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Lipids, as one of the main building blocks of cells, can provide valuable information on
microorganisms in the environment. Traditionally, gas or liquid chromatography coupled
to mass spectrometry (MS) has been used to analyze environmental lipids. The resulting
spectra were then processed through individual peak identification and comparison
with previously published mass spectra. Here, we present an untargeted analysis of
MS1 spectral data generated by ultra-high-pressure liquid chromatography coupled with
high-resolution mass spectrometry of environmental microbial communities. Rather than
attempting to relate each mass spectrum to a specific compound, we have treated
each mass spectrum as a component, which can be clustered together with other
components based on similarity in their abundance depth profiles through the water
column. We present this untargeted data visualization method on lipids of suspended
particles from the water column of the Black Sea, which included >14,000 components.
These components form clusters that correspond with distinct microbial communities
driven by the highly stratified water column. The clusters include both known and
unknown compounds, predominantly lipids, demonstrating the value of this rapid
approach to visualize component distributions and identify novel lipid biomarkers.

Keywords: lipids, liquid chromatography mass spectrometry, lipidome, lipidomics, MZmine, Black Sea

INTRODUCTION

Lipids are the main building blocks of microorganisms and occur ubiquitously in the environment.
A large number of lipids are synthesized by many different genera and orders of microbes but
some lipids are unique to specific organisms or groups of organisms or to specific biogeochemical
processes (e.g., Koga et al., 1998; Cvejic et al., 2000; Sinninghe Damsté et al., 2002b; Belt et al., 2007;
Rossel et al., 2008; Bauersachs et al., 2009; Elling et al., 2017; Rush and Sinninghe Damsté, 2017;
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Longo et al., 2018; Gutiérrez et al., 2020), and hence serve as
biomarker lipids. Furthermore, intact polar lipids (IPLs) are
thought to degrade rapidly upon cell death indicating recent
activity of microbial cells (White et al., 1979; Harvey et al., 1986).
Therefore, analysis of IPLs and other lipids can, complementary
to microbiological and molecular methods, provide valuable
information on the diversity and activity of microorganisms in
the environment. Early biomarker lipid studies of the microbial
composition in the environment utilized gas chromatography
(GC) often coupled to mass spectrometry (MS) to detect
lipid biomarker such as steroids (Gaskell and Eglinton, 1976;
Summons et al., 1992), and in particular phospholipid derived
fatty acids (PLFAs) (White et al., 1979). In recent decades,
the range of biomarker lipids utilized in environmental
studies has been extended to include direct analysis of larger
IPLs using liquid chromatography (LC) coupled to MS (e.g.,
Sturt et al., 2004).

Traditionally, the range of IPLs detected in the environment
using LC-MS are constrained through individual peak
identification and comparison with previously published
mass spectra or standards (Sturt et al., 2004; Ertefai et al.,
2008; Lipp and Hinrichs, 2009; Schubotz et al., 2009, 2018; Van
Mooy and Fredricks, 2010; Popendorf et al., 2011; Brandsma
et al., 2012; Gibson et al., 2013; Bale et al., 2016; Ding et al.,
2020). This generally results in the detection only of dominant
(groups of) known IPLs. With the advent of ultra-high-pressure
liquid chromatography coupled with multistage high-resolution
mass spectrometry (UHPLC-HRMSn) the richness of the
mass spectral data has significantly increased, leading to
the identification of many new lipid compounds (e.g., Liu
et al., 2012a,b; Moore et al., 2013, 2016; Zhu et al., 2014a,b;
Yoshinaga et al., 2015; Sollai et al., 2018; Bale et al., 2019b),
but this identification is selective and tedious and could be
sped up by using computational approaches. Furthermore,
compounds with unknown mass spectra may be ignored
even though they could be indicative of the abundance of
specific microbes.

Recently, a number of studies have applied lipidomic data
handling strategies in marine environments (Hunter et al., 2015;
Collins et al., 2016; Cutignano et al., 2016; Becker et al., 2018a; Li
et al., 2018; Saleem et al., 2019; Zeng et al., 2019). These studies
describe various methods for lipidomic workflows such as high-
throughput annotation and identification of lipids in HRMS data
and statistical analysis of the outputted lipid data. Some of which
have taken an untargeted approach, rather than attempting to
relate each mass spectrum to a certain compound, they extract all
spectral components (sometimes denoted as “features”) (Pluskal
et al., 2010, 2020). The composition of spectral components can
then be used to, e.g., define specific environmental niches.

Here, we perform an untargeted analysis of the lipidome of
the Black Sea. We extract components based on high resolution
MS1 spectra from UHPLC-HRMS analysis of lipid extracts of
suspended particles and use a statistical approach to compare
the individual abundance depth profiles of all components.
These depth profiles are clustered by their similarity to one
another, without bias toward known or abundant components.
We compare these findings with previous studies, which have

examined the lipidome of the Black Sea water column using
traditional IPL identification (e.g., Neretin et al., 2007; Wakeham
et al., 2007; Schubotz et al., 2009; Sollai et al., 2018). Our
rapid visualization method lays a foundation for the study of
Ding et al. (2021), reported in parallel to this study, which
used information theory framework combined with molecular
networking to investigate lipid diversity and specificity as well as
identify novel lipids.

MATERIALS AND METHODS

Sampling and Environmental Setting
Suspended particulate matter (SPM) at various water depth in
the water column (Table 1) was collected during two cruises
in 2013 and 2017 in the Black Sea. The 2013 Black Sea SPM
was collected from 50 to 2000 meter below sea level (mbsl; see
Table 1 for depths) during the PHOXY cruise (June 2013) aboard
of the R/V Pelagia (Kraal et al., 2017; Sollai et al., 2018). The
sampling station (PHOX2) was located at 42◦53.8′N, 30◦40.7′E
in the western gyre of the Black Sea. The 2017 Black Sea SPM
(50–2000 m, Table 1) was collected during the 64PE418 cruise
(March 2017) also aboard of the R/V Pelagia. For the latter,
the sampling station (Station “4”) was located at 42◦46.9′N,
29◦21.1′E. Because the two SPM profiles (2013 and 2017) were
collected from different stations (∼60 nautical miles apart,
although both in the center of the western gyre of the Black
Sea), they represent two distinct sample sets, both temporally
and spatially.

