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Abstract

Staphylococci have evolved numerous strategies to evade their hosts’ immune systems.

Some staphylococcal toxins target essential components of host innate immunity, one of

the two main branches of the immune system. Analysis of the Staphylococcus pseudinter-

medius secretome using liquid chromatography mass spectrometry guided by genomic

data, was used to identify an S. pseudintermedius exotoxin provisionally named SpEX. This

exoprotein has low overall amino acid identity with the Staphylococcus aureus group of pro-

teins named staphylococcal superantigen like proteins (SSLs) and staphylococcal entero-

toxin- like toxin X (SEIX), but predictive modeling showed that it shares similar folds and

domain architecture to these important virulence factors. In this study, we found SpEX binds

to complement component C5, prevents complement mediated lysis of sensitized bovine

red blood cells, kills polymorphonuclear leukocytes and monocytes and inhibits neutrophil

migration at sub-lethal concentrations. A mutant version of SpEX, produced through amino

acid substitution at selected positions, had diminished cytotoxicity. Anti-SpEX produced in

dogs reduced the inhibitory effect of native SpEX on canine neutrophil migration and pro-

tected immune cells from the toxic effects of the native recombinant protein. These results

suggest that SpEX likely plays an important role in S. pseudintermedius virulence and that

attenuated SpEX may be an important candidate for inclusion in a vaccine against S. pseu-

dintermedius infections.

Introduction

Staphylococcus pseudintermedius is the main cause of canine dermatological disease and has

been isolated from wound and surgical site infections, endocarditis and mastitis in dogs [1, 2].

Human infections with this organism have been reported sporadically, most of which have
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been related to exposure to dogs [3]. As many as 30–40% of the S. pseudintermedius isolates

tested in clinical laboratories in different geographical areas are methicillin-resistant (MRSP)

[4]. Most MRSP are multidrug-resistant leaving few treatment options. The transfer of resis-

tance genes to human organisms as well as direct transfer of multidrug-resistant S. pseudinter-
medius between animals and to humans are theoretical concerns [5–8]. Development of

alternative approaches to control staphylococcal infections, such as vaccines, is challenging. S.

pseudintermedius may evade their hosts’ immune response by producing a number of cell sur-

face and secreted proteins that target essential components of their hosts’ defenses, promoting

the survival and transmission of this pathogen. S. pseudintermedius, like Staphylococcus aureus,
produces hemolysins, exfoliative toxins, leukotoxins, thermonuclease, protein A, coagulase

and adenosine synthase [4, 9–13]. However, many of these virulence factors are not well char-

acterized in S. pseudintermedius and others likely remain to be identified.

Innate immunity involving neutrophils is an important first step in the defense against

staphylococci and migration from blood provides the majority of these effectors. This process

is triggered by inflammatory signal molecules such as C5a, neutrophils bind to upregulated

endothelial selectins, extravasate and migrate toward the site of inflammation [14]. However,

neutrophils are susceptible to staphylococcal defenses including molecules that inhibit neutro-

phil function and leukotoxins that kill by forming pores in their cell membranes [15].

The roles of structurally related S. aureus secreted virulence factors staphylococcal superan-

tigen-like proteins (SSLs) and staphylococcal enterotoxin-like toxin (SEIX) in inhibiting their

host’s innate immune response are well characterized. SSLs are distinguished from SEIX by

their lack of cytotoxic activity. SSLs are two- domain proteins with an average size of 25 kDa

[16, 17]. The first domain, located at the N-terminus, displays an oligosaccharide/ oligonucleo-

tide binding (OB) fold forming a β- barrel. The second domain possesses a β-grasp motif con-

sisting of a twisted β-sheet of four to five antiparallel strands, located at the C-terminus. The

two domains are separated by a structurally conserved α-helix. SSLs target innate immunity

components but do not bind to T cell receptors or the major histocompatibility complex [18,

19].

In previous studies, S. aureus SSL4 [19], SSL5 [17] and SSL11 [17], were found to interfere

with neutrophil migration through their sialated glycan-binding site in the C- terminal β-

grasp domain. Chung et al., [20] showed that SSL11 with a single site mutation, T168P, had

defective binding compared to native SSL11 and lost its inhibitory effect on neutrophil attach-

ment to P-selectin. The OB fold domain of SSL7 binds to the IgA Fc region while the β-grasp

motif adheres tightly to complement component C5 resulting in inhibition of complement

mediated hemolytic activity [17]. SSL3 binds to and inhibits toll-like receptor (TLR) 2 using a

well characterized recognition site not found in other SSLs [21]. Tuffs et al., [22] showed that

SEIX secreted by S. aureus shares its domain structure with SSLs. As with SSLs, SEIX binds to

neutrophils, however, it also exhibits a superantigenic effect via its OB fold on T cells [19, 22].

