Figure 1) were generated by CyTOF analysis as 

described by Leelatian, et al.14 and is available as an FCS file in Flow Repository (https://

flowrepository.org/experiments/1043).

The normal human bone marrow data set from Bendall and Simonds, et al15 (Dataset B, 

Supplementary Note 3) was downloaded from Cytobank24 as FCS files that included the cell 

population IDs defined by Bendall and Simonds, et al.15 (https://reports.cytobank.org/1/v1). 

MEM enrichment scores from Dataset B were compared to the authors’ analysis and prior 

studies of proteins marking stem cells, progenitor cells, and mature cells25,26

The murine myeloid CyTOF dataset from Becher, et al4 (Dataset C, Supplementary Note 4) 

was downloaded from Cytobank as FCS files that contained gated cell events and cluster IDs 

as designated by automated analysis conducted by Becher et al4. MEM enrichment scores 

from Dataset C were compared to the authors’ analysis and prior studies of neutrophils27,28.

Datasets for Figure 2 were generated in 7 separate fluorescence and mass cytometry studies 

by 1) Nicholas et al. 23, 2) Polikowsky et al.22, 3) Ferrell et al. 21, 4) Amir et al.17, 5) 

Bendall and Simonds et al.15, 6) Greenplate et al., previously unpublished data, and 7) 

Leelatian et al14.

The phospho-flow AML data set generated by Irish et al.6 (Supplementary Note 5-Fig.2) 

was downloaded from Cytobank as FCS files.

The human GBM mass cytometry dataset (Fig. 3) was generated and analyzed as described 

by Leelatian and Doxie et al.16 and are available on Flow Repository as text files (https://

flowrepository.org/experiments/1044/).

Online Methods

CyTOF data pre-processing and analysis

Data analysis was performed using the online analysis platform Cytobank24 and the 

statistical programming environment R. Raw median intensity (MI) values were transformed 

to a hyperbolic arcsine scale. A cofactor of 15 was used for the PBMC dataset (Fig. 1), and 5 
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was used for the normal human bone marrow data set and for the murine myeloid data set. 

Single, intact cells were gated based on cell length (30-60) and nucleic acid intercalator 

(iridium). Major PBMC subsets were gated based on CD45 expression (leukocytes) and on 

canonical lineage marker expression to identify major blood cell subsets.

FCS files were exported from Cytobank as FCS or tab-delimited text files that were parsed 

for expression intensity information using the R package flowCore 29. MEM was calculated 

using the arcsinh transformed MI values, as described above. Heatmaps were generated 

using the heatmap.2 function in the gplots R package30.

Fluorescence Phospho-Flow AML Data Analysis

Data were downloaded from Cytobank as FCS files and processed in R as described above. 

MFI values were transformed to a log normal scale. For each AML patient, a median value 

and an IQR value was calculated for each marker in the unstimulated condition and for the 

stimulated conditions. The unstimulated median values were subtracted from the stimulated 

median values, and likewise for the IQR values. MEM was then calculated by comparing 

each patient's subtracted median and IQR values to those of the other patients. This enabled 

a comparison of fold change signaling values rather than raw values.

Marker Enrichment Modeling (MEM)

MEM analysis begins after populations have been identified and aims to provide a simple 

way to compare findings from experts working with different platforms or performing 

analysis using different computational tools for population discovery 18,31-34 and graphical 

visualization 6,8,15,35,36. These tools have differing strengths that depend greatly on the 

structure of the datasets and controls, the biological goals of the study, and the quality of the 

existing knowledge in the field 1,2,37.

MEM equation—The MEM equation is implemented as an R package (Supplementary 

Software). Currently, MEM uses medians as the magnitude value; however, depending on 

the data type, mean may be a more appropriate magnitude statistic and mean could be 

substituted for median in the equation. Similarly, other statistics, such as variance, might be 

substituted for IQR. The MEM equation was developed with the intention of capturing and 

quantifying population-specific feature enrichment in a simple equation that avoids over-

fitting or unnecessary computation. The primary goal of this equation is to scale magnitude 

differences depending on distribution spread. While other distribution features such as skew 

or shape could be informative, incorporating only two pieces of information – magnitude 

and spread – into the equation captured enough information to be useful in quantifying both 

positive and negative population-specific feature enrichment.

MEM output and score scaling—The MEM R script outputs a heatmap of MEM values 

with a text label summary of feature enrichment as the population (row) names. The + or − 

value provided along with the marker name is converted to a −10 to +10 scale and rounded 

to the nearest integer. As implemented here, the maximum of the scale was set using the 

highest absolute value MEM score observed across all markers and populations. All values 

in the matrix are divided by this maximum value and multiplied by 10 to achieve the −10 to 
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+10 scaling. After scaling, the original sign value is reapplied to each MEM score. Scaling 

the output this way is intended to generate MEM values and labels that are intuitive to 

human readers and to facilitate comparison of feature enrichment across experiments, 

samples, batches, time points, and data types.

