
Academic Editor: Dania Cioni

Received: 12 May 2025

Revised: 25 June 2025

Accepted: 26 June 2025

Published: 4 July 2025

Citation: Papageorgiou, P.S.;

Christodoulou, R.; Korfiatis, P.;

Papagelopoulos, D.P.;

Papakonstantinou, O.; Pham, N.;

Woodward, A.; Papagelopoulos, P.J.

Artificial Intelligence in Primary

Malignant Bone Tumor Imaging: A

Narrative Review. Diagnostics 2025, 15,

1714. https://doi.org/10.3390/

diagnostics15131714

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Review

Artificial Intelligence in Primary Malignant Bone Tumor
Imaging: A Narrative Review
Platon S. Papageorgiou 1,* , Rafail Christodoulou 2,* , Panagiotis Korfiatis 3 , Dimitra P. Papagelopoulos 1,
Olympia Papakonstantinou 4 , Nancy Pham 2, Amanda Woodward 2 and Panayiotis J. Papagelopoulos 1

1 First Department of Orthopaedics, University General Hospital Attikon, Medical School, National and
Kapodistrian University of Athens, 12462 Athens, Greece; pjportho@med.uoa.gr (P.J.P.)

2 Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
3 Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; korfiatis.panagiotis@mayo.edu
4 Second Department of Radiology, University General Hospital Attikon, Medical School, National and

Kapodistrian University of Athens, 12462 Athens, Greece; sogofianol@gmail.com
* Correspondence: pplaton24@gmail.com (P.S.P.); rafail99@stanford.edu (R.C.); Tel.: +30-6945776292 (P.S.P.);

+1-7867223687 (R.C.)

Abstract

Artificial Intelligence (AI) has emerged as a transformative force in orthopedic oncology,
offering significant advances in the diagnosis, classification, and prediction of treatment
response for primary malignant bone tumors (PBT). Through machine learning and deep
learning techniques, AI leverages computational algorithms and large datasets to enhance
medical imaging interpretation and support clinical decision-making. The integration of
radiomics with AI enables the extraction of quantitative features from medical images,
allowing for precise tumor characterization and the development of personalized thera-
peutic strategies. Notably, convolutional neural networks have demonstrated exceptional
capabilities in pattern recognition, significantly improving tumor detection, segmentation,
and differentiation. This narrative review synthesizes the evolving applications of AI in
PBTs, focusing on early tumor detection, imaging analysis, therapy response prediction,
and histological classification. AI-driven radiomics and predictive models have yielded
promising results in assessing chemotherapy efficacy, optimizing preoperative imaging,
and predicting treatment outcomes, thereby advancing the field of precision medicine.
Innovative segmentation techniques and multimodal imaging models have further en-
hanced healthcare efficiency by reducing physician workload and improving diagnostic
accuracy. Despite these advancements, challenges remain. The rarity of PBTs limits the
availability of robust, high-quality datasets for model development and validation, while
the lack of standardized imaging protocols complicates reproducibility. Ethical consid-
erations, including data privacy and the interpretability of complex AI algorithms, also
warrant careful attention. Future research should prioritize multicenter collaborations,
external validation of AI models, and the integration of explainable AI systems into clinical
practice. Addressing these challenges will unlock AI’s full potential to revolutionize PBT
management, ultimately improving patient outcomes and advancing personalized care.

Keywords: primary bone tumors; machine learning; imaging; radiomics; orthopedic oncology

1. Introduction
The term AI refers to a field of computer science that enables computers to function

like human cognitive processes. It was first introduced by McCarthy in the 1950s, with the
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first FDA-approved AI algorithm occurring in 2017. A subset of AI, machine learning (ML),
employs computational algorithms that enhance task performance through experience.
Over the years, advancements in computational algorithms, combined with the rise of
big data, have led to the development of deep learning, a specialized subset of machine
learning. Deep learning (DL) uses artificial neural networks that mimic the architecture
of biological nervous systems. Among these, convolutional neural networks (CNN) have
gained popularity in radiology due to their outstanding capabilities in imaging pattern
recognition [1], (Figure 1). Radiomics involves extracting mathematical features from
medical images [2]. The integration of radiomics with machine learning facilitates the
identification of complex patterns for diagnosis, prognosis prediction, classification, and
treatment response assessment in orthopedic oncology [3]. Despite the low incidence of
PBT, accurate diagnosis and classification are vital due to their variable biological behaviors
and treatment needs [4]. Radiomics–ML has shown promising results in analyzing lesion
characteristics, standardizing image comparisons, and enhancing diagnostic accuracy.
Research has also shown the potential of AI tools in differentiating specific tumor types,
such as enchondroma and chondrosarcoma, using MRI-based radiomic features [5].
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Deep 
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Figure 1. The correlations among artificial intelligence, machine learning, and deep learning.

Indeed, MRI is the most sensitive modality for evaluating primary bone tumors,
as it allows for the assessment of bone marrow involvement, soft tissue invasion, and
lesion fluid content. Radiologists encounter numerous diagnostic dilemmas; for instance,
distinguishing primary bone tumors from bone infections can be quite challenging due to
overlapping features [4].

Radiomics texture feature extraction entails the quantitative analysis of medical images
to capture the underlying tissue heterogeneity within a defined region of interest (ROI),
such as a tumor or lesion [6]. This process typically commences with the acquisition of
high-quality images, such as MRI or CT scans, followed by the segmentation of the ROI,
either manually by experts or through automated methods. Once the ROI is established,
the image data is preprocessed to ensure consistency and reliability in feature extraction.
This may include steps like intensity normalization, resampling to a standard voxel size,
and discretizing grayscale values into fixed bins to minimize noise and enhance pattern
detection [7].
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Texture features are then extracted using statistical matrices that describe the spatial
relationships between pixel or voxel intensities. One of the most commonly used is the
Gray-Level Co-Occurrence Matrix (GLCM), which quantifies how often pairs of pixel
intensities occur at a given distance and orientation. Other widely used matrices include
the Gray-Level Run Length Matrix (GLRLM), which captures the length of consecutive
pixels with the same intensity, and the Gray-Level Size Zone Matrix (GLSZM), which
measures the size of homogeneous intensity zones within the ROI [8].

From these matrices, a variety of quantitative features are derived. These include
contrast, which measures local intensity variation; entropy, which reflects the complexity
or randomness of the texture; homogeneity, which indicates how uniform the intensity
distribution is; energy, a measure of image uniformity; and correlation, which assesses the
linear dependency of gray levels across pixels.

This narrative review discusses in detail the applications of AI in PBT, including
tumor detection, imaging processing, therapy response prediction, and tumor classification.
While ML and DL techniques continue to evolve, their application to PBTs is still in its
early stages. The development of advanced DL models capable of simultaneous detection,
segmentation, and classification represents a significant step forward in the field [9]. By
the integration of artificial intelligence in clinical practice, we can potentially improve
clinical decision-making, personalize treatment strategies, and finally improve patient out-
comes. Through this review, we also aim to highlight the current advancements, practical
applications, and future directions of artificial intelligence in managing PBT [2,5]. A key
distinction of this review is its emphasis on synthesizing both qualitative and quantitative
aspects of AI applications across the entire spectrum of PBT imaging, including the latest
advancements in simultaneous detection, segmentation, and classification using advanced
DL models. Unlike prior reviews, which often concentrate on a single imaging modality or
focus narrowly on diagnostic accuracy, this review systematically summarizes the strengths
and limitations of current AI approaches, discusses the methodological quality and het-
erogeneity of included studies, and explicitly addresses the clinical and technical barriers
to implementation.