In this study, we used a proteomic approach to identify an exoprotein produced by S. pseu-
dintermedius, SpEX. It is most closely related to and shares some biological properties and

domain structures with SSLs and SEIX, however, it has less than 50% amino acid similarity

with SSL proteins and has key distinguishing properties. It is often annotated in S. pseudinter-
medius as exotoxin 15, a synonym for SSL11, formerly referred to as staphylococcal exotoxin-

like proteins (SET) [23]. SpEX was studied to determine if it had immunosuppressive effects

on its host’s innate immune system. The specific objectives of this study were to characterize

the immunobiological properties of S. pseudintermedius SpEX and attenuated (reduced toxic-

ity) SpEX (SpEX-M) by measuring their inhibitory effects on complement activity, neutrophil

migration and cytotoxic effects on PMNs and monocytes. Antibody against SpEX-M was

S. pseudintermedius SpEX exotoxin
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developed in clinically healthy dogs and the neutralizing activity of those antibodies was

evaluated.

Results

Identification of putative immune modulator from S. pseudintermedius
Liquid chromatography–mass spectrometry (LC-MS/MS) was used to screen culture superna-

tants of three clinical strains of S. pseudintermedius (06–3228, 08–1661 and NA45), represent-

ing the major S. pseudintermedius genotypes occurring in the United States as determined by

multilocus sequence typing (8). We identified over 500 secreted or cell wall associated proteins

and others with unknown cellular locations (manuscript under review). The secretome pro-

teins were compared among 06–3228, 08–1661 and NA45 strains using their respective

genomes as references. SpEX, a 234-aa protein, was detected in the supernatants of the three

isolates. The mean predicted molecular weight was 26.093 kDa with a mean isoelectric point of

6.30.

Bioinformatics analysis of S. pseudintermedius SpEX

A BLAST search of SpEX in the GenBank database revealed that it is conserved among S. pseu-
dintermedius strains including 06–3221, 08–1661 and NA45 with amino acid identities over

88% between strains. SpEX shares sequence similarity with other pathogenic bacterial species

within the Staphylococcus intermedius group. It shares amino acid identity of 71.8% with

Staphylococcus intermedius, 73.5% with Staphylococcus delphini and 72.2% with Staphylococcus
cornubiensis. No similar proteins were identified in S. aureus. SpEX has approximately 47%

amino acid sequence identity with S. aureus SSL11 and less than 30% amino acid identity with

other SSL members and SEIX.

Analysis of SpEX secondary and tertiary domain structures using Geneious 11.0.3 software

[24] supported by a SpEX model developed with the Phyre2 web portal showed that S. pseudin-
termedius SpEX share fold and domain architecture with S. aureus SSLs and SEIX (Fig 1A and

1B). The SpEX protein sequence contains a signal peptide sequence from positions 1 through

35 detected using SignalP 4.1 [25]. SpEX has an N-terminal OB domain in residues 43–126

that folds into a five-stranded beta-barrel structure consisting of β-strands (β1- β5) and a C-

terminal β grasp motif in residues 150–234 (Fig 1A). This comprises a β sheet formed from β7,

β6, β12, β9 and β10 with a characteristic central helix orientated diagonally in the center of the

field from the top left to the bottom right leaving the N-terminal domain on the left and C-ter-

minal domain on the right (Fig 1B).

S. aureus SSL4 (accession number: WP_000705627.1), SSL5 (accession number:

WP_000784244.1), SSL11 (accession number: WP_000769163.1) and SEIX (accession num-

ber: AEI60186.1) proteins have been shown to bind sialated glycan through a conserved sia-

lated glycan binding domain located at the C-terminal β grasp domain [19, 20, 26, 27]. It has

the capacity to influence the host’s innate immunity defenses through targeting sialated glyco-

proteins at the surface of immune cells. Amino acid multiple sequence alignment of SpEX

with previously characterized S. aureus SSL4, SSL5, SSL11 and SEIX proteins showed that

S. pseudintermedius SpEX possesses the conserved sialated glycan binding site of the SSLs

located at the C-terminal region and forming the V-shape depression in the 3D model of

SpEX (Fig 2).

In S. pseudintermedius SpEX, we predict aspartic acid (D) 102 and threonine (T) 125 in the

OB- fold domain are critical residues for the cytotoxic effect of the protein on immune cells. T

206, serine (S) 208, lysine (K) 211, leucine (L) 213, glutamine (Q) 214, arginine (R) 217 and

isoleucine (I) 227 lining the sides of the glycan binding domain were predicted as essential for

S. pseudintermedius SpEX exotoxin
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Fig 1. S. pseudintermedius SpEX structural characteristics. a. SpEX of S. pseudintermedius harbors an N-terminal

signal peptide (green arrow) from position 1–35, OB domain (orange arrow) in residues 43–126 and C-terminal β
grasp domain in residues 150–234 (orange arrow). b. The 3D model of S. pseudintermedius SpEX and S. aureus SSL11

shows the N and C terminal domains fold into a five-stranded beta-barrel structure consisting of β1- β5 and β7, β6,

β12, β9 and β10. A central helix is orientated diagonally in the center of the field from the top left to the bottom right

leaving the N-terminal domain on the left and C-terminal domain on the right. A conserved sialated glycan binding

domain forming V-shape depression is highlighted in purple in SpEX and SSL11 3D models.