Suspended particulate matter was collected on pre-ashed
filters mounted on McLane WTS-LV in situ pumps (McLane
Laboratories Inc., Falmouth, United Kingdom). In 2013 142-
mm-diameter 0.7-µm pore size glass fiber GF/F filters (Pall
Corporation) were used and in 2017 they were 0.3 µm GF75
filters (Advantec). Upon the recovery of the in situ pumps
on the deck of the ship, the filters were immediately stored
at −80◦C until extraction. Physical parameters of the water
column were recorded with a Sea-Bird SBE911C conductivity–
temperature–depth (CTD) system equipped with a 24 × 12 L
Niskin bottle rosette sampler. For the methods used for the
measurement of dissolved oxygen (O2) and inorganic nutrients
see Sollai et al. (2018).

SPM Extraction and LC-MS Analysis
Lyophilized filters were extracted using a modified Bligh-Dyer
procedure (similar to that described in Sturt et al., 2004)
in batches of three alongside an extraction blank, consisting
of pre-ashed glass fiber filter. Briefly, the cut-up filters were
twice extracted ultrasonically for 10 min in a mixture of
methanol, dichloromethane, and phosphate buffer (2:1:0.8, v:v)
and the combined supernatants were phase-separated by adding
additional dichloromethane and buffer to a final solvent ratio
of 1:1:0.9 (v:v). The organic phase containing the IPLs was
collected and the aqueous phase re-extracted three times with
dichloromethane. All steps of the extraction were then repeated
on the residue but with a mixture of methanol, dichloromethane,
and aqueous trichloroacetic acid solution (TCA) pH 3 (2:1:0.8,
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TABLE 1 | Depth of SPM sampling and hydrological properties in the water column in the center of the western gyre of the Black Sea at sampling station PHOX2 in
March 2013 and station 64PE418-4 in June 2017.

Year Redox zone Depth (mbsl) O2 (µ mol kg−1) HS− (µ M) NO3
− (µ mol L−1) Salinity Density

2013 Oxic 50 121 <DL 1.3 19.4 14.9

70 2.2 <DL 2.5 20.1 15.7

Suboxic 80 <DL <DL 2.5 20.4 15.9

85 <DL <DL 0.3 20.5 16.0

90 <DL <DL 0.04 20.6 16.0

95 <DL <DL 0.04 20.8 16.1

100 <DL <DL 0.03 20.9 16.1

105 <DL <DL 0.03 20.9 16.2

110 <DL 4.6 0.03 20.9 16.2

Euxinic 130 <DL 15 <DL 21.1 16.4

170 <DL 32 <DL 21.4 16.6

250 <DL 85 <DL 21.7 16.8

500 <DL 206 <DL 22.1 17.0

1000 <DL 354 <DL 22.3 17.2

2000 <DL 397 <DL 22.3 17.2

2017 Oxic 50 170 <DL 2.8 19.3 15.0

55 115 <DL 3.6 19.5 15.1

60 43 <DL 4.7 19.7 15.3

70 5.9 <DL 3.0 20.2 15.6

Suboxic 90 <DL <DL 0.06 20.7 16.0

Euxinic 130 <DL <DL <DL 21.2 16.4

500 <DL 7.2 <DL 22.1 17.0

1000 <DL 114 <DL 22.3 17.2

1500 <DL 165 <DL 22.3 17.2

2000 <DL 208 <DL 22.3 17.2

mbsl, meter below sea level. HS− measurements taken in 2017 have been deemed unreliable as they are lower than those in 2013, possibly due to Niskin bottle leakage.
Hence the redox zones for the 2017 depths were determined based on the similarity in the oxygen, nitrate, salinity, and density values between 2013 and 2017. DL,
detection limit. For list of detection limits see Sollai et al. (2018).

v:v). Finally, the organic extracts were combined and dried under
a stream of N2 gas. Before analysis the extract was redissolved
in a mixture of MeOH:DCM (9:1, v:v) which contained
two internal standards (IS), a platelet activating factor (PAF)
standard (1-O-hexadecyl-2-acetyl-snglycero-3-phosphocholine)
and a deuterated betaine lipid {1,2-dipalmitoyl-sn-glycero-3-O-
4′-[N,N,N-trimethyl(d9)]-homoserine; Avanti Lipids}. Aliquots
were filtered through 0.45 µm regenerated cellulose syringe
filters (4 mm diameter; Grace Alltech). Extraction blanks were
performed alongside the SPM extractions, using the same
glassware, solvents and extraction methodology, but with no glass
fiber or SPM material.

Analysis of SPM extracts was carried out using UHPLC-
HRMS according to the reversed phase method of Wörmer et al.
(2013) with the following modifications. We used an Agilent
1290 Infinity I UHPLC, equipped with thermostatted auto-
injector and column oven, coupled to a Q Exactive Orbitrap MS
with Ion Max source with heated electrospray ionization (HESI)
probe (Thermo Fisher Scientific). Separation was achieved
on an Acquity BEH C18 column (Waters, 2.1 × 150 mm,
1.7 µm) maintained at 30◦C. The eluent composition was (A)
MeOH/H2O/formic acid/14.8 M NH3aq [85:15:0.12:0.04 (v:v)]

and (B) IPA/MeOH/formic acid/14.8 M NH3aq [50:50:0.12:0.04
(v:v)]. The elution program was: 95% A for 3 min, followed
by a linear gradient to 40% A at 12 min and then to 0% A
at 50 min, this was maintained until 80 min. The flow rate
was 0.2 mL min−1. Positive ion HESI settings were: capillary
temperature, 300◦C; sheath gas (N2) pressure, 40 arbitrary
units (AU); auxiliary gas (N2) pressure, 10 AU; spray voltage,
4.5 kV; probe heater temperature, 50◦C; S-lens 70 V. Lipids
were analyzed with a mass range of m/z 350–2000 (resolving
power 70,000 ppm at m/z 200), followed by data-dependent
tandem MS/MS (resolving power 17,500 ppm), in which the 10
most abundant masses in the mass spectrum were fragmented
successively (stepped normalized collision energy 15, 22.5,
30; isolation width, 1.0 m/z). The Q Exactive was calibrated
within a mass accuracy range of 1 ppm using the Thermo
Scientific Pierce LTQ Velos ESI Positive Ion Calibration Solution.
During analysis dynamic exclusion was used to temporarily
exclude masses (for 6 s) in order to allow selection of less
abundant ions for MS/MS.

It should be noted that IPL species have diverse degrees of
ionization efficiencies (Van Mooy and Fredricks, 2010) and hence
the peak areas, in response units, of different components do
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not necessarily reflect their actual relative abundance. However,
this method allows for comparison between samples when
analyzed together.