2. Materials and Methods
An extensive search of the Medline/PubMed, Embase, and Scopus libraries in the

English literature was conducted in December 2024. For the search we used the keywords
“artificial intelligence”, “Neural Networks, Computer”, “Image Processing, Computer-
Assisted”, “Deep Learning”, “Machine Learning”, “Artificial Intelligence”, “Artificial Neu-
ral Network”, “Convolutional Neural Network”, “Deep Learning”, “Machine Learning”,
“image processing”, “automated detection”, “Diagnostic Imaging”, “diagnostic imaging”,
“imaging”, “Osteosarcoma”, “Chondrosarcoma”, “Histiocytoma, Malignant Fibrous”, “Fi-
brosarcoma”, “Osteosarcoma”, “Osteosarcomas”, “Osteogenic Sarcoma”, “Osteogenic
Sarcomas”, “Osteosarcoma Tumor”, “Osteosarcoma Tumors”, “Ewing Sarcoma”, “Ewing
Tumor”, “Chondrosarcoma”, “Chondrosarcomas”, “Malignant Fibrous Histiocytomas”,
“Malignant Fibrous Histiocytoma”, “Malignant Fibrohistiocytic Tumor”, “Malignant Fi-
brohistiocytic Tumors”, “Fibrosarcoma”, “Fibrosarcomas”, “Bone Lymphoma”, “primary”,
“bone cancer”, “bone neoplasm”, “bone cancers”, “bone neoplasms”, “bone tumor”, “bone
tumors”, “bone metastasis”. The studies were eligible as long as they included any type of
primary bone tumor and any tool of AI; all types of studies, except conference abstracts,
from 2017 to 2024 were deemed eligible. Also, the studies had to be focused only on the
human population.

The abstract screening was performed by the primary authors, while full-text screening
was conducted collaboratively by all authors. Final inclusion decisions were made by
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consensus among all authors to ensure the relevance and high quality of the selected data.
A total of 601 records were identified, from which 102 fulfilled our inclusion criteria. The
workflow process is demonstrated in Figure 2.

Figure 2. The workflow of search and selection. The search was conducted in December of 2024.

3. Results
A total of 105 articles published from 2017 to 2024 were included in this narrative

review after more than 600 high-quality articles were screened. These articles were catego-
rized into five main domains, as demonstrated in Figure 3. The majority of studies focused
on osteosarcoma, followed by Ewing sarcoma and chondrosarcoma. Deep learning models,
particularly convolutional neural networks (CNNs), were the most commonly applied
AI tools, achieving high diagnostic accuracies, often surpassing radiologists in detection
and classification tasks. In addition, Radiomics-based machine learning models demon-
strated strong predictive power in evaluating chemotherapy response, with area under the
curve (AUC) values frequently exceeding 0.85. Furthermore, segmentation models using
advanced architectures such as U-net, transformers, and hybrid CNN–transformer systems
reported Dice similarity coefficients above 0.90, highlighting the efficacy of AI in enhancing
diagnostic workflows and reducing physician workload.
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Figure 3. Clustering the studies according to the main area of focus.

4. Discussion
4.1. Treatment Response and Prediction

Treatment response and prediction in PBT enhances precision medicine, improves
patient outcomes, and reduces the burden of ineffective therapies. The selected studies
can be found in Table 1. Radiomics, a method that extracts quantitative features from
medical images, has been very promising in chemotherapy response predictions. Studies
have compared 2D and 3D MRI radiomics; 2D extracts features from a single or a few
selected slices of a volumetric scan (e.g., the largest cross-sectional slice of a tumor), and
3D extracts features from the entire tumor volume (across all slices), capturing spatial
heterogeneity in three dimensions [10]. In the case of skeletal Ewing sarcoma, the superior
reproducibility of 3D features in predicting responses to neoadjuvant chemotherapy has
been demonstrated [11]. Additionally, delta-radiomics models, which evaluate temporal
changes in imaging features, have allowed for preoperative assessments of chemotherapy
response in high-grade osteosarcoma, having an area under the curve (AUC) of 0.871 in the
training cohort and 0.843 in the validation cohort [12].

To standardize these predictions, scoring systems have been developed. A multicenter
study introduced a revised scoring system with the assistance of four ML models, logistic
regression [LR], decision tree [DT], support vector machine [SVM], and neural network
[NN], that could accurately predict neoadjuvant chemotherapy responses in primary high-
grade bone sarcomas, achieving an AUC of 0.893 [13]. Furthermore, a deep learning
model coupled with an MRI-based radiomics nomogram automated the prediction process
of neoadjuvant chemotherapy (NAC) in osteosarcoma patients, providing reliable and
efficient evaluations achieving an AUC of 0.793 (95% CI, 0.610–0.975), and the decision
curve analysis (DCA) suggested the clinical utility of this nomogram [14].
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Table 1. Selected studies on AI-driven prediction and monitoring of treatment response in primary bone tumors.

Author Year Study Type Imaging Modality AI Model Performance Metrics Tumor Type

Gitto et al. [10] 2022 Retrospective MRI 2D vs. 3D Radiomics 3D is superior in reproducibility Ewing Sarcoma

Gitto et al. [11] 2022 Retrospective MRI 3D Radiomics Feature reproducibility in predicting
NAC response Ewing Sarcoma

Lin et al. [12] 2020 Retrospective MRI Delta-Radiomics AUC 0.871 (train), 0.843 (validation) Osteosarcoma

He et al. [13] 2022 Multicenter MRI LR, DT, SVM, NN AUC 0.893 High-Grade Bone
Sarcoma

Zhong et al. [14] 2022 Retrospective MRI DL + Radiomics Nomogram AUC 0.793 (95% CI 0.610–0.975) Osteosarcoma
Nie et al. [15] 2024 Retrospective CT DLRM AUC 0.879 (95% CI 0.802–0.956) Chondrosarcoma
Teo et al. [16] 2022 Retrospective MRI SVM (RBF) Accuracy improved >95% with DCE-MRI Osteosarcoma (Pediatric)

Ho et al. [17] 2020 Retrospective MRI Deep Interactive Learning
(DIaL) CNN training in 7 h Osteosarcoma

Fu et al. [18] 2020 Retrospective Histology (H&E) Siamese Network (DS-Net) Accuracy 95.1% Osteosarcoma
Kim et al. [19] 2018 Retrospective PET DL + Radiomics Higher prediction accuracy Osteosarcoma

Hu et al. [20] 2021 Retrospective DWI-MRI CSDCNN Better PSNR, MSE, EPI, accuracy, recall,
F1, ADC stats Osteosarcoma