https://doi.org/10.1371/journal.pone.0220301.g001

Fig 2. Multiple sequence alignment of SpEX glycan binding domain with S. aureus SSL and SEIX. Proteins with

accession numbers are SSL4 (WP_000705627.1), SSL5 (WP_000784244.1), SSL11 (WP_000769163.1) and SEIX

(AEI60186.1). Threonine (T) 206, serine (S) 208, lysine (K) 211, leucine (L) 213 and arginine (R) 217 are identical

among all analyzed proteins (five proteins). The numbers refer to the position of the amino acids in full length SpEX

protein.

https://doi.org/10.1371/journal.pone.0220301.g002

S. pseudintermedius SpEX exotoxin
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binding to monocytes, neutrophils and complement. These residues are highly conserved

among SSLs and SEIX proteins.

Design of SpEX with amino acid substitutions

An attenuated S. pseudintermedius SpEX (SpEX-M) was designed with (D102A and T125P) in

the OB-fold domain and (T206P and R217A) in the sialated glycan binding domain (Fig 3).

To ensure that protein stability and folding were not altered, only amino acids highly con-

served within functional domains of S. pseudintermedius SpEX and S. aureus SSL4, SSL5,

SSL11 and SEIX were selected. Furthermore, the designed SpEX was first modelled in the

structure to confirm that its conformation was maintained (Fig 3).

Cloning, expression, and purification of recombinant S. pseudintermedius
SpEX

Recombinant native and mutant SpEXs with C- terminal 6x histidines (Fig 3) were generated

in E.coli and purified under native conditions using HisPur Ni-NTA affinity chromatography.

Both SpEX and SpEX-M expressed well from E. coli and remained soluble in solution, indicat-

ing protein stability with the amino acid substitutions. The molecular weights of SpEX and

SpEX-M determined in western blots were of the expected sizes (27. 63 and 27.49 kDa, respec-

tively) (Fig 4).

SpEX interferes with complement function

Binding of SpEX to human complement C5 was detected using ELISA, wherein complement

component C5 was coated on ELISA plates and binding of recombinant native and attenuated

his-tagged SpEX to C5 was measured using horseradish peroxidase (HRP)-conjugated anti-his

tag monoclonal antibody. SpEX bound to human C5 significantly higher, in a dose dependent

manner (0.5 with P = 0.0171, 1 μg /ml with P = 0.0027, 2 and 4 μg /ml with P <0.0001), than

SpEX-M (Fig 5A).

A hemolytic assay was used to evaluate SpEX mediated- inhibition of RBC lysis by comple-

ment. SpEX fixed complement and caused inhibition of hemolysis in a concentration

Fig 3. Residues substituted to produce attenuated S. pseudintermedius SpEX-M. Pairwise amino acid sequence

alignment between recombinant SpEX and SpEX-M. Attenuated SpEX-M had substitutions of D102A and T125P

(highlighted in purple and orange color, respectively) in the OB-fold domain and T206P and R217A (highlighted in

green and yellow color, respectively) in the sialated glycan binding domain. The herpes simplex virus (HSV) tag and 6x

his tag were annotated with red arrows whereas the protein domains were annotated with orange arrows.

https://doi.org/10.1371/journal.pone.0220301.g003

S. pseudintermedius SpEX exotoxin
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dependent manner. At concentrations of 0.5, 1, 2 and 4 μg /ml, SpEX reduced the hemolysis of

sensitized bovine erythrocytes compared to the positive control with P< 0.0001. SpEX at a

concentration of 4 μg/ml showed no significant difference in hemolysis compared with the

negative control (Fig 5B).

SpEX inhibits neutrophil migration

A trans-well neutrophil migration assay was used to determine the inhibitory effect of recom-

binant SpEX on neutrophil migration in vitro. Recombinant SpEX at 0.2 μg/ml (at a concen-

tration selected to assure cells remained viable) inhibited the migration of neutrophils induced

by fetal bovine serum compared to SpEX-M at 0.2 μg /ml with P < 0.0001 (Fig 6). To validate

the results, the viability of neutrophils during experiments was examined to ensure that killing

did not occur at the concentration of SpEX used.

Fig 4. Western blot of recombinant S. pseudintermedius native and mutant SpEX detected with HRP-conjugated

anti-6xhis. The Molecular weights of recombinant SpEX (rSpEX) and rSpEX-M, after expression in Tuner (DE3)

pLacI E. coli induced by Isopropyl β-D-1-thiogalatopyranoside (IPTG), determined in western blots were of the

expected sizes (27. 63 and 27.49 kDa, respectively) in the elution fractions (E1 and E2).

https://doi.org/10.1371/journal.pone.0220301.g004

S. pseudintermedius SpEX exotoxin

PLOS ONE | https://doi.org/10.1371/journal.pone.0220301 July 29, 2019 6 / 18

https://doi.org/10.1371/journal.pone.0220301.g004
https://doi.org/10.1371/journal.pone.0220301


Attenuated SpEX induces a strong antibody response

Recombinant SpEX-M at 20 μg in 0.5 ml in phosphate buffered saline (PBS) (pH 7.2) was

injected into three clinically normal dogs subcutaneously in the lateral thorax. Sera were col-

lected from dogs on days -7, 8, 15 and 29 (relative to SpEX-M injections). IgG reactive with

SpEX-M and SpEX was detected by ELISA on day 15 (P< 0.0001) and at a higher level on day

29 (P < 0.0001) compared to pre-injection control sera (Fig 7). Both SpEX and SpEX-M were

recognized by dog anti-SpEX-M, confirming that there were no major antigenic differences

between native and mutant SpEX.