Data Processing
Each SPM extract was analyzed in duplicate by UHPLC-HRMS,
in sequence with extraction blanks (Bligh-Dyer extraction
without SPM material) and analytical blanks (solvent injections
on system between extract analyses). Extractions blanks were
included in the subsequent data processing scheme, while
analytical blanks were used for routine quality control checks
but were not included in further data processing. For the Black
Sea 2013 series, there were 30 analyses of SPM extracts (15
samples in duplicate) and 8 analyses of extraction blanks (4
extraction blanks in duplicate), totaling 38 analyses. In order
to provide relevant information about background compounds
and contamination, all extraction blanks were carried out using
approximately the same solvent volumes as for the samples
and extracts and were injected in the same injection volume.
For the Black Sea 2017 series, there were 22 analyses of SPM
extracts (11 samples in duplicate) and 8 analyses of extraction
blanks (4 blanks in duplicate), totaling 30 analyses. For each
UHPLC-HRMS analysis, the raw data files was converted to
an.mzXML file using MSconvert of the ProteoWizard package
(Chambers et al., 2012). The mzXML files were then processed
using MZmine software (Version 2.34) (Pluskal et al., 2010).
A signal threshold of 1 × 105 was applied for MS1 mass
detection within the mzXML files. The detected masses were
used to build extracted ion chromatograms (EIC) with a
minimum peak height of 1 × 106 (AU) and a 3 ppm relative
mass tolerance. Chromatographic deconvolution (separation of
detected masses into individual peaks) was carried out with the
“baseline cutoff” algorithm where the minimum peak height
was 1 × 105 AU and the maximum peak width was 5 min.
Following the deconvolution, isotope peak grouping was carried
out with a 3 ppm relative mass tolerance and a 0.2 min retention
time tolerance followed by alignment of EICs with a 20 ppm
mass tolerance and a 0.5 min retention time tolerance. Only
aligned EICs containing a minimum of two isotope peaks
and occurring in at least two samples were included. The
next stage of processing removed duplicate peaks (within a
window of 5 ppm mass and 0.4 min retention time). For each
individual component, an MS1 peak area was recorded for each
sample, which was then corrected for the amount of sea water
filtered (in L).

A preliminary statistical analysis of datasets was then
carried out using Ward method average-neighbor hierarchical
clustering (Ward, 1963) using JMP R© software (Version 14.2.0.,
SAS Institute Inc.). For the 2013 dataset, for example, the 38
analyses were clustered according to the similarity in their
component distributions (Figure 1). All duplicate analyses
clustered together, demonstrating the reproducibility of the
UHPLC-HRMS analytical method and the MZmine component
extraction. The SPM extracts also clustered in a relatively good
accordance to the different redox zones where they were collected
(Table 1) as indicated with red annotation in Figure 1. The
duplicate SPM extracts from 2000 mbsl depth clustered most

closely with the extraction blanks, indicative of the much lower
concentration of organic matter at this depth.

For both datasets a blank subtraction method was
subsequently carried out. For each component an average
of the extraction blank peak areas was calculated (2013, n = 8;
2017, n = 8). This was then deducted from the average of the
SPM extract peak areas (2013, n = 30; 2017, n = 20). While
this led to the complete removal of many contaminants, some
remained in the final dataset. When examining the most
abundant components in the various clusters, eight known
contaminants remained, mostly in the 2000 mbsl SPM extracts
(Supplementary Table 1). It is possible these contaminants
were introduced during sampling rather than extraction as they
occurred in both duplicate samples. These eight contaminants
were excluded from further analysis. In the 2013 dataset blank
subtraction led to the complete removal of 996 components and
in the 2017 dataset it was 562.

For the components remaining after blank extraction, an
average value was calculated for each pair of duplicate SPM
analyses. The resulting two datasets were then analyzed by
two-way average-neighbor hierarchical clustering (using JMP R©),
again following the Ward method, according first to component
distribution in samples and then two way clustered to component
abundance across samples. This clustering was visualized in a
two-dimensional dendrogram with peak area abundance shown
with a color scale.

RESULTS AND DISCUSSION

Untargeted Analysis of Black Sea SPM
Collected in 2013
The Black Sea is the world’s largest permanently stratified anoxic
basin. The SPM collected covered the full range of redox zones
throughout the water column (Table 1): the oxic zone, the
suboxic zone, which is defined as the zone where both oxygen and
sulfide are below detection levels, and the euxinic zone where the
water is both anoxic and sulfidic (Murray et al., 1999).

Lipid extracts of SPM (n = 15) produced a final dataset of
14,648 components. This entire final dataset then underwent
two-way average-neighbor hierarchical clustering, dendrogram
construction and a heat map plotting using JMP R© software
(Figure 2). The clustering of the SPM extracts (vertical axis,
denoted by the depth at which the SPM was collected) is based
on the distribution of all MS1 spectral components within the
SPM extracts. The clustering of the components (horizontal axis)
is based on the similarity of the abundance depth profiles for
each component. Each individual depth profile in Figure 2 has
a color scale (heat map, red, highest abundance of component
in depth profile; blue, lowest abundance of component in depth
profile). This visualization of both the similarity between SPM
extracts and the similarity between the component depth profiles
is a useful resource for a rapid examination of the dataset.
Firstly, it reveals component clusters that are associated with
specific niches, environmental variables, or organisms of interest.
Secondly, it is clusters that contain a known component can
be used to find other components with a similar distribution
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FIGURE 1 | A preliminary analysis, using average-neighbor hierarchical clustering (Ward method) of the 38 UHPLC-HRMS analyses (Black Sea water column SPM
from 2013) and associated extraction blanks. Clustered by similarity in distribution of lipidome components (n = 14,648), as extracted by MZmine software. Red
annotations show the water column redox zones, as given in Table 1.

through the water column. Hereafter we give some examples of
such examinations.

Component Clusters and Their Association With
Specific Redox Zones
The vertical clustering generally followed the three redox zones
(cf. Table 1) as marked (with red horizontal lines and red
labels). The division between the redox zones was also visible
in the distinct areas of component abundance maxima (red
color) on the heat map, indicating a general division in the
component signature of the SPM based on different chemical,

and by extension, biological strata. The dendrogram of the 14,648
components (along the horizontal axis, Figure 2) showed four
main clusters. We denoted these four large clusters as A–D (with
red vertical lines and red labels). The four component clusters
also correlated well with the different redox zones. Component
cluster A (4846 components) corresponded most closely with
the oxic zone (50 mbsl). Cluster B (4131 components) was
most associated with the upper half of the suboxic zone and
the lowest depth from the oxic zone (70–90 mbsl), while
cluster C (1822 components) corresponded with the deeper
part of the suboxic zone (95–110 mbsl). Component cluster D
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FIGURE 2 | Heat map of the peak areas of 14,648 component in Black Sea SPM from June 2013 as extracted by MZmine software. Color scheme represents
component’s depth profile, red, highest abundance; and blue, lowest abundance. SPM extracts clustered by similarity in component distribution on the vertical axis
and components clustered by similarity of depth profile through water column on the horizontal axis. Red annotations show the water column redox zones, as given
in Table 1.