Djuričić et al. [21] 2023 Retrospective MRI Fractal Radiomics + LASSO AUC 0.95 Osteosarcoma
Zhang et al. [22] 2024 Retrospective DWI-MRI ML Radiomics Nomogram AUC 0.848 Osteosarcoma
Huang et al. [23] 2020 Retrospective Multi-parametric MRI ML Model AUCs: 0.93–0.97 Osteosarcoma
Zhang et al. [24] 2021 Retrospective DCE-MRI KNN, SVM, LR AUCs: 0.86, 0.92, 0.93 Osteosarcoma
Zhang et al. [25] 2024 Retrospective MRI Radiomics (pre/post NAC) AUC 0.999 (post), 0.915 (pre) Osteosarcoma
Mori et al. [26] 2024 Retrospective MRI (T1, T2) Texture Analysis AUCs 0.99 (T1), 0.94 (T2) Osteosarcoma

Chen et al. [27] 2021 Multicenter MRI LASSO-LR Radiomics signature prediction (no
specific AUC reported) Osteosarcoma

Miedler et al. [28] 2023 Retrospective MRI Radiomics Predictive potential (no numerical
metrics) Ewing Sarcoma

Chaber et al. [29] 2019 Retrospective IR Spectroscopy ML Accuracy 92% Ewing Sarcoma
Dufau et al. [30] 2019 Retrospective PET ML + Radiomics AUC 0.98, sensitivity 100% Osteosarcoma
Jeong et al. [31] 2019 Retrospective PET Linear SVM + PCA Improved AUC (no number) Osteosarcoma

Bouhamama et al. [32] 2022 Retrospective MRI Radiomics AUC 0.97 Osteosarcoma
Kim et al. [33] 2021 Retrospective PET CNN Predictive (no numerical metrics) Osteosarcoma

Helen et al. [34] 2024 Retrospective PET Binary CNN Improved prediction Osteosarcoma

Im et al. [35] 2017 Retrospective PET ML Using FDG-PET Prognostic FDG-based features for NAC
prediction Osteosarcoma

Sheen et al. [36] 2019 Retrospective PET Logistic Model SUVmax + GLZLM_SZLGE as predictors Osteosarcoma

White et al. [37] 2023 Retrospective T2 MRI Radiomics AUC 0.708 ± 0.046 High-Grade
Osteosarcoma
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Preoperative imaging techniques have also benefited from AI integration. A CT-based
deep learning radiomics model (DLRM) demonstrated its ability to predict the histological
grade and prognosis of chondrosarcoma in comparison to radiomics signature (RS) and
deep learning signature (DLS), scoring an AUC of 0.879 with 95% CI, 0.802–0.956 [15].
Similarly, Teo, K. et al. used a support vector machine (SVM) with radial basis function
(RBF) for the classification method, combining histopathology data with multi-modal
MRI, and found that conventional MRI chemotherapy response predictions in childhood
osteosarcoma, by identifying histopathological tumor necrosis, improved by above 95%
when dynamic contrast enhanced DCE-MRI was added into consideration [16].

Interactive deep learning tools have made annotation processes, which are a prerequi-
site for calculating texture features, and CNNs training more efficient. A deep interactive
learning approach, deep interactive learning (DIaL), facilitated the rapid labeling of treat-
ment response data for osteosarcoma, reducing the time required for CNN model training
to 7 h [17]. Moreover, a Siamese network (DS-Net) effectively differentiated from necrotic
tumor regions, streamlining tumor segmentation tasks using hematoxylin and eosin (H&E)-
stained osteosarcoma histology slides and achieving an average accuracy of 95.1% [18].

AI models trained on multimodal imaging data have demonstrated enhanced predic-
tion capabilities. A deep learning model using Fluorodeoxyglucose (18F-FDG) positron
emission tomography (PET) images found that a deep learning architecture with the se-
lected radiomics feature provides higher prediction accuracy of chemotherapy response in
patients with osteosarcoma [19]. A class-structured convolutional neural network applied
to diffusion-weighted imaging (DWI), implementing peak signal-to-noise ratio (PSNR),
mean square error (MSE), and edge preserve index (EPI) to evaluate the image quality after
processing by the CSDCNN algorithm and provided novel insights into osteosarcoma prog-
nosis, scoring better denoising, accuracy, recall, precision, F1 score, and effect evaluation
of neoadjuvant chemotherapy with an apparent diffusion coefficient ADCmean value of
the patients after chemotherapy of 1.66 ± 0.17 and an ADCmin value of 1.33 ± 0.15 [20].
Directionally sensitive fractal radiomics, applying least absolute shrinkage and selection
operator (LASSO) machine learning, revealed associations with chemoresistance in os-
teosarcoma, with AUCs reaching 0.95, and the capability of handling irregularly shaped
tumor regions, in contrast to most radiomic analytical methods, which are compatible only
with rectangular regions of interest (ROIs) [21].

Machine learning-based MRI radiomics nomograms have shown significant promise
in evaluating chemotherapy efficacy. A DWI-based radiomics model successfully as-
sessed neoadjuvant chemotherapy responses in osteosarcoma patients, outperforming the
standalone clinical or radiomics model, attaining an AUC of 0.848 [22]. Combining multi-
parametric MRI data with machine learning further enhanced the evaluation of necrosis
post-chemotherapy in patients with osteosarcoma, significantly improving discriminat-
ing ability for distinguishing, non-cartilaginous tumor survival from tumor nonviable
AUC from 0.93 to 0.97, tumor survival from tumor nonviable AUC from 0.83 to 0.9, and
cartilaginous tumor survival from tumor nonviable AUC from 0.61 to 0.81 [23].

Fusion radiomics, DLRM, which merges imaging features from multiple modalities,
has also been applied to improve predictions of NAC in patients with osteosarcoma. Ad-
vances in MRI techniques like the DLRM developed by Zheng et al., which reviewed axial
T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted (T1CE), have refined
chemotherapy assessments, with dynamic contrast-enhanced MRI models predicting treat-
ment efficacy in osteosarcoma achieving an accuracy of 93.8% and an AUC of 0.961 [7].
Similarly, Zhang, L. et al. utilized K-nearest neighbor (KNN), SVM, and LR for a model
establishment to evaluate the value of machine learning-based DCE-MRI radiomics nomo-
gram, attaining an AUC of 0.86, 0.92, and 0.93, respectively [24]. In another study, Zhang,
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Y. et al. constructed a radiomic model based on before and after NAC, predicting the
histological response to NAC in patients with high-grade osteosarcoma using MRI-based
radiomics, correlating with improved survival in localized high-grade osteosarcoma, scor-
ing an AUC of 0.999 and 0.915; higher scores were achieved in post-NAC [25]. Texture
analysis of intraosseous and extraosseous lesions further contributed to predicting patient
outcomes, implementing T2-weighted images in extraosseous with AUCs of 0.94 and 0.89
and T1-weighted images for intraosseous with AUCs of 0.99 and 0.88 [26]. AI’s predictive
application extends even further to pediatric sarcomas. For instance, machine learning al-
gorithms trained on MRI-based radiomics effectively predicted neoadjuvant chemotherapy
responses in Ewing sarcoma with an AUC of 0.9 [10]. Additionally, Chen et al. selected
thirteen radiomics features based on the LASSO-LR classifier to construct the CE FS T1WI
radiomics signature that demonstrated potential for forecasting pathological response to
NAC in young patients with osteosarcoma [27]. According to Miedler et al., radiomic
features in pediatric Ewing sarcoma seem to have the potential to distinguish between
children with good and poor response already before and during NAC [28]. Innovative
approaches, including the use of infrared spectroscopy combined with machine learning,
add new dimensions to treatment outcome prediction for Ewing sarcoma with an accuracy
of 92% [29].