SpEX kills canine PMNs and monocytes

Canine PMNs and monocytes harvested from canine blood were highly susceptible to SpEX

with cell permeability induced within 30 minutes in a concentration dependent manner (50,

25, 12.5, 6.25, 3.12 μg SpEX/ml in PBS, pH 7.2) and by a 1:2 dilution of S. pseudintermedius
strain 06–3228 culture supernatant (Fig 8). SpEX-M showed a diminished effect on cell perme-

ability of canine PMNs (P = 0.0052) (Fig 8) and monocytes compared to SpEX (P < 0.0001)

(Fig 8). At SpEX concentrations of 50, 25, 12.5, 6.25 and 3.12 μg/ml, monocyte cell permeabil-

ity was significantly different from that of SpEX-M and the negative control (P< 0.0001) (Fig

8). However, SpEX at concentrations of 50, 25, 12.5 and 6.25 μg/ml, had a significant effect on

PMN cell permeability compared to SpEX-M and negative control (P < 0.0001) (Fig 8).

Canine anti-SpEX-M reduced the effects of SpEX on PMNs and monocytes

in vitro
Canine anti-SpEX-M collected after 3rd injection, at a dilution of 1:100 in PBS (pH 7.2), prein-

cubated with recombinant SpEX at a concentration of 0.2 μg /ml, significantly reduced the

inhibitory effect of rSpEX on leukocyte chemotaxis compared to serum collected from dogs

before SpEX-M injection and control serum with P< 0.0001 (Fig 9A).

Fig 5. SpEX interferes with complement function. a. HRP-conjugated anti-6xhis tag monoclonal antibody was used

at a dilution of 1/1000 to detect recombinant SpEX bound to human C5. Recombinant SpEX bound significantly

higher to human C5 than recombinant SpEX-M protein (0.5 with P = 0.0171��, 1 μg /ml with P = 0.0027��, 2 and 4 μg

/ml with P<0.0001����). These values represent averages from three independent experiments. (�P< 0.05 was

considered significant). b. Starting at a concentration of 0.5 μg/ml, SpEX significantly reduced the hemolysis of

sensitized bovine erythrocytes compared to the positive control with P< 0.0001����. SpEX at a concentration of 4 μg/

ml showed no significant difference in hemolysis compared with the negative control. The values represent averages

from three independent experiments. (�P< 0.05 was considered significant).

https://doi.org/10.1371/journal.pone.0220301.g005

S. pseudintermedius SpEX exotoxin
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In a measure of the protective effect of canine anti-SpEX-M against the native protein,

rSpEX (3.1 μg per ml of PBS) treated with anti-SpEX-M at dilution 1:100 significantly reduced

cell permeability represented by mean fluorescent intensity (MFI) as compared with that of

SpEX treatment alone (Fig 9B).

Discussion

Using mass spectrometry referenced to genomic data, it was possible to identify a new S. pseu-
dintermedius exotoxin, SpEX, in S. pseudintermedius. SpEX secretion was confirmed in three

S. pseudintermedius strains representing the three clonal complexes that predominate in the

United States [5]. SpEX from the most commonly isolated clonal complex, CC68, was used in

this study. However, SpEX is highly conserved among all three clonal complexes. Although its

sequence is unique, this protein has a typical SSL tertiary structure, shared by S. aureus SSLs

and SEIX, consisting of an N-terminal OB-fold domain that folds into a five-stranded β-barrel

and a C-terminal β-grasp domain. However, SpEX, in addition to sharing the chemotaxis and

complement inhibitory properties of SSLs, has a cytotoxic effect against monocytes and PMNs.

These functions likely promote bacterial survival in their hosts and increase the likelihood of

transmission. The attenuated SpEX remained soluble following expression from E. coli and

both SpEX and SpEX-M were recognized by dog anti-SpEX-M. Thus, SpEX-M with amino

acid substitutions in its predicted functional domains did not induce significant antigenic or

conformational changes in the protein, however it showed diminished immune evasive prop-

erties compared to SpEX.