(3849 components) was most associated with the euxinic zone
(130–2000 mbsl).

This division of the components into redox-defined niches of
the Black Sea is in line with the earlier findings from traditional
lipid analyses (Repeta and Simpson, 1991; Kuypers et al., 2003;
Wakeham et al., 2003, 2007; Coolen et al., 2007; Schubotz et al.,
2009; Becker et al., 2018b). The benefit of this non-targeted
visualization approach, however, is that it is quick, unbiased, uses
all mass spectral information and does not require the laborious
integration of all compounds, nor the plotting of their individual
depth profiles. Furthermore, the components, while dominated
by lipids due to the extraction and analytical methods applied,
are expected to contain many other biomolecules, expanding the
search for potential biomarkers associated with microorganisms
or processes of interest.

Abundant Components in Major Clusters
In order to examine the output of our component extraction
and visualization method, we examined the 10 most abundant
components in each of the four component clusters A–D
(Table 2) in order to identify them and to compare the results
with previous studies of the Black Sea lipidome (e.g., Neretin
et al., 2007; Wakeham et al., 2007; Schubotz et al., 2009; Sollai
et al., 2018). Identification followed traditional MS interpretation
methods, looking at the accurate mass of the component and
its MS/MS spectrum in comparison with published data. In the
component cluster A (associated with the oxic zone), seven of the
10 most abundant components were triacylglycerols (TAG; Hsu
and Turk, 1999). TAG lipids can form an important fraction of
the total fatty acid inventory, and are utilized as storage lipids in
algae and zooplankton (i.e., Guschina and Harwood, 2009; Becker

et al., 2018a). Also abundant components in cluster A were
two betaine lipids: diacylglycerylcarboxyhydroxymethylcholine
(DGCC) and diacylglyceryltrimethylhomoserine (DGTS; Li et al.,
2017). Betaine lipids have been found in a variety of eukaryotes
and photosynthetic bacteria (Dembitsky, 1996) and DGTS in
particular is found in green algae (Li et al., 2017), while
DGCCs have been shown to be a common membrane lipid in
Haptophyceae algae (Kato et al., 1996). Also present was the
photosynthetic pigment chlorophyll-a (chl-a) (Bale et al., 2011;
Table 2). The dominance of TAGs, betaines lipids and chl-a in
the component cluster associated with the oxic (photic) zone are
all in line with a dominance of phytoplankton. In fact, the western
Black Sea experiences extensive phytoplankton blooms, especially
during the summer period (Moncheva et al., 2001) when our
sampling occurred. In a previous study of IPLs throughout the
Black Sea water column, betaine lipids were found to be very
abundant in the oxic zone but TAGs and chlorophylls were
not reported owing to the applied chromatographic method
(Schubotz et al., 2009).

In cluster B (associated with the upper part of the suboxic
zone, 70–90 mbsl), the eight of the 10 most abundant components
were also TAG lipids. A DGTS betaine lipids was also in
the most abundant components of this cluster along with
a phosphatidylcholine (PC) lipid with a highly unsaturated
diacyl glycerol (DAG) core: PC-DAG 38:6. PCs containing
long chain highly unsaturated acyl moieties are associated with
phytoplankton (Brett and Müller−Navarra, 1997) and have
been observed previously in the oxic zone of the Black Sea
(Schubotz et al., 2009). These results indicate that the upper
part of the suboxic zone was still dominated by phytoplankton-
derived lipids.
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TABLE 2 | The most abundant components of cluster A–D in the Black Sea SPM extracts (2013 expedition).

Component cluster MS1 ion (m/z) RT (min) AEC 1 mmu Assignment Diagnostic element in MS/MS

A Oxic zone 822.7526 42.94 C51H100NO6
+ 1.9 TAG 14:0, 16:0, 18:1 523.4711, 549.4868, 577.5181

850.7841 45.65 C53H104NO6
+ 1.7 TAG 16:0, 16:0, 18:1 551.5026, 577.5182

848.7677 42.99 C53H102NO6
+ 2.5 TAG 14:0, 18:1, 18:1 549.4867, 603.5336

794.7231 40.00 C49H96NO6
+ 0.1 TAG 14:0, 16:0, 16:1 521.4554, 523.4708, 549.4866

876.7994 45.63 C55H106NO6
+ 2.0 TAG 16:0, 18:1, 18:1 577.5181, 603.5334

800.6020 18.10 C48H82NO8
+ 1.5 DGCC-DAG 38:6 104.172, 132.1018

922.7846 42.05 C59H104NO6
+ 1.2 TAG 16:0, 18:1, 22:6 577.5177, 623.5023, 649.5173

893.5402 21.63 C55H73MgN4O5
+ 2.4 Chlorophyll-a 555.2230, 583.2182, 615.2420

894.7527 39.20 C57H100NO6
+ 1.8 TAG 16:0, 16:1, 22:6 549.4865, 621.4888, 623.5028

732.5770 17.09 C44H78NO7
+ 1.0 DGTS-DAG 34:4 100.1121, 144.1018

B Upper suboxic zone 848.7679 43.41 C53H102NO6
+ 2.3 TAG 16:0, 16:0, 18:2 551.5021, 575.5021

874.7839 43.47 C55H104NO6
+ 1.9 TAG 16:0, 18:1, 18:2 575.5021, 577.51788, 601.5178

872.7682 41.34 C55H102NO6
+ 1.9 TAG 16:0, 18:2, 18:2 575.5021, 599.5021

820.7369 40.65 C51H98NO6
+ 2.0 TAG 14:0, 16:0, 18:2 523.4711, 547.4712, 575.522

820.7369 40.17 C51H98NO6
+ 1.9 TAG 14:0, 16:1, 18:1 521.4556, 549.4868, 575.5023

868.7396 39.07 C55H98NO6
+ 0.7 TAG 14:0, 16:0, 22:6 523.4713, 595.4721, 623.5020

896.7698 41.98 C57H102NO6
+ 0.4 TAG 16:0, 16:0, 22:6 551.5026, 623.5023

806.5675 18.49 C46H81NO8P+ 1.9 PC-DAG (38:6) 184.0731

866.7223 35.45 C55H96NO6
+ 0.9 TAG 16:0, 18:3, 18:4 573.4866, 593.4556

682.5621 17.17 C40H76O7N+ 0.5 DGTS-DAG 30:1 100.1112, 144.1016

C Lower suboxic zone 688.4911 16.97 C37H71NO8P+ 0.1 PE-DAG (16:1,16:1) Loss of 141.0186