Machine learning applied to radiomics data and FDG-PET imaging has further en-
hanced the prediction of chemotherapy response in osteosarcoma, achieving an AUC-ROC
of 0.98, a sensitivity of 100% [30]. Baseline textural features from FDG-PET imaging, ana-
lyzed through principal component analysis (PCA) and machine learning linear SVM, offer
valuable insights into treatment outcomes as they contribute to better scores in AUC [31].
Pretherapeutic MRI radiomics has demonstrated predictive capabilities for histologic re-
sponse in osteosarcoma, with the most predictive model achieving an AUC of 0.97 [32],
while convolutional neural networks of tumor center FDG-PET images enhance response
prediction before chemotherapy in osteosarcoma patients [33].

Binary convolutional neural networks and machine learning techniques trained on PET
data continue to improve prediction accuracy for osteosarcoma [34,35]. Prognostic logistic
models utilizing metabolic imaging phenotypes further refine response predictions, inte-
grating tumor biology and imaging features to SUVmax and GLZLM_SZLGE (Gray-Level
Zone Length based on intensity-size-zone Matrix_Short-Zone Low Grey-Level Emphasis)
as independent predictors of metastasis risk estimation in high-risk for metastasis osteosar-
coma patients [36]. Lastly, T2-weighted MRI radiomics provides reliable predictive markers
for assessing chemotherapy response, survival, and disease-free outcomes in high-grade
intramedullary osteosarcoma with an AUC of 0.708 ± 0.046 [37].

4.2. Tumor Detection

Tumor detection is the initial but critical step in improving patient outcomes through
early diagnosis and timely intervention. Medical imaging modalities such as CT, MRI, and
radiographs are generally preferred by radiologists due to their efficiency and ability to
provide detailed information about the tumor’s structural insights (Table 2). Studies have
shown that it is almost essential to follow pre-processing steps in order to enhance image
quality before segmentation and make the tumor detection easier. For segmentation of
cancerous regions, various techniques such as K-means clustering, Canny edge detection,
and threshold-based methods have been applied with promising results, helping to reduce
noise, define boundaries, and segment tumors effectively. Notably, AlexNet outperformed
models like ResNet50 in early detection of parosteal osteosarcoma, osteochondroma, and
enchondroma, using CT images and achieving a high testing accuracy of 100% [38].
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Table 2. AI models are applied for the accurate detection of primary bone tumors in imaging datasets.

Author Year Study Type Imaging Modality AI Model Performance Metrics Tumor Type

Sampath et al. [38] 2024 Retrospective CT AlexNet Accuracy 100%
Parosteal Osteosarcoma,

Osteochondroma,
Enchondroma

Sun et al. [39] 2021 Retrospective CT Radiomics + Clinical Model AUC 0.823 Bone Tumors

Sanmartín et al. [40] 2024 Retrospective Histology FP-Growth + Transfer Learning +
Stacking

Noise reduction and variation
minimization Osteosarcoma

Gawade et al. [41] 2023 Retrospective MRI ResNet101 (best among VGG16,
VGG19, DenseNet)

Accuracy 90.36%, precision 89.51%,
AUC 0.9461 Osteosarcoma

Bansal et al. [42] 2022 Retrospective WSI IF-FSM-C Accuracy 96.08% Osteosarcoma

Deng et al. [43] 2024 Retrospective Histopathology CNN 99.8% (normal vs. tumor), 71.2% (benign
vs. malignant), PPV 91.9% Bone Tumors

Rao et al. [44] 2024 Retrospective Histology BCDNet Accuracy: 96.29% (binary), 94.69%
(multi-class) Bone Cancer

Shao et al. [45] 2024 Multicenter X-Ray DL model Accuracy 93.1% Osteosarcoma vs. GCT
Wang et al. [46] 2024 Retrospective X-Ray + Labs DL + ALP + LDH Accuracy 97.17% Osteosarcoma
Yang et al. [47] 2023 Retrospective Nuclear Medicine CNN Accuracy 96.17%, specificity 91.67% Pediatric Bone Disease
Ren et al. [48] 2024 Retrospective X-Ray ChatGPT-4 Specificity is 100%, but lower sensitivity Osteosarcoma

Loraksa et al. [49] 2022 Retrospective X-Ray CNN Accuracy 96.4% (internal), 92.0%
(external) Osteosarcoma

Hasei et al. [50] 2024 Retrospective X-Ray U-Net Sensitivity 95.52%, specificity 96.21% Pediatric Osteosarcoma
Ling et al. [51] 2022 Retrospective MRI DUconViT (Transformer + CNN) Dice similarity coefficient 92.4% Osteosarcoma

Xia et al. [52] 2023 Retrospective X-Ray Mask R-CNN Precision 92% Osteosarcoma,
Osteochondroma
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CT–radiomics has a cobblestone role in differentiating benign and malignant tumors.
By combining clinical features with radiomics, the model has a validation AUC of 0.823.
This model is not only valuable for tumor detection but also for treatment planning [39].

Moreover, radiomics can be used in the pathology clinical workflow by assisting
physicians in analyzing high-quality, low-noise images and reducing the intraclass vari-
ation between them. Deep learning is leading in tumor detection advancement through
approaches that have been applied to histological analysis of osteosarcoma and addressing
pathologists’ challenges, such as noise and intra-class variations [40].

Since the early detection of osteosarcoma, it remains critical for CNN to streamline
the process. For instance, a comparative evaluation of four CNN-based models, VGG16,
VGG19, DenseNet201, and ResNet101, revealed that ResNet101 was the most effective,
achieving 90.36% accuracy, 89.51% precision, and an AUC of 0.9461. The model’s superior
performance, coupled with efficient training time, highlights its power for osteosarcoma
detection. The potential of advanced architectures like Xception, NASNetLarge, and
EfficientNetV2L to further improve diagnostic accuracy and reliability, underscoring the
transformative role of AI in early cancer detection [41]. The detection of osteosarcoma
by a pathologist is a labor-intensive and difficult process that, on top of that, requires a
lot of experience. Automatic detection systems like IF-FSM-C can detect osteosarcoma
from whole slide images with an accuracy of 96.08% [42]. Similarly, a convolutional neural
network (CNN) model demonstrated exceptional performance, achieving an accuracy of
99.8% in distinguishing normal from tumor images and 71.2% accuracy with a positive
predictive value of 91.9% in differentiating benign from malignant bone tumors, offering a
promising tool for histopathological diagnosis [43]. Additionally, the Bone Cancer Detection
Network (BCDNet), a novel CNN-based model, achieved 96.29% accuracy for binary
classification and 94.69% for multi-class classification, further underscoring its utility in
early and accurate osteosarcoma detection [44].