Antibody-mediated toxin neutralization may provide a strategy for immunotherapeutic

treatment and/or prevention of current and recurrent infection [28, 29]. Canine antibodies to

SpEX neutralize and diminish its chemotactic inhibitory and cytotoxic effects on PMNs and

Fig 6. PMN transmigration assay. Recombinant SpEX at a concentration of 0.2 μg /ml significantly inhibited the

migration of PMNs induced by fetal bovine serum compared to SpEX-M at the same concentration with

P< 0.0001����. The chemotaxis inhibition by culture supernatant of S. pseudintermedius 06–3228 was significantly

higher than SpEX P = 0.0035��. The values represent averages from three independent experiments. (�P< 0.05 was

considered significant). Data are plotted on the Y axis X 1000.

https://doi.org/10.1371/journal.pone.0220301.g006

S. pseudintermedius SpEX exotoxin
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Fig 7. Dogs injected with SpEX-M developed IgG specifically reactive with recombinant native SpEX and

SpEX-M. Antibodies against S. pseudintermedius native SpEX and SpEX-M were measured using an indirect ELISA.

Recombinant S. pseudintermedius SpEX and SpEX-M proteins were coated on ELISA plates, then incubated with two-

fold serially diluted serum from dogs vaccinated with the same proteins. High reactivity with SpEX and SpEX-M

occurred with sera collected two weeks after the third injections of SpEX-M (P<0.0001) compared to pre-injection

sera. The values represent averages from three independent experiments.

https://doi.org/10.1371/journal.pone.0220301.g007

Fig 8. S. pseudintermedius recombinant SpEX has a cytotoxic effect on canine monocytes and PMNs. a. Gating on

canine monocytes (green color) and PMNs (red color) was based on side and forward scatter (shown in dot plot). The

mean fluorescent intensity (MFI) of the buffer control and SpEX-M relative to SpEX was significantly lower in PMN

(P< 0.0001����) and monocyte (P<0.0001����) permeability assays. The values were calculated based on average

values from three independent experiments (�P< 0.05 was considered significant, ���� P<0.0001, ���� P = 0.0043).

https://doi.org/10.1371/journal.pone.0220301.g008

S. pseudintermedius SpEX exotoxin
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monocytes highlighting the potential value of this protein as a component in a vaccine to pre-

vent or treat S. pseudintermedius infections.

The increased prevalence of multidrug resistant S. pseudintermedius leaves few options for

antimicrobial therapy [5]. Therefore, the development of novel strategies to treat this pathogen

are a research priority [5, 30]. One alternative approach is the development of a vaccine that

can confer protection or provide effective therapy. However, vaccines in S. aureus clinical trials

have thus far failed to show efficient protection [31]. Previous studies [30, 32–34] concluded

that multicomponent vaccines containing a cocktail of staphylococcal antigens would likely

work best in preventing infections caused by S. aureus. We propose that a potent and effective

vaccine against S. pseudintermedius would involve immunogenic targets, secreted and/or

accessible on the surface of the bacterium, conserved among prevalent strains and that play

important roles in virulence, such as immune evasion. Understanding S. pseudintermedius
protein function, surface accessibility and epitope conservation is crucial for vaccine develop-

ment against infections caused by this pathogen.

In conclusion, we describe a new exotoxin produced by S. pseudintermedius that binds to

C5, inhibits complement activation and permeabilizes leukocytes. A mutant version of the pro-

tein has reduced cytotoxic effects on dog PMNs and monocytes in vitro. Canine anti-SpEX

produced against an attenuated form of the protein reduced its chemotaxis inhibition. There-

fore, these mutant proteins may serve as important components of a multivalent vaccine for

prophylaxis of S. pseudintermedius infections. By neutralizing extracellular toxins responsible

for host tissue destruction and immunosuppression, such a vaccine may help the host immune

system control infections.

Future studies might examine potential interactions with TLR as well as regulation of SpEX
expression and the effects of quorum sensing and biofilm on production of the protein to bet-

ter understand its role in pathogenesis. In addition, orthologs of SpEX produced by other

members of the Staphylococcus intermedius group should be studied to determine their role in

the virulence of these species.

Fig 9. Canine anti-SpEX-M neutralized SpEX. a. Canine anti-SpEX, collected after three injections, at a dilution of

1:100 in PBS (pH 7.2), preincubated with recombinant SpEX, significantly diminished the chemotaxis inhibition of

SpEX with P< 0.0001����. b. Pre-incubation of canine anti-SpEX diluted 1:100 with SpEX resulted in a significant

reduction in MFI in permeability assays as compared with that of SpEX treatment alone. There was no significant

difference between SpEX and SpEX treated with pre-serum. The MFI of SpEX pre-incubated with anti-SpEX 1:100

relative to SpEX was significantly lower in PMN (P< 0.0001����) and monocyte (P = 0.012��) permeability assays. The

values calculated were based on average values from three independent experiments (�P< 0.05 was considered

significant).

https://doi.org/10.1371/journal.pone.0220301.g009
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Materials and methods

Ethics statement

Experimental protocols were reviewed and approved by the University of Tennessee Institu-

tional Animal Care and Use Committee (IACUC) including 2474–0716 for samples of dog

blood and 2572–1217 for producing antibodies in dogs with recombinant protein.