IQR Threshold—Because MEM uses a ratio of IQR values, near zero values in the 

denominator, IQRPOP, will greatly increase MEM scores. For each measurement type, it is 

important to identify a minimum significant IQR value so that small IQR values below the 

platform's ability to distinguish signal from noise do not inappropriately increase MEM 

scores. To automatically determine a minimum threshold for IQRPOP, the algorithm here 

calculated the average of the IQR values that were associated with the lowest quartile of 

population and reference medians. For the mass and fluorescence cytometry datasets used, 

the automatically calculated IQR threshold was on average 0.5 ± X and so the IQR threshold 

for all studies here was set to 0.5. The default IQR threshold in the algorithm is also set to 

0.5. To have the IQR threshold re-calculated, investigators should specify the “auto” option 

for the IQR.thresh argument in the MEM function. It is recommended that investigators 

applying MEM to datasets from different instruments or who are testing MEM for the first 

time determine whether a change in the IQR threshold is needed.

Reference population selection—MEM scores are contextual; a population's MEM 

score depends on the reference population(s) to which it is compared. Selection of a 

reference population should be made deliberately depending on the biological question 

being addressed. When populations in a MEM analysis arise from different experimental 

sources, it may be necessary in some cases to normalize measurements prior to MEM 

analysis to avoid artifacts from experimental variation.

PBMC processing and mass cytometry

PBMC were isolated and cryopreserved as described by Greenplate, et al9. PBMC were 

stained with metal conjugated antibodies and prepared for the mass cytometry as previously 

described9. The following antibodies were used in the staining panel: CD19-142, 

CCR5-144, CD4-145, CD64-146, CD20-147, CCR4-149, CD43-150, CD14-151, 

TCRγδ-152, CD45RA-153, CD45-154, CXCR3-156, CD33-158, CCR7-159, CD28-169, 

CD29-162, CD45RO-164, CD16-165, CD44-166, CD27-167, CD8-168, CD25-169, 

CD3-170, CD57-172, PD-L1-175, and CD56-176 (Fluidigm Sciences). In addition, the 

following purified antibodies from Biolegend were labeled using MaxPar DN3 kits (Fludigm 

Sciences), stored at 4°C in antibody stabilization buffer (Candor Bioscience GmbH) and 

used in the same panel: ICOS-141, TIM-143, CD38-148, CD32-161, HLA-DR-163, 

CXCR5-171, and PD-1-174.

Cell subpopulation MEM Score Similarity Calculations

Comparison of CD4+ T cells to B cells in Figure 2—In order to assess the robustness 

of MEM across tissue sample types, donors, experimental runs, and flow cytometry 

platforms (fluorescence and mass cytometry), MEM scores were calculated for cell subsets 

from 7 different experiments that included 3 healthy human bone marrow samples15,17,21, 9 

healthy human PBMC samples14,23, and 6 healthy human tonsil samples22. MEM scores 
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were calculated for each population using as the reference population a combination of 

hematopoietic stem cells gated as CD34+ CD38lo/− from two studies of healthy human bone 

marrow15,21. Population similarity was calculated using root mean squared distance 

(RMSD) calculated on all population MEM scores in a pairwise fashion. MEM scores were 

calculated using all markers in common between each dataset and the HSC reference 

(Supplementary Table 4).

RMSD was calculated here as the square root of the average in squared distance between all 

MEM values in common for each pair of populations (Supplementary Table 4) and then 

converted into percent maximum possible RMSD. Given the −10 to 10 MEM scale, an 

RMSD of 20 was the maximum possible difference and corresponded to 0% similarity, 

whereas an RMSD of 0 between MEM labels indicated 100% similarity. This approach 

emphasized differences in marker expression when comparing populations. Calculated 

statistics for CD4+ T cell comparisons included average MEM value +/− standard deviation 

and p-value calculated using an unpaired, two-tailed Student's t-test.

Human Glioma and Normal Immune Cell MEM Analysis—Glioblastoma data 

(G-08, G-10, G-11, and G-22) were collected following a published protocol16. Cells were 

stained with isotope-tagged antibodies to detect surface and intracellular targets following 

established protocols16,38. MEM analysis of glioblastoma patient samples was performed 

with 9 markers (S100B, TUJ1, GFAP, Nestin, MET, PDGFRα, EGFR, HLA-DR, and 

CD44), using arcsinh transformation of original median intensity values with a cofactor of 5. 

Each cell subset was the POP, and the remaining cell subsets were the REF in the analysis.

Z-score and K-S statistic calculations

Z-score was calculated between POP and REF as (MEANpop-MEANref)/STDEVref for 

each marker.