Deep learning models further enhance diagnostic precision, with one designed for
osteolytic osteosarcoma and giant cell tumor (GCT) on knee radiographs achieving 93.1%
accuracy, significantly surpassing junior radiologists and performing comparably to senior
radiologists [45]. Likewise, a deep learning model integrating biochemical markers such as
alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) with X-ray imaging features
achieved 97.17% accuracy [46].

Moreover, a CNN model used in pediatric nuclear medicine holds promising results
in differentiating benign and malignant bone disease on nuclear scintigraphy with an
impressive accuracy of 96.17% and specificity of 91.67% [47]. On top of that, ChatGPT-4
(‘December 2023 version’) demonstrated high specificity of 100% for identifying bone
lesions but showed limited sensitivity and accuracy for differentiating malignant from
non-malignant conditions [48]. Furthermore, a deep learning model for detecting primary
bone tumors on knee radiographs achieved 96.4% accuracy internally and 92.0% externally,
significantly outperforming junior radiologists while being much faster [49].

Primary malignant bone tumors significantly affect not only adults but also the pe-
diatric population, making early tumor detection important. A U-net-based AI model
demonstrated remarkable sensitivity 95.52%, specificity 96.21%, on annotated X-ray data,
outperforming traditional models and enhancing early detection and patient outcomes [50].
Similarly, DUconViT, a hybrid transformer–CNN system, achieved a Dice similarity co-
efficient of 92.4%, excelling in osteosarcoma segmentation and aiding surgical planning
through efficient tumor size estimation [51]. Additionally, a Mask R-CNN model demon-
strated 92% precision in distinguishing osteosarcoma and osteochondroma, further high-
lighting AI’s growing role in clinical diagnostics [52].
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4.3. AI and Classification of PBT

The classification of primary bone tumors remains a significant challenge due to their
rarity and diverse histological subtypes. The studies that focused on PBT classification are
presented in Table 3. In their study, Song et al. employed a deep learning model to classify
primary bone tumors using incomplete multimodal images from X-rays, CT, and MRI, and
demonstrated a significant enhancement in classification accuracy. By integrating features
from various imaging modalities, the model addressed the limitations of single-modality
analysis and offered diagnostic support, scoring a satisfactory micro-average AUC of
0.847 [53]. Radiograph-based deep learning models have also been shown to improve
radiologists’ performance in classifying histological types of primary bone tumors. A
multicenter study of Xie et al. highlighted that integrating AI tools with radiologist expertise
significantly enhanced diagnostic precision and efficiency with a macro average AUC of
0.904/0.873 [54]. Similarly, a preliminary study using deep learning-based classification
of primary bone tumors on radiographs validated the potential of these models in clinical
workflows in distinguishing between benign and non-benign AUC 0.894 and 0.877 and
malignant and non-malignant 0.907 and 0.916 [55].

Advanced algorithms, such as the Remora optimization algorithm, have been utilized
to enhance deep learning models for automated detection and classification of osteosar-
coma; these methods demonstrated high accuracy and efficiency, making them valuable
in early diagnosis and management [56]. Optimization techniques, including DenseNet
and Elephant Herd optimization, have also been applied to classify osteosarcomas and
giant cell tumors of the bone, with great success in handling complex imaging data [57,58].
Additionally, comprehensive diagnostic models for osteosarcoma classification using CT
imaging features have been developed to address the specific challenges posed by these
tumors, like the ones developed by Rahouma et al., a XG-Boost, support vector machine
(SVM), and K-nearest neighbors, and Wang et al. showed that the principal component
analysis (PCA- IPSO) outperforms traditional feature selection methods in predicting the
accuracy of binary classification using support vector machine (SVM) [59,60].

Studies focusing on CT radiomics-based machine learning have effectively differ-
entiated atypical cartilaginous tumors from chondrosarcomas, highlighting the power of
texture analysis in tumor grading [61]. MRI radiomics-based models have further advanced
classification efforts, particularly in distinguishing between low-grade and high-grade chon-
drosarcomas and other subtypes, through detailed texture and intensity mapping [62–65].

Several innovative optimization algorithms have been integrated into AI models
for osteosarcoma classification. For instance, the Honey Badger optimization algorithm,
combined with deep transfer learning, has been designed to achieve high diagnostic
accuracy [66]. Similarly, a Bald Eagle Search Optimization integrated with an artificial
neural network demonstrated promising results in osteosarcoma classification [67]. These
methods underscore the importance of optimization in enhancing AI model performance.

Machine learning approaches have also been applied to classify and predict osteosar-
coma grading. By leveraging metabolomic data alongside imaging, these models provided
comprehensive diagnostic insights, further solidifying the utility of multimodal data inte-
gration [68]. A novel deep learning model called You Only Look Once (YOLO) for primary
bone tumor detection and classification in full-field radiographs have also proven effective
in handling large datasets, demonstrating their scalability and real-world applicability,
detecting bone neoplasms from full-field radiographs in one shot and then simultaneously
classify radiographs into normal, benign, intermediate, or malignant [69].
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Table 3. AI-based classification systems for distinguishing primary bone tumor types in medical imaging.

Author Year Study Type Imaging Modality AI Model Performance Metrics Tumor Type

Song et al. [53] 2024 Retrospective X-ray, CT, MRI Multimodal DL Model Micro-average AUC 0.847 Primary Bone Tumors
Xie et al. [54] 2024 Multicenter Radiograph DL + Radiologist Macro-average AUC 0.904/0.873 Primary Bone Tumors

He et al. [55] 2020 Preliminary Radiograph DL Model AUC: benign/non-benign 0.894/0.877;
malignant 0.907/0.916 Primary Bone Tumors

Obaid et al. [56] 2023 Retrospective CT DL + Remora Optimization High accuracy (not specified) Osteosarcoma

He & Bi [57] 2024 Retrospective MRI Optimized DenseNet Improved classification performance Spinal Osteosarcoma vs.
GCT

Malibari et al. [58] 2022 Retrospective Image Elephant Herd Optimization
+ DL Effective classification Osteosarcoma

Rahouma et al. [59] 2023 Retrospective CT XGBoost, SVM, KNN Diagnostic model for osteosarcoma Osteosarcoma
Wang et al. [60] 2024 Retrospective CT PCA-IPSO + SVM Outperforms traditional feature selection Osteosarcoma

Georgeanu et al. [61] 2021 Retrospective MRI CNN Automated detection and classification Bone Tumors
Sagar & Bhan [62] 2024 Retrospective Not Specified ML Model Osteosarcoma grading classification Osteosarcoma

Gitto et al. [63] 2019 Retrospective MRI Texture Analysis + ML Low vs. high-grade chondrosarcoma
classification Chondrosarcoma