Bacterial strains and plasmids

Log phase bacterial cultures of S.pseudintermedius strains (shown with their sequence types)

06–3228 (ST68), 08–1661 (ST71) and NA45 (ST84) were analyzed by mass spectrometry.

These strains are representative of the major S. pseudintermedius genotypes (clonal complexes)

most commonly isolated from canine infections in the United States. A plasmid construct con-

taining a mutated, synthetic S. pseudintermedius spEX (designed as described below) with

BamHI/NotI cloning sites, was obtained commercially (Genscript Piscataway, NJ USA)

(Table 1).

Media and growth conditions

Bacterial colonies grown on blood agar plates were inoculated into 5ml of trypticase soy broth

(TSB) (BD Biosciences, San Jose, CA) at 37˚C with shaking at 225 rpm. For log-phase bacterial

cultures, bacteria were grown until an optical density (OD 600) of 0.4–0.6 was reached.

LC-MS/MS analysis of S. pseudintermedius supernatant

Log phase bacterial cultures of 06–3228, 08–1661 and NA45 were centrifuged at 10,000g for 30

minutes at 4˚C and the supernatants were collected and passed through 0.45μm filters (What-

man, GE Healthcare Lifesciences, Pittsburgh, PA). The filtrates were concentrated using

Table 1. Bacteria, plasmids and competent cells used in this study.

Plasmid/ Bacteria Characteristics Source

pUC19-SpEX-M

construct

Cloning plasmid containing synthetic, attenuated S. pseudintermedius SpEX (717 bp) inserted into MCS of

pUC19 between BamHI and NotI restriction sites

Genscript Piscataway,

NJ USA

pETBlue-2 Plasmid for T7 promoter based expression of recombinant proteins with blue/white screening and C-terminal

HSVTag and HisTag sequences

Novagen, Madison, WI

pETBlue-2 SpEX

construct

Plasmid containing synthetic S. pseudintermedius SpEX (716 bp) inserted into MCS of pETBlue-2 between

BamHI and NotI restriction sites and C-terminal HisTag sequences

This study

pETBlue-2 SpEX-M

construct

Plasmid containing synthetic S. pseudintermedius SpEX-M (717 bp) inserted into MCS of pETBlue-2 between

BamHI and NotI restriction sites and C-terminal HisTag sequences

This study

DH5α E.coli Competent cells used for cloning pETBlue-2 constructs. Genotype: F- F80lacZΔM15 Δ (lacZYA-argF)

U169 recA1 endA1 hsdR17 (rk
-, mk

+) phoA supE44 thi-1 gyrA96 relA1 λ-.

Novagen, Madison, WI

Tuner(DE3) pLacI E.coli lacZY deletion mutants of BL21 and a lysogen of λDE3 that carries a chromosomal copy of the T7 RNA

polymerase gene under control of the lacUV5 promoter.

Novagen, Madison, WI

S. pseudintermedius 06–

3228

Strain representing the most common ST in the United States (ST68) �

S. pseudintermedius 08–

1661

Strain representing the most common ST in Europe and among the three most common in the United States

(ST71)

�

S. pseudintermedius
NA45

Strain representing the most common ST in Asia and among the three most common in the United States (ST84) ��

�University of Tennessee, College of Veterinary Medicine Bacteriology Laboratory.

�� A gift of Faye Hartmann of the University of Wisconsin, School of Veterinary Medicine.

https://doi.org/10.1371/journal.pone.0220301.t001
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Amicon Ultra-4 centrifugal filters (EMD Millipore Corp., Billerica, MA) and stored at -20˚C

until further analysis. Samples interrogating S. pseudintermedius supernatant were prepared

for shotgun LC-MS/MS analysis. Trypticase soy broth (media alone) and bacterial culture

supernatant passed through control Sepahrose beads (without IgG) served as controls. Pep-

tides were separated and analyzed with a 2-step MudPIT LC-MS/MS protocol (salt cuts of

50mM and 50mM ammonium acetate) over a 4-hr period then measured with a hybrid LTQ

XL-Orbitrap (Thermo Scientific, Waltham, MA) mass spectrometer (MS). The percent cover-

age of detected proteins was calculated as previously described [35].

Bioinformatics analysis

Multiple sequence alignment (MSA) of SpEX proteins from a total of 123 S. pseudintermedius
isolates available in the Genbank database and others sequenced previously in our lab [36–38]

was performed using Geneious 11.0.3 software [24]. Protein Homology/analogY Recognition

Engine V 2.0 (Phyre2) was used to develop a S. pseudintermedius SpEX model (http://www.

sbg.bio.ic.ac.uk/phyre2) with alignment coverage, identity percent and confidence set to 82%,

100% and 40% respectively [39]. The 3DLigandSite online tool (http://www.sbg.bio.ic.ac.uk/

3dligandsite/) was used for binding site prediction [40].

The S. pseudintermedius SpEX sequence was aligned to S. aureus SSL4, SSL5, SSL11 and

SEIX to identify the shared protein domain and secondary structures. We designed a full-

length, attenuated S. pseudintermedius SpEX construct (SpEX-M), with the following amino

acid substitutions: D102A, T125P, T206P and R217A.