818.7211 37.25 C51H96NO6
+ 2.2 TAG 16:1, 16:1, 16:1 547.4714

1302.3194 62.83 C86H173O6
+ 3.3 GDGT-0 1302.3207

1292.2445 66.46 C86H163O6
+ 0.1 Crenarchaeol 1292.2433

470.2533 5.38 C27H36NO6
+ 0.4 Unassigned component I 113.0598, 247.1324

528.3747 28.79 C40H48
+ 0.4 Isorenieratene 133.1010, 436.3115

547.4717 17.00 C35H63O4
+ 0.4 AEG O-16:2, 16:2 237.2202

549.4870 18.73 C35H65O4
+ 0.7 AEG O-16:2, 16:1 237.2197

702.5065 16.99 C38H73O8NP+ 0.3 MMPE-DAG 16:1, 16:1 Loss of 155.0347

738.5281 16.48 C38H77NO10P+ 0.2 PG-DAG 16:1, 16:0 Loss of 189.0395

D Euxinic zone 352.3207 6.82 C22H42NO2
+ 0.3 Fatty acid 22:3 317.2832, 335.2938

690.5069 18.70 C37H73NO8P+ 0.0 PE-DAG 16:1, 16:0 Loss of 141.0206

693.5430 18.75 C38H78O8P+ 0.1 PG-DEG o-16:0, O-16:1 Loss of 172.0090

676.5273 19.88 C37H75NO7P+ 0.3 PE-AEG 32:1 Loss of 141.0196

660.5344 19.41 C37H75NO6P+ 1.7 PE-DEG O-16:1, O-16:1 Loss of 43.0423

928.8001 23.90 C55H110NO7S+ 0.4 Acetylsulfono-1-deoxyceramide 310.3463, 868.777

900.7672 21.73 C53H106NO7S+ 1.2 Acetylsulfono-1-deoxyceramide 282.3150, 840.7456

554.5495 23.71 C35H72NO3
+ 1.2 DEG O-16:0, O-16:2 279.2668, 315.2887

650.5476 20.44 C36H77NO6P+ 0.7 MMPE-DEG 30:0 58.0659

662.5489 21.51 C37H77NO6P+ 0.6 PE-DEG O-16:0,O-16:1 Loss of 43.0417

Known LCMS contaminants were excluded (see text for details). AEC, assigned elemental composition. 1 = (measured mass − calculated mass) × 1000. mmu, milli
mass unit. For abbreviations of component assignment see text. Numbers in component assignment indicate total alkyl carbons (not including polar head group or glycerol
moiety) and number of double bond equivalents (cf. Liebisch et al., 2013).

The 10 most abundant components in cluster C (associated
with the lower half of the suboxic zone; Table 2) included
three DAG-phospholipids: a phosphoethanolamine (PE) and a
monomethyl PE (MMPE) both with two 16:1 fatty acids, and a
phosphoglycerol (PG)-DAG with 16:0,16:1 fatty acids. PE-IPLs
are frequently the main lipid component of bacterial membranes.
Schubotz et al. (2009) also found diacyl phospholipids to be
characteristic of the suboxic zone of the Black Sea. The 2nd

most abundant component was a TAG (with 16:1, 16:1, 16:1
fatty acids). As well as being storage lipids in living algae and
zooplankton, TAGs are present in sinking particles (Wakeham,
1985) and hence their abundance here, well below the oxic
zone, may be due to sinking material, including algal cells
and zooplankton fecal pellets (Hay et al., 1990; Bologa et al.,
1999; Moncheva et al., 2001; Wakeham et al., 2007). Two other
abundant components in cluster C were acyl/ether glycerol lipids
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(termed AEGs; Sturt et al., 2004) without a polar head group:
both with 16:2 ether bound chains and with a 16:1 fatty acid and
a 16:2 fatty acid, respectively. AEGs have been reported mainly
in anaerobic bacteria, although with some exceptions in aerobic
bacteria, and are thought to improve cell resistance, relative to
DAGs, to extreme external conditions (Grossi et al., 2015).

Also among the top six components in cluster C were two
core glycerol dialkyl glycerol tetraethers (GDGTs): GDGT-0 and
crenarchaeol. These archaeal membrane lipids are sn-2,3-dialkyl
diglycerol tetraethers with two glycerol moieties connected by
two C40 isoprenoid chains which contain 0–8 cyclopentane
moieties (i.e., GDGT-n, where n is the number of cyclopentane
moieties) (Schouten et al., 2013). To date, crenarchaeol (which
has four cyclopentane moieties and one cyclohexane moiety) has
only been associated with the archaeal phylum Thaumarchaeota
and hence is considered to represent a specific biomarker
for members of this phylum (e.g., Sinninghe Damsté et al.,
2002b; Schouten et al., 2013; Bale et al., 2019a). GDGT-0 is a
more cosmopolitan GDGT, produced by representatives of the
Thaumarchaeota, Crenarchaeota, and Euryarchaeota (Villanueva
et al., 2014). Previous studies of archaeal lipids in the Black
Sea water column also reported both GDGT-0 and crenarchaeol
throughout the water column (Wakeham et al., 2003; Coolen
et al., 2007; Sollai et al., 2018). Sollai et al. (2018) found
a maximum in archaeal 16S rRNA gene copies at 105 m,
in the lower part of the suboxic zone, mainly attributed to
Nitrosopumilus species, many of which are known to produce
GDGT-0 and crenarchaeol as their dominant GDGTs (Sinninghe
Damsté et al., 2002a; Schouten et al., 2008; Pitcher et al.,
2011; Qin et al., 2015; Elling et al., 2017). Another abundant
component at this depth was isorenieratene, a specific carotenoid
of the photosynthetic sulfur bacteria Chlorobiaceae (Repeta, 1993;
Koopmans et al., 1996; Sinninghe Damsté et al., 2001; Brocks
et al., 2005). That isorenieratene is found in component cluster
C, associated with the lower suboxic zone, is to be expected, as
Chlorobiaceae perform photosynthesis using sulfide, and hence
require photic zone anoxia, as has been shown to occur in the
suboxic zone of the Black Sea (Repeta et al., 1989; Repeta and
Simpson, 1991; Overmann et al., 1992; Becker et al., 2018b).

Finally, one of the most abundant components in cluster
C was an unassigned component (I), with m/z 470.2520
(Table 2; cf. Supplementary Figure 1A for MS/MS spectrum).
The presence of this unassigned component in the 10 most
abundant components of cluster C highlights that our untargeted
method has the potential to identify novel compounds associated
with specific redox zones and by extension, specific groups
of organisms or their activity. Using traditional MS data
interpretation approaches, this component would have very likely
been overlooked as it occurred at only a few depths. Such
components would be interesting targets for future rigorous
identification approaches or for matching with the continuously
increasing number of online spectral libraries.

In component cluster D, associated with the euxinic zone,
the most abundant feature was a 22:3 fatty acid without a
headgroup or glycerol moiety, followed by a PE-DAG with
16:1, 16:0 fatty acids, and a PE-AEG 32:1. A previous study
described PE-AEG as an important component of the lipidome

at the oxic zone/oxygen minimum zone (OMZ) transition in
the eastern tropical North Pacific (Schubotz et al., 2018). Also
in the 10 most abundant components were multiple diether
glycerol (DEG)-based lipids: PE-DEG with O-16:1 and O-
16:0 (denoting ether-bound alkyl chain), MMPE-DEG 30:0, a
PG-DEG O-16:0, O-16:1 and a DEG O-16:0, O-16:2 without
a polar headgroup. Diether lipids have been detected in a
limited number of bacteria (e.g., Grossi et al., 2015) but their
(core lipid) abundance in the Black Sea water column has
been shown to correlate with sulfate reducing bacteria (SRB;
Neretin et al., 2007). Two components, tentatively assigned as
sulfate-1-deoxyceramides (Ding et al., 2021), were also among
most abundant components in cluster D. Ding et al. (2021)
hypothesize that, as bacterial sphingolipids are mainly produced
by Bacteroidetes and selected Proteobacteria (Heaver et al., 2018)
and because certain Bacteroidetes from the Black Sea are known
to produce capnines (Bale et al., 2020; Yadav et al., 2020), sulfono-
analogs of sphinganine (Godchaux and Leadbetter, 1980), that
these novel sulfate-1-deoxyceramides, may also be produced by
anaerobic heterotrophs related to Bacteroidetes.

In summary, our non-targeted data analysis resulted in
clusters of components associated with specific depths. The
zonation of these components (the major ones being lipids)
due to microbial niches is in agreement with previous
studies (Wakeham et al., 2007; Schubotz et al., 2009),
however, our approach is rapid and unbiased and includes
all components within the analytical window whether they have
been identified or not.

Rapid Clustering of Lipids Based on Depth Profile
Similarity
The LCMS data visualization method we have presented here
is useful to examine clusters that contain a known component,
in order to find other components with the same distribution
through the water column. Here, we demonstrate this by
examining other components in a subcluster containing the
sulfate-1-deoxyceramide with m/z 928.8001 (cluster D, associated
with the euxinic zone, Table 2). As discussed in Ding et al. (2021),
this novel 1-deoxysphingolipids may be produced by an as-yet
uncultured anaerobic heterotroph related to Bacteroidetes. We
examined components with a very similar depth profile, that may
be associated with the same microbial producer or with producers
that live in the same environmental niche. At a higher level of
clustering, the sulfate-1-deoxyceramide with m/z 928.8001 was
in a cluster of 24 components (Dx; as indicated in Figure 2). We
present here the 10 most abundant components in this subcluster
(Dx) (Table 3). All 10 components followed a similar abundance
depth profile with a distinct maximum at 130 m. Other than the
sulfate-1-deoxyceramide with m/z 928.8001 (Ding et al., 2021),
no other components in Dx were in the list of top 10 most
abundant components in cluster D.

The second most abundant component was assigned
as aminotriol bacteriohopanepolyol (BHP) based on
its accurate mass and fragmentation spectra (Hopmans
et al., 2021). This BHP is relatively ubiquitous in marine
systems (Talbot et al., 2014; Rush et al., 2016) but has been
specifically associated with aerobic methanotrophic bacteria
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TABLE 3 | The most abundant components of cluster Dx in the Black Sea SPM extracts (2013 expedition).

Mass 868.7785 752.5435 709.5360 466.4087 704.7257 746.7727 473.4157 718.7414 546.4882 928.8001

RT (min) 23.88 17.08 18.15 22.79 37.64 42.00 23.85 39.12 17.79 23.90

Assignment Sulfono-1-
deoxyCER
d21:0/32:1

PG-DAG 16:0,
17:1

PG-AEG 15:0,
17:0

Double
charged adduct

of 914.7829

1-deoxyCER
d20:0/27:1

1-deoxyCER
d21:0/29:1

Double
charged adduct

of 928.8001

1-deoxyCER
d21:0/27:1

BHP aminotriol Acetylsulfono-
1-deoxyCER

AEC C53H106NO5S+ C39H79NO10P+ C38H78O9P+ C54H112N2O7S2+ C47H94NO2
+ C50H100NO2

+ C55H114N2O7S2+ C48H96NO2
+ C35H64NO3

+ C55H110NO7S+

1 mmu 0.2 0.4 1.2 0.2 2.2 2.2 1.1 2.2 0.1 0.4

Adduct type [M+H]+ [M+NH4]+ [M+H]+ [M+H+NH4]2+ [M+H]+ [M+H]+ [M+H+NH4]2+ [M+H]+ [M+H]+ [M+H]+

m Distribution in water column (peak area/L sea water)

50 0.00 6.16 × 106 1.23 × 107 0.00 0.00 0.00 1.09 × 104 0.00 2.57 × 107 0.00

70 4.82 × 104 1.07 × 107 9.49 × 106 8.81 × 104 1.26 × 104 0.00 2.10 × 106 0.00 4.96 × 107 3.42 × 105

80 0.00 3.71 × 107 7.07 × 106 2.15 × 105 0.00 0.00 2.62 × 105 0.00 3.55 × 107 6.79 × 105

85 2.48 × 105 1.16 × 107 2.75 × 107 1.38 × 106 2.46 × 105 9.27 × 105 1.05 × 106 1.16 × 106 3.59 × 107 1.60 × 107

90 4.01 × 106 2.30 × 107 5.85 × 107 2.39 × 107 1.18 × 107 9.42 × 106 3.27 × 107 2.96 × 107 1.25 × 108 1.54 × 108

95 4.68 × 107 7.05 × 107 1.35 × 108 1.06 × 108 6.66 × 107 8.06 × 107 1.85 × 108 2.09 × 108 4.15 × 108 4.85 × 108

100 9.11 × 107 1.15 × 108 1.98 × 108 2.17 × 108 2.22 × 108 2.43 × 108 3.64 × 108 4.82 × 108 5.32 × 108 1.08 × 109

105 1.14 × 108 1.64 × 108 2.27 × 108 2.96 × 108 3.52 × 108 3.80 × 108 4.55 × 108 7.31 × 108 8.01 × 108 1.47 × 109

110 7.91 × 107 1.04 × 108 1.07 × 108 2.08 × 108 2.03 × 108 2.15 × 108 3.20 × 108 4.00 × 108 5.53 × 108 9.46 × 108

130 2.58 × 108 3.77 × 108 4.82 × 108 7.29 × 108 9.20 × 108 9.37 × 108 1.04 × 109 1.64 × 109 1.86 × 109 3.44 × 109

170 1.80 × 108 2.42 × 108 3.68 × 108 5.30 × 108 6.33 × 108 6.65 × 108 7.28 × 108 1.14 × 109 1.26 × 109 2.40 × 109

250 1.03 × 108 1.15 × 108 2.39 × 108 3.14 × 108 3.12 × 108 3.25 × 108 4.14 × 108 5.16 × 108 6.65 × 108 1.30 × 109

500 3.08 × 107 4.26 × 107 9.15 × 107 9.87 × 107 9.42 × 107 1.13 × 108 1.38 × 108 1.67 × 108 2.27 × 108 4.28 × 108

1000 7.48 × 106 3.91 × 107 8.09 × 107 3.27 × 107 4.21 × 107 6.36 × 107 3.58 × 107 7.38 × 107 1.39 × 108 1.24 × 108

2000 4.60 × 105 5.43 × 107 2.57 × 107 6.43 × 106 6.90 × 106 9.22 × 106 7.33 × 106 1.16 × 107 2.15 × 108 2.80 × 107

1-deoxyCER, 1-deoxyceramide; AEC, assigned elemental composition. 1 = (measured mass − calculated mass) × 1000. mmu, milli mass unit. For abbreviations of component assignment see text. Numbers in
component assignment indicate total alkyl carbons (not including polar head group or glycerol moiety) and number of double bond equivalents (cf. Liebisch et al., 2013). Color scheme represents component’s depth
profile, red, highest abundance and no color, lowest abundance.
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FIGURE 3 | Heat map of the peak area of 12,372 components in Black Sea SPM from March 2017 as extracted by MZmine software. Color scheme represents
component’s depth profile, red, highest abundance; and blue, lowest abundance. SPM extracts clustered by similarity in component distribution on the vertical axis
and components clustered by similarity of depth profile through water column on the horizontal axis. Red annotations show the water column redox zones, as given
in Table 1.

(Cvejic et al., 2000) and with SRB (Blumenberg et al., 2012).
At its maxima at 130 mbsl, at the top of the euxinic zone, it is
most probably associated with SRB. Three components were 1-
deoxyceramides and two were sulfono-1-deoxyceramides (as per
their assignment in Ding et al., 2021). Also present were two PGs,
one with a DAG 33:1 core and one with a 32:0 core. Two of the
components listed, at m/z 473.4157 and 466.4087 were artifacts
of analysis, doubly charged acetylsulfono-1-deoxyceramides
(with [M+H]+ at m/z 928.8001 and 914.7830, respectively).
This was clear due to the 0.5 Da spacing in their isotope pattern
(Supplementary Figure 2).

Here, we show that the selection of a subcluster of components
around a component of interest is straightforward and quick and
allows for rapid associations between different components to
be made, based on their specific depth profiles, rather than their
chemical composition.

Comparison Between SPM Collected in
2013 and 2017
In order to examine the robustness of our method for
distinguishing the lipidome associated with different depths of
the Black Sea water column, we followed the same method of
component extraction and visualization on SPM extracts from
the Black Sea water column, collected in March 2017 at a
station located ∼110 km from that of 2013 cruise. SPM was
collected at an earlier time in the year (March versus June), with
a different distribution of sampling depths (more sampling in
oxic zone, less in suboxic zone, Table 1), and using a smaller
(nominal) pore size of filter (0.3 versus 0.7 µm). We followed the
same data extraction and data processing procedure as described
above for the 2013 sample set. The heat map generated from
these data again shows division in the lipidome (Figure 3),
supported by the vertical clustering, generally in line with the
three redox zones. The dendrogram of the 12,372 components

was again made up of four distinct clusters E–H (Figure 3),
which corresponded with the redox zones. Component cluster
E (6006 components) corresponded with the oxic zone. Cluster
F (1292 components) with the suboxic zone, and again included
the 70 mbsl depth SPM, from the base of the oxic zone. Cluster G
(1941 components) corresponded with the uppermost sampling
depth from the euxinic zone (130 mbsl), while cluster G (3133)
with the remainder of the depths in the euxinic zone.

We again examined the 10 most abundant components
(Table 4) in component clusters E–H (Figure 3). In cluster
E, associated with the oxic zone, six of the 10 most abundant
components were TAG lipids, similar to the 2013 dataset
(Table 2). Two more abundant components were the chl-a
alteration product pheophytin-a and the epimer of pheophytin-
a (C-132 diastereomer). Demetalation of chl-a to produce
pheophytin-a occurs readily when chl-a is free from its stable
protein complex. While pheophytin can be formed naturally,
e.g., during cell senescence or grazing (Louda et al., 1998, 2002;
Bale et al., 2011), it is likely that in this study it represents
an artifact of sampling and extraction (transformation of chl-
a) as the sample collection and extraction were not optimized
for pigment analysis. The presence of pheophytin-a, whether
a natural occurring compound or a proxy for chlorophyll is
not surprising as the oxic photic zone of the western Black
Sea experiences extensive phytoplankton blooms (Moncheva
et al., 2001). Pheophytin-a was not among the most abundant
10 components in cluster A (although chl-a was the 8th most
abundant component). The same betaine lipid, DGTS 34:4 as was
seen in cluster A from 2013 was among the 10 most abundant
components in cluster E from 2017. Finally, an unassigned
component (II), with m/z 547.2703 (Table 2; cf. Supplementary
Figure 1B for MS/MS spectrum) was among the most abundant
components in this cluster.
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TABLE 4 | The most abundant components of cluster E–H in the Black Sea SPM extracts (2017 expedition).

Feature cluster MS1 ion (m/z) RT (min) AEC 1 mmu Assignment Diagnostic element in MS/MS

E Oxic zone 871.5724 30.09 C55H75N4O5
+ 0.8 Pheophytin-a 533.2540, 593.2752

872.7695 41.43 C55H102NO6
+ 0.7 TAG 16:0, 18:1, 18:3 573.4781, 575.5184, 599.5032

850.7850 45.54 C53H104NO6
+ 0.8 TAG 16:0, 16:0, 18:1 551.5029, 577.5185

822.7539 42.86 C51H100NO6
+ 1.9 TAG 14:0, 16:0, 18:1 523.4715, 549.4873, 577.5181

871.5766 31.31 C55H75N4O5
+ 0.5 Pheophytin-a epimer 533.2540, 593.2752

866.7228 36.04 C55H96NO6
+ 0.4 TAG 16:0, 18:3, 18:4 571.4714, 573.4869, 593.4556

870.7528 39.31 C55H100NO6
+ 1.7 TAG 16:0, 18:2, 18:3 573.4781, 575.5026, 597.4870

732.5772 17.19 C44H78NO7
+ 0.1 DGTS-DAG 34:4 100.1126, 144.1018

547.2703 13.05 Unassigned II

846.7538 41.51 C53H100NO6
+ 0.7 TAG 16:0, 16:0, 18:4 551.5032, 573.4871

F Oxic/suboxic zone interface 688.4908 17.02 C37H71NO8P+ 0.4 PE-DAG 16:1,16:1 Loss of 141.0200

690.5069 18.77 C37H73NO8P+ 0.0 PE-DAG 16:1,16:0 Loss of 141.0197

792.7071 37.12 C49H94NO6
+ 0.3 TAG 14:0, 16:1 16:1 521.4560, 547.4716

746.5770 19.45 C41H80NO10
+ 0.7 MG-DAG 16:0 16:1 Loss of 197.0786

549.4879 21.52 C35H65O4
+ 0.2 AEG 32:3 219.2103, 237.2207, 239.23677

818.7224 37.77 C51H96NO6
+ 0.8 TAG 16:1, 16:1 16:1 547.4718

582.5097 19.52 C35H68NO5
+ 0.5 DAG 16:1 16:1 311.2578, 547.4722

744.5592 17.51 C41H78NO10
+ 2.9 MG-DAG 16:1 16:1 Loss of 197.0895

818.7205 37.19 C51H96NO6
+ 2.7 TAG 16:1, 16:1, 16:1 547.4719

549.4868 19.18 C35H65O4
+ 0.9 AEG 32:3 219.2104, 237.2206, 239.2355

G Upper euxinic (130 mbsl) 693.5430 18.54 C38H78O8P+ 0.1 PG-DEG O-16:0, O-16:1 Loss of 172.0110

662.4760 16.72 C35H69NO8P+ 0.4 PE-DAG 14:0, 16:1 Loss of 141.0189

676.5273 19.90 C37H75NO7P+ 0.3 PE-AEG 32:1 Loss of 141.0164

549.4872 18.72 C35H65O4
+ 0.6 AEG 32:3 237.2214, 239.2381

523.4715 15.65 C33H63O4
+ 0.2 AEG 30:2 225.2206

712.6088 20.89 C42H82NO7
+ 0.2 DGTA-DAG 32:0 236.14897

650.5120 18.87 C35H73NO7P+ 0.1 PE-AEG 30:0 Loss of 141.0190

563.5034 17.45 C36H67O4
+ 0.0 AEG 33:3 233.2260, 239.2367, 251.2368

577.5192 18.19 C37H69O4
+ 0.2 AEG 35:3 239.2370, 265.2525

512.1589 13.04 Unassigned III

H Euxinic zone 746.5558 16.19 C44H76NO8
+ 0.7 DGCC-DAG 16:0, 18:5 104.1073, 132.1019

650.5482 20.49 C36H77NO6P+ 0.1 MMPE-DEG 30:0 58.0660

774.6025 21.45 C43H85NO8P+ 0.2 PC-DAG 35:1 184.0733

636.5323 20.42 C35H75NO6P+ 0.4 PE-DEG O15:0, O-15:0 Loss of 43.0414

662.5482 21.42 C37H77NO6P+ 0.1 PE-DEG O-16:0, O-16:1 Loss of 43.0415

667.5283 17.69 C36H76O8P+ 1.1 PG-DEG O-15:0, O-15:0 Loss of 172.0114

730.2444 16.03 Unassigned IV 237.0791

513.5240 25.06 C33H69O3
+ 0.1 DEG O-15:0, O-15:0 285.2785, 303.2890

660.5344 19.42 C37H75NO6P+ 1.7 PE-DEG O-16:1, O-16:1 Loss of 43.0418

688.5651 22.57 C39H79NO6P+ 1.1 PE-DEG O-17:1, O-17:1 Loss of 43.0396

Known LCMS contaminants were excluded (see text for details). AEC, assigned elemental composition. 1 = (measured mass − calculated mass) × 1000. mmu, milli
mass unit. For abbreviations of component assignment see text. Numbers in component assignment indicate total alkyl carbons (not including polar head group or glycerol
moiety) and number of double bond equivalents (cf. Liebisch et al., 2013).

Cluster F, associated with the suboxic zone (Table 4),
included three TAG lipids, a similar result to that of 2013,
where TAG lipids remained abundant below the oxic zone
(Table 2). Also abundant were several DAG lipids: PE-DAG
16:0, 16:1 and 16:1, 16:1. In the 2013 dataset, similar PE-
DAGs were associated with the lower suboxic zone (Table 2).
Two monogalactosyl [MG]-DAGs (commonly referred to as
a MGDG) with 16:0 and 16:1 fatty acids were dominant
components in cluster F. MGDGs are predominately associated

with eukaryotic chloroplasts and cyanobacteria, although they
can also be produced by non-photosynthetic bacteria (Hölzl
and Dörmann, 2007; Popendorf et al., 2011), including sulfate-
reducing bacteria when phosphate concentrations are below
20 µM (Bosak et al., 2016). This component was not listed
among the top 10 components in any cluster from 2013. A DAG
comprising of two 16:1 fatty acids and no polar head group was
also among the abundant components of this cluster as were two
isomers of AEG 32:3 without a polar head group (Table 4). AEG
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32:3 was similarly abundant in the 2013 cluster associated with
the lower suboxic zone (Table 2).

In cluster G, which was associated most closely with the SPM
from 130 mbsl (the upper euxinic zone), among of the most
abundant component was a DGTS betaine lipid with a DAG
32:0 core, whereas in the 2013 a similar DGTS-DAG (30:1) was
associated with the upper suboxic zone. The only other abundant
DAG-based lipid in the top 10 components from this cluster
was PE-DAG 14:0, 16:1. Similar PE-DAGs were present there
in the 2013 clusters associated