Gitto et al. [64] 2022 Retrospective MRI Radiomics + ML ACT vs. grade II chondrosarcoma Chondrosarcoma
Gitto et al. [65] 2020 Retrospective MRI Radiomics + ML Bone chondrosarcoma classification Chondrosarcoma

Vaiyapuri et al. [66] 2022 Retrospective Image Honey Badger Opt. +
Transfer Learning High diagnostic accuracy Osteosarcoma

Jha et al. [67] 2022 Retrospective MRI Radiomic Signature High vs. low-grade classification Chondrosarcoma

Shen et al. [68] 2018 Retrospective X-ray + Metabolomics ML Model Enhanced classification using combined
features Osteosarcoma

Li et al. [69] 2023 Retrospective Full-field Radiograph YOLO DL Model Multi-class: normal, benign, intermediate,
malignant Primary Bone Tumors

Hadi et al. [70] 2023 Retrospective Image Bald Eagle Optimization +
ANN High accuracy Osteosarcoma

Guo et al. [71] 2024 Retrospective Radiograph AlexNet and ResNet Tumor malignancy classification Spinal Bone Tumors
Li et al. [72] 2023 Meta-analysis Multiple ML Models Diagnostic value confirmed Malignant Bone Tumors

Gitto et al. [73] 2021 Retrospective CT Radiomics + ML ACT vs. appendicular chondrosarcoma Chondrosarcoma
Pan et al. [74] 2021 Retrospective Radiograph ML Model Radiographic feature classification Bone Tumors

Von Schacky et al. [75] 2022 Retrospective X-Ray ANN + RFC + GNB AUC 0.79/0.90 Primary Bone Tumors
Gitto et al. [76] 2024 Retrospective X-Ray Radiomics + ML ACT vs. high-grade chondrosarcoma Chondrosarcoma

von Schacky et al. [77] 2021 Retrospective Radiograph Multitask DL Accuracy 80.2%, better than residents,
comparable to radiologists Primary Bone Tumors
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Multitask deep learning models have showcased their potential to simultaneously
segment and classify primary bone tumors in radiographs, streamlining workflows and
expediting diagnosis [70]. The application of AlexNet and ResNet architectures for spinal
bone tumor classification has highlighted the versatility of AI in diverse clinical scenar-
ios [71]. Systematic evaluations and meta-analyses have reinforced the diagnostic value of
machine learning for malignant bone tumors, providing insights into its capabilities and
limitations while guiding future research directions [72]. Advanced algorithms have also
been developed for the segmentation and differentiation of pelvic and sacral osteosarcomas
from Ewing’s sarcoma using CT-based machine learning networks [73,74].

X-rays radiomics-based models have shown promise in classifying atypical cartilagi-
nous tumors and high-grade chondrosarcomas of long bones, further expanding the role
of radiomics in bone tumor analysis [75,76]. Lastly, von Schacky et al. analyzed the radio-
graphs from 934 patients over 20 years and successfully created a multitask DL model with
an accuracy of 80.2%, which was higher than two radiology residents and comparable to
two fellowship-trained radiologists, showing the high potential [77].

4.4. Tumor Segmentation

AI has shown significant potential to improve segmentation accuracy and efficiency in
the management of primary bone tumors. All the selected studies that focused on tumor
segmentation are shown in Table 4. Segmentation is necessary not only for preoperative
plans but also can improve the tumor detection in AI applications. A systematic review
of radiomics studies on chondrosarcoma reported strong diagnostic performance, with
pooled DORs of 43.90 and AUCs between 0.90 and 0.94, but segmentation remains largely
manual, reminding us of the need for AI integration in radiology workflow to increase our
efficiency [78].

To address segmentation challenges in osteosarcoma, the ETUNet model achieves
a Dice similarity coefficient (DSC) consistently above 90% and improving metrics like
Intersection Over Union (IoU) and DSC pre-screening with the Slide Block Filter (SBF)
demonstrated a robust accuracy of 95.67%, while noise reduction with the Non-Local Means
(NLM) algorithm and CRF optimization further enhanced segmentation precision, proving
highly strategic in image processing [79].

Likewise, SEAGNET uses supervised, edge-attention guidance to address blurred
tumor boundaries, achieving outstanding metrics such as a DSC of 0.967, precision of
0.968, and accuracy of 0.996. Its ability to precisely localize malignant tumors significantly
enhances diagnostic accuracy and clinical efficiency, making it a valuable tool, especially
for high-grade primary bone tumors [80].

Additionally, the NSRDN framework, which integrates noise reduction through Dif-
ferential Activation Filters (DAFs) and super resolution reconstruction, achieved 96.4%
DSC, 92.8% IoU, and 95.5% accuracy using HRNet [81].

Recently, TBNet, a transformer-enhanced U-net model incorporating edge-enhanced
modules and multi-head cross-fusion transformers, achieved a DSC of 0.949 and an accuracy
of 0.997 in osteosarcoma MRI segmentation. Pre-screening with a Threshold Screening
Filter (TSF) and noise reduction via fast NLM and Fourier transforms further supported this
approach, optimizing segmentation accuracy while maintaining computational efficiency
for early detection that can improve patients’ outcomes substantially [82].
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Table 4. Recent studies have utilized AI models for the segmentation of primary bone tumors in medical imaging.

Author Year Study Type Imaging Modality AI Model Performance Metrics Tumor Type

Zhong et al. [78] 2023 Systematic Review MRI Manual Segmentation 0.90–0.94 (AUC) Chondrosarcoma
Wu et al. [79] 2022 Retrospective MRI ETUNet + SBF + NLM + CRF DSC > 90%, Accuracy 95.67% Osteosarcoma

Zhan et al. [80] 2023 Retrospective MRI SEAGNET DSC 0.967, Accuracy 0.996 Bone Tumors
Zhong et al. [81] 2024 Retrospective MRI NSRDN with HRNet DSC 96.4%, IoU 92.8%, Accuracy 95.5% Osteosarcoma

Lv et al. [82] 2023 Retrospective MRI TBNet DSC 0.949, Accuracy 0.997 Osteosarcoma
Wang et al. [83] 2022 Retrospective MRI Eformer + DFANet Accuracy 0.995 Osteosarcoma

Liu et al. [84] 2022 Retrospective MRI OSTransNet DSC 0.949, IoU 0.904 Osteosarcoma
Wu et al. [85] 2022 Retrospective MRI BA-GCA Net DSC 0.927, IoU 0.880 Osteosarcoma
Lim et al. [86] 2023 Retrospective MRI 3D U-Net (MONAI) DSC 83.75–87.62% Osteosarcoma
Wu et al. [87] 2024 Retrospective MRI DECIDE DSC 70.40%, IoU 54.50% Osteosarcoma
Wu et al. [88] 2022 Retrospective MRI OSDCN (SepUNet + CRF) DSC 0.914, IoU 0.883 Osteosarcoma