Polymerase chain reaction (PCR) amplification of SpEX
DNA was extracted using a MO BIO UltraClean Microbial DNA Isolation Kit (QIAGEN Inc.)

according to the manufacturer’s instructions. Oligonucleotide primers (Integrated DNA Tech-

nology, Coralville, USA) (Table 2) were designed using the PrimerQuest Tool (https://www.

idtdna.com/Primerquest/Home/Index) based on the genomic sequence of S. pseudintermedius
strain 06–3228 [41].

The native SpEX open reading frame (ORF) (705bp) excluding N-terminal signal peptide

was amplified from S. pseudintermedius strain 06–3228 genomic DNA and the mutant SpEX
was amplified from a pUC19-spEX-M plasmid (Genscript Piscataway, NJ USA) (Table 1)

using taq polymerase (rTaq, Takara).

Cloning, expression, and purification of recombinant native and

attenuated SpEX

S. pseudintermedius native and mutant SpEX PCR products were cloned using NotI and

BamHI digested pETBlue-2 (Novagen,) (Table 1). The plasmid constructs were transformed

into cloning host DH5-alpha E. coli chemically-competent cells, (Table 1) (New England

Table 2. Primers used to amplify recombinant wild- type and attenuated spEX from Staphylococcus pseudintermedius and pUC19-spEX-M plasmid. NotI and

BamHI restriction sites are bold and underlined, nucleotide sequences belonging to SpEX and SpEX-M are show in italics, the primer binding sites are in brackets and

sequences outside SpEX and SpEX-M (GCATGA) were used to flank NotI and BamHI recognition sites.

Primer Sequence

SpEX forward GCATGAGGATCCA[AGCGAAGCACATGCCCA]

SpEX reverse GCATGAGCGGCCGC[CAGATCTATCGTAATTTGTTGGA]

SpEX-M forward GCATGA[GGATCCAATGAAACAGAGCACCATTCT]

SpEX-M reverse GCATGA[GCGGCCGCCAGGTCGATG]

https://doi.org/10.1371/journal.pone.0220301.t002
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BioLabs Inc.,) before being transformed into expression host, Tuner (DE3) pLacI E. coli chem-

ically-competent cells (Table 1) (Novagen,) by heat shock.

Recombinant S. pseudintermedius native and mutant SpEX expression were performed

from E. coli pETBlue-2 constructs as previously described [4] using LB broth containing 50μg/

ml ampicillin and 20μg/ml chloramphenicol as protein expression media. Protein expression

was induced by addition of 1 mM Isopropyl β-D-1-thiogalatopyranoside (IPTG). Protein

extraction was performed using BugBuster reagent (Novagen) and 100X protease inhibitor

(Cocktail Set III, EDTA-Free Calbiochem,). Recombinant proteins were purified using affinity

purification (HisPur Ni-NTA Spin Purification Kit, Thermo Scientific). Protein concentra-

tions were determined using a bicinchoninic acid (BCA) assay (Thermo Scientific).

SDS-PAGE and western blot

SDS-PAGE in 4–12% polyacrylamide gels (Invitrogen) was used to measure the molecular

weight of expressed recombinant proteins. The resolved protein samples were blotted onto

nitrocellulose membranes (Thermo Scientific). Then the blots were incubated in 5% (wt/vol)

nonfat dried milk powder in 0.05% polyethylene glycol sorbitan monolaurate (Tween 20) con-

taining phosphate buffered saline (PBS-T) overnight at 4˚C. Horseradish peroxidase (HRP)-

conjugated anti-6xhis tag monoclonal antibody (Thermo Scientific) diluted 1:2,000 in 0.05%

PBS-T was added to the blocked membranes and incubated for 1 h with 225 rpm shaking at

room temperature. After five washes with 0.05% PBS-T, bound antibodies were detected using

1-Stepchloronaphthol substrate solution (Thermo Scientific).

Preparation of canine anti- S. pseudintermedius SpEX

The endotoxin concentration in purified recombinant SpEX-M was measured using a Toxin-

Sensor Chromogenic LAL Endotoxin Assay Kit (Genscript). Recombinant SpEX-M at 20 μg

was diluted in 0.5 cc in phosphate buffered saline (PBS) (pH 7.2) and injected into three clini-

cally normal dogs subcutaneously in the lateral thorax. Three injections were given 7 days

apart with a control dog receiving PBS (pH 7.2) only. Blood was drawn on days -7, 8, 15 and

29 (relative to injections) and serum separated.

Enzyme-linked immunosorbent assay

Recombinant SpEX and SpEX-M were coated separately onto ELISA plates (Corning) at 2μg/

ml in PBS. The plates were washed with 0.05% PBS-T and incubated with two-fold serial dilu-

tions of serum from dogs (injected with recombinant proteins) for 1 h at 37˚C, then bound

IgG was detected using HRP-conjugated goat anti-dog IgG-heavy and light chain (Bethyl Lab-

oratories, Inc.). ELISA assay plates were washed three times with PBS-T between all incuba-

tions, bound antibodies were detected using TMB substrate (Thermo Scientific), and reactions

were stopped with 0.18 M sulphuric acid and optical density read at 450 nm on a plate reader

(Bio TEK, EL800). The experiment was repeated a minimum of three times and a p-value of

<0.05 was considered significant for all the experiments unless otherwise stated.