The K-S statistic11,39 was calculated comparing the distribution for each marker on POP and 

REF using the function ks.test() in R.

F-measure Analysis

PBMC populations were defined by expert human gating on canonical markers. For f-

measure analysis (Fig. 1c and Supplementary Fig. 2), the 25 measured markers from the 

CyTOF analysis of healthy PBMC were sorted based on absolute MEM scores, median 

values, median difference, z-score, and K-S statistic (shown in Supplementary Fig. 2), or 

randomly across all PBMC populations and the 25 measured proteins. The 5×25 matrix was 

converted into an ordered vector (length 25×5) and then sorted by absolute value. The first 

occurrence of each marker in the list was kept and subsequent occurrences of that marker in 

the list (i.e. that marker's scores on other populations) were discarded. The order of markers 

excluded by MEM, median, median difference, z-score, and K-S statistic are shown in 

Supplementary Table 3. Markers were then sequentially, cumulatively excluded from k-

means clustering of cells from high to low absolute for each statistic or score. F-measure 

was calculated as:

Sensitivity = True Positives/ (True Positives + False Negatives)
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Specificity = True Negatives/ (True Negatives + False Positives)

F-measure = 2*(sensitivity*specificity)/ (sensitivity + specificity)

An F-measure was calculated for each round of clustering, where truth was the cell cluster 

ID resulting from clustering on all 25 markers. The moving average of f-measure with an 

interval of 3 was calculated in Microsoft Excel. The F-measures for random marker 

exclusion are the average at each point of 15 different rounds of random marker exclusion 

from clustering.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Marker enrichment modeling (MEM) automatically labels human blood cell 
populations in Dataset A
a) Cells from normal human blood were previously grouped into 7 canonical populations 

using viSNE analysis and expert review of 25D mass cytometry data14. b) MEM labels were 

computationally generated for each canonical cell subset using the other six populations as 

reference. The population labeled by immunologists as “CD4+ T cells” was labeled by 

MEM as ▲CD4+6 CD3+5 ▼CD8a−4 CD16−3 and comprised 48.72% of PBMC in this 

sample. In contrast, the MEM label ▲CD16+9 CD56+2 CD11c+2▼CD4−7 CD3−4 CD44−3 

was generated for the population gated as “NK cells”. Heatmaps show protein enrichment 

values used to generate MEM labels and the median protein expression values for each 

protein on each cell subset. Variability in protein expression across the 7 canonical cell 

populations is shown below to highlight proteins that were expressed homogeneously (low 

variability, e.g. CD45) and those that were expressed heterogeneously (high variability, e.g. 

CD8a, CD4). c) Graphs show decreasing f-measure (clustering accuracy) as markers were 
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excluded from k-means cluster analysis based on high to low absolute MEM or median 

values, compared to random exclusion.
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Figure 2. Hierarchical clustering based solely on MEM label groups T cells and B cells measured 
in diverse studies using different cytometry platforms
A) MEM label values were compared for each of 80 populations (CD4+ T cells and B cells) 

from 3 human tissues representing 6 mass cytometry studies and 1 fluorescence flow 

cytometry study. The normalized RMSD (i.e. similarity) for two populations was 100% 

when MEM label exponents were identical for all of the shared proteins. Populations are 

shown clustered according to MEM label percent similarity. Tissue type, source study 

(numbered 1-7 and referenced in online methods), and individual sample IDs are indicated 

to the right. *indicates samples stimulated by bacterial superantigen Staphlococcus 
enterotoxin B (SEB). B) Representative MEM labels for CD4+ T cells (top) and B cells 

(bottom) from SEB-stimulated normal human blood (1.4, top, mass cytometry), normal 

human bone marrow (5, mass cytometry), normal human tonsil (2.5, mass cytometry), SEB-

stimulated normal human blood (1.4, bottom, fluorescence flow cytometry), and normal 

human blood (6.1, mass cytometry).
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Figure 3. MEM correctly grouped immune and cancer cell populations from glioma tumors 
using nine proteins expressed on cancer cells in Dataset D
(A) A heatmap of MEM enrichment scores is shown for 52 populations of cells identified in 

tumors from 4 glioblastoma patients (G-08, G-10, G-11, G22) in an unsupervised manner 

using viSNE. MEM scores were then calculated based only on the nine measured proteins 

expected to be expressed on cancer cells (S100B, TJF1, GFAP, Nestin, MET, PGFRα, HLA-

DR, and CD44). (B) Each population was annotated for a cell type based on review of the 

MEM label and classified as tumor infiltrating APCs (blue), tumor infiltrating T cells 

(green), or non-immune tumor cells (red). (C) A heatmap of median intensity values is 

shown for the 13 measured proteins from each of the 52 tumor cell populations. Expression 

of CD45, CD3, and CD64 was used to assess the respective identity of leukocytes, T cells, 

and antigen presenting cells.
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