Dionísio et al. [89] 2020 Retrospective MRI Manual and Semi-Automatic DSC 0.71–0.97 Bone Sarcomas
Zhang et al. [90] 2018 Retrospective CT MSRN DSC 89.22%, F1 0.9305 Osteosarcoma
Shen et al. [91] 2022 Retrospective MRI OSGABN (FaBiNet) DSC 0.915, IoU 0.853 Osteosarcoma

Ørum et al. [92] 2019 Retrospective PET/CT U-Net Precision 0.71, sensitivity 0.39–0.54 Pediatric Sarcoma
Kaur et al. [93] 2024 Retrospective MRI Modified DeepLabV3+ (ASPP) DSC 70.40%, IoU 54.50% Bone Cancer

Ouyang et al. [94] 2022 Retrospective MRI UATransNet DSC 0.921, IoU 0.922 Osteosarcoma
Zou et al. [95] 2023 Retrospective MRI RTUNet++ DSC 0.82 Osteosarcoma

Kayal et al. [96] 2020 Retrospective DWI-MRI SLIC-S and FCM DSC ~82%, ~79% Osteosarcoma
Zhou et al. [97] 2024 Retrospective MRI MPFNet DSC 84.19%, HQSR 94.38% Osteosarcoma
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Furthermore, the Eformer model combined with the DFANet segmentation network
effectively addresses challenges like noise and blurred edges in osteosarcoma MRI images,
achieving an accuracy of 0.995. This auxiliary segmentation method enhances tumor
localization, precision, and automation, making it a cutting-edge tool for radiologists [83].

OSTransnet, which integrates U-net and transformer-based approaches with inno-
vations like Channel-based transformers (CTrans) and Boundary Augmentation Blocks
(BAB), achieved high tech metrics such as DSC of 0.949, IoU of 0.904, precision of 0.924,
and recall of 0.981. These advancements enable faster, more accurate diagnoses while
reducing physician workload, positioning OSTransnet as a promising tool for clinical
applications [84].

BA-GCA Net incorporates modules like Grid Contextual Attention (GCA), Statistical
Texture Learning Block (STLB), and Spatial Transformer Block (STB), achieving DSC of 0.927,
IoU of 0.880, while maintaining low computational costs. These features make it effective
for handling low-contrast, complex boundaries, improving diagnostic accuracy [85].

The 3D U-net model, trained using the MONAI framework, achieved mean DSC
scores of 83.75% (T1-weighted), 85.45% (T2-weighted), and 87.62% (T1-gd) after preprocess-
ing MRI images with techniques like Contrast-Limited Adaptive Histogram Equalization
(CLAHE) and denoising filters, this approach demonstrated notable segmentation perfor-
mance, effectively addressing blurred tumor edges and overfitting [86].

The DECIDE model leverages Multi-modality Feature Fusion and Recalibration (MFR),
Lesion Attention Enhancement (LAE), and Boundary Context Aggregation (BCA) modules
to improve segmentation performance, achieving precision of 74.85%, recall of 71.52%, DSC
of 70.40%, and IoU of 54.50% [87].

The OSDCN framework, combining data preprocessing, segmentation with SepUNet,
and conditional random fields (CRF), demonstrated DSC of 0.914, F1-score of 0.937, and
IoU of 0.883. It relates to Mean Teacher optimization for noise reduction and multi-scale
segmentation, enabling accurate tumor boundary delineation and area calculations on a
dataset of over 80,000 MRI images, which demonstrates a reliable internal validation [88].

Manual and semiautomatic segmentation techniques using the GrowCut tool within
the 3D-Slicer software version 4.6.2 achieved DSC ranging from 0.83 to 0.97 for manual seg-
mentation and 0.71 to 0.96 for semiautomatic methods, with semiautomatic segmentation
requiring significantly less time. These methods explain that semiautomatic approaches
are more efficient but elaborate on the need for AI for reliability and reproducibility [89].

The MSRN (Multiple Supervised Residual Network) model further advanced CT-
based segmentation with 89.22% DSC, 88.74% sensitivity, and 0.9305 F1-measure, demon-
strating robust precision in mixed bone and soft tissue regions, making it an excellent tool
to implement [90].

The OSGABN (Osteosarcoma Segmentation Guided Aggregated Bilateral Network)
employs FaBiNet to integrate low-level and high-level contextual features, achieving 95%
accuracy, DSC of 0.915, and IoU of 0.853 on a dataset of over 80,000 MRI images, making
it highly applicable to resource-limited healthcare settings [91]. The U-net model for
pediatric sarcoma segmentation in PET/CT scans achieved voxel-wise precision/sensitivity
of 0.71/0.54 (thorax), 0.71/0.39 (extremities), and 0.52/0.38 (abdomen), despite challenges
with high FDG uptake and limited training data, which promise that it can handle tumor
variability and complex metabolic activity [92].

Additionally, a framework for bone cancer detection utilizing MRI images integrates
preprocessing techniques like Alternate Sequential Filtering (ASF) and Decision-Based
Median Filters (DBME-F), enhancing edge and texture retention while eliminating noise.
The Modified DeeplabV3+ model with Atrous Spatial Pyramid Pooling (ASPP) enabled
multi-scale feature analysis, achieving DSC of 70.40%, IoU of 54.50% [93].
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The UATransNet framework, leveraging a modified U-net with self-attentive mecha-
nisms and dense residual learning, achieved an IoU of 0.922 ± 0.03, DSC of 0.921 ± 0.04,
and 96.2% accuracy, validated on 80,000 MRI images. The model efficiently mitigates noise
and supports precise tumor edge detection, making it an optimal solution for osteosarcoma
diagnosis [94].

RTUNet++, a hybrid architecture integrating ResNet, transformer attention mecha-
nisms, and Dense Skip Connections, addressed challenges like spatial information loss and
grayscale heterogeneity. Achieving a DSC of 0.82. Ablation studies confirmed the criti-
cal role of transformer blocks in segmentation performance, demonstrating RTUNet++’s
potential for accurate segmentation in diverse tumor morphologies [95].

Among automated and semi-automated segmentation methods for osteosarcoma
using diffusion-weighted MRI (DWI), SLIC-Superpixels (SLIC-S) and Fuzzy C-means clus-
tering (FCM) achieved Dice coefficients (DC) of approximately 82% and 79%, respectively.
These methods demonstrated rapid execution times and precision in delineating tumor re-
gions, emphasizing their potential for advancing computer-aided diagnosis and treatment
planning [96].

An integrated pipeline, incorporating the MPFNet model for segmentation, achieved
a mean DSC of 84.19% and a high-quality segmentation rate (HQSR) of 94.38%, while
its fusion nomogram predicted survival probabilities with a C-index of 0.806, surpassing
traditional radiomics and clinical nomograms [97].

4.5. Insights into Discrimination and Future Steps by AI

Another area in which AI is demonstrating its potential is the discrimination between
primary bone tumors by leveraging advanced imaging techniques and machine learning
models to enhance differentiation accuracy. MRI-based texture analysis has demonstrated
significant diagnostic value in distinguishing enchondroma from chondrosarcoma, as
shown by Cilengir et al. that found Naive Bayes, K neighbors, and logistic regression
models offered a non-invasive method for early and precise detection, achieving high
accuracy and AUC for T1-weighted, FS-PD images and their combination, respectively [98].
Radiomics, combined with machine learning, has further refined the ability to distinguish
between chondrosarcoma and enchondroma, as found by Erdem et al., emphasizing the
potential of quantitative imaging features in tumor characterization with an advanced neu-
ral network that achieved a high diagnostic performance AUC of 0.979–0.984 [2]. Similarly,
computed tomography (CT)-based machine learning networks have shown promise in
automatically segmenting and differentiating pelvic and sacral osteosarcoma from Ewing’s
sarcoma [99], enabling faster clinical decision-making. Deep learning algorithms, such
as two-phase models, distinguish Ewing sarcoma from acute osteomyelitis in pediatric
radiographs, achieving test accuracies of 90.6% and 86.7% in detecting pathological cases
and differentiating Ewing sarcoma from osteomyelitis, respectively. Gradient-Weighted
Class Activation Mapping (Grad-CAM) visualizations further validated these models by
confirming their focus on clinically relevant regions [100]. Models like support vector
machine and convolutional neural networks achieved impressive accuracies of 89.9% for
SVM, 93.3% for CNNs, excellent and useful tools for assessing chemotherapy response and
advancing personalized care [101].

Radiogenomics, functional imaging, and advanced surgical technologies are trans-
forming the diagnosis and treatment of bone sarcomas, such as Ewing sarcoma. The
integration of functional imaging with transcriptomics has revealed insights into tumor
biology, such as glucose uptake patterns, aiding in personalized treatment approaches [102].
Innovations like single-shot multispectral quantitative phase imaging, enhanced by deep
learning, and trained and validated on two different samples: the optical waveguide and
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MG63 osteosarcoma cells, allow for rapid, label-free visualization of biological samples,
offering precise tumor characterization [103]. Lastly, computer-assisted tumor surgery
(CATS) and 3D printing in surgical management provide improved preoperative planning
and intraoperative accuracy, leading to better outcomes for bone sarcoma patients when
implementing patient-specific instrumentation with custom-made implants [104].

4.6. Limitations of the Study

This narrative review is accompanied by some limitations that must be acknowledged.
First, a direct comparison between the performance of the various AI models was not
feasible due to the substantial heterogeneity in study designs, datasets, and reported
metrics. While some studies reported AUC values, others utilized DSC, IoU, precision, or
accuracy, making standardized comparisons challenging and limiting the ability to draw
generalized conclusions on model superiority. A meta-analytic approach is urgently needed
to establish standardized evaluation criteria and rank model performance across various
imaging modalities and tumor types.

Second, overfitting remains a critical concern across many AI-based models included
in this review, particularly in studies with small sample sizes or a lack of external validation.
The majority of segmentation and classification algorithms were evaluated on institution-
specific or limited datasets, raising concerns regarding generalizability, reproducibility, and
robustness in diverse clinical settings. On top of that, some of them did not assess the
external validity of the tools, which is crucial for real-world translation.

Finally, while this review focuses primarily on radiomics, ML, and DL, other valuable
aspects such as model interpretability, medical error, data privacy, and ethical considera-
tions were beyond the scope of our analysis but deserve attention in future investigations.
In this context, the study by Shrivastava et al. (2023) emphasizes the importance of integrat-
ing feature extraction strategies with machine learning pipelines to enhance interpretability
and clinical trust in AI-based decision systems for bone tumor diagnosis [105]. Their find-
ings highlight the need for methodological rigor and transparency, reinforcing the need for
reproducible AI research frameworks in musculoskeletal oncology.

5. Conclusions
AI has shown significant promise in advancing the diagnosis, classification, and

treatment response prediction of primary malignant bone tumors (PBTs). From enhancing
radiological interpretation to improving treatment outcomes through predictive modeling,
AI represents a transformative tool in orthopedic oncology. The integration of advanced
ML and DL techniques into clinical workflows has not only increased diagnostic accuracy
but also enabled more personalized therapeutic approaches, potentially improving patient
outcomes. However, achieving widespread clinical adoption will require further robust
validation studies.

Despite its potential, our study highlights several limitations. Firstly, the application
of AI to PBTs remains constrained by the rarity of these tumors, which limits the availability
of high-quality, diverse datasets for model training and validation. Additionally, the lack
of standardization in imaging protocols and radiomics feature extraction poses challenges
to reproducibility and generalizability. Ethical considerations, including data privacy and
the interpretability of complex AI models, also warrant careful attention. Future research
should focus on addressing these limitations by fostering multicenter collaborations, devel-
oping explainable AI models, and integrating AI systems into clinical practice with robust
regulatory oversight to ensure safety and efficacy.
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AI Artificial Intelligence
PBT Primary Bone Tumors
NAC Neoadjuvant Chemotherapy
ML Machine Learning
DL Deep Learning
RS Radiomics Signature
RBF Radial Basis Function
CNN Convolutional Neural Networks
MRI Magnetic Resonance Imaging
AUC Area Under the Curve
DT Decision Tree
LR Logic Recession
SVM Support Vector Machine
DCA Decision Curve Analysis
DLRM Deep Learning Radiomics Model
DIaL Deep Learning Interactive Model
DS-Net Deep Supervision Network
H&E Hematoxylin and Eosin
18F-FDG Fluorine 18 Fluorodeoxyglucose
PET Positron Emission Tomography
DWI Diffusion-Weighted Imaging
PSNR Peak Signal-to-Noise Ratio
MSE Mean Squared Error
EPI Edge Presence Index
LASSO Least Absolute Shrinkage and Selection Operator
ROI Region Of Interest
T2WI T2 Weighted Imaging
T1CE T1 Weighted Contrast-Enhanced Imaging
KNN K Nearest Neighbor
NAC Neoadjuvant Chemotherapy
DCE-MRI Dynamic Contrast-Enhanced Magnetic Resonance Imaging
SUVmax Maximum Standardized Uptake Value
CT Computed Tomography
VGG16 Visual Geometry Group 16-layer Network
VGG19 Visual Geometry Group 19-layer Network
DenseNet201 Densely Connected Convolutional Network 201 Layers
ResNet101 Residual Network 101 Layers
NASNetLarge Neural Architecture Search Network Large
EfficientNetV2L Efficient Network Version 2 Large
IF-FSM-C Inception Framework with Feature Selection Mechanism for Classification
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BCDNet Bone Cancer Detection Network
GCT Giant Cell Tumor
ALP Alkaline Phosphatase
LDH Lactate Dehydrogenase
ChatGPT-4 Chat Generative Pre-trained Transformer 4
U-net U-shaped Convolutional Network
DUconViT Dual Convolutional Vision Transformer
Mask R-CNN Mask Region-Based Convolutional Neural Network
PCA-IPSO Principal Component Analysis Improved Particle Swarm Optimization
DECIDE Deep Ensemble Classifier with Integration of Dual Enhancers
Grad-CAM Gradient-weighted Class Activation Mapping
CATS Computer-Assisted Tumor Surgery
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