Trans-well assay for neutrophil transmigration

Canine blood was collected from healthy dogs using a sterile blood collection system with

EDTA anticoagulant (BD Vacutainer). Canine neutrophils were isolated according to O’Don-

nell [42], washed several times, and re-suspended in pre-warmed 1ml RPMI medium.

A neutrophil transmigration assay protocol was used as previously described [43] with

modifications. The assay was performed in 24-well plates with polycarbonate membrane
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(3.0 μM pore size and 6.5 mm well diameter) chambers (Corning Incorporated). Six hundred

microliters of Dulbecco’s Modified Eagle Medium (DMEM) with 10% of fetal bovine serum,

as a PMN chemoattractant, was placed in each bottom well. Subsequently, SpEX and SpEX-M

treated canine neutrophils (1×106), were added to the top chamber and incubated at room

temperature for 6 h. DMEM medium was used as a negative control. Neutrophil viability and

migration to the bottom chamber was quantified using a Countess II FL Automated Cell

Counter (Thermo Scientific). In order to measure the protective effect of anti-SpEX on neutro-

phil transmigration, recombinant SpEX was incubated with canine anti-SpEX at a dilution of

1:100 for 30 min at 37˚C, then tested with the PMN transmigration assay.

Complement C5 binding assay

Human complement component C5 (Sigma-Aldrich) was coated onto ELISA plates (Corning)

at 2μg/ml in PBS. Recombinant SpEX and SpEX-M were added at 0.5, 1, 2 and 4 μg/ml in PBS

(pH 7.2) for 1 h at 37˚C, then bound recombinant proteins were detected using (HRP)-conju-

gated anti-6xhis tag monoclonal antibody (Thermo Scientific) at a dilution of 1:1000 in PBS-T

(pH 7.2). Bound antibodies were detected as described above. The experiment was repeated a

minimum of three times and a p-value of<0.05 was considered significant for all the experi-

ments unless otherwise stated.

Complement mediated hemolysis assay

A hemolysis assay was performed to determine the ability of recombinant SpEX to inhibit

complement function. Bovine erythrocytes, collected in EDTA from a clinically normal cattle,

were washed in PBS and sensitized to complement by incubation with rabbit IgG fraction

anti-bovine red blood cells (ICN Cappel) diluted 1:25, for 30 min at 37˚C with gentle mixing.

Dog serum diluted 1:4 was pre-incubated with 0.5, 1, 2 and 4 μg/ml of recombinant native

SpEX for 30 min at 37˚C with gentle shaking (100 rpm). One hundred microliters of sensitized

bovine RBCs were added to all samples including positive and negative controls and incubated

under the same conditions for an additional 30 min. After centrifugation at 4200 ×ɡ for 5 min,

the absorbance of the supernatant was measured at 450 nm. Heat-inactivated serum mixed

with PBS (pH 7.2) was used as a negative control and normal dog serum, diluted 1:4 was used

as a positive control.

PMN and monocyte permeability assay

PMNs and monocytes were separated as previously described. PMNs and monocytes were

incubated with two- fold serial dilutions of recombinant proteins (SpEX or SpEX-M) from

concentrations of 50 μg to 1.6 μg in a volume of 500 μl of RPMI medium supplemented with

10% fetal bovine serum in an incubator with 5% CO2 for 30 min. The supernatant of S. pseu-
dintermedius strain 06–3228 was harvested at log phase to test the toxic effect of secreted,

native SpEX. PMNs and monocytes were stained with 1 μl Sytox green (Life Technologies,

Inc.) for 30 min, then washed twice with PBS (pH 7.2) and analyzed using a flow cytometer

(Attune acoustic focusing cytometer) by gating separately on PMNs and monocytes.

To evaluate the protective effect of canine anti-SpEX-M on PMNs and monocytes, recom-

binant S. pseudintermedius SpEX, at concentration of 3.1 μg diluted in 1ml of PBS (pH 7.2)

was incubated for 30 minutes at 37˚C with serum from SpEX-M injected dogs. The cell death

cut-off used for flow cytometry analysis was established using leukocytes incubated without

SpEX. Mean fluorescent intensity was measured from all gated cells.
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Statistical analysis

Each experiment was repeated at least three times with a minimum of duplicate samples. Data

analysis was conducted for each response variable using ANOVA methods, with treatment

and dose as the independent variables. Diagnostic analysis was performed to check the model

assumptions for normality and equal variance. Multiple comparisons were made with tukey’s

adjust. Significance was identified at p<0.05. All analysis was conducted in SAS 9.4 for Win-

dows x64 from SAS Institute (Cary, NC) and some graphical outputs were generated by

GraphPad Prism software (Version 7, GraphPad Software Inc.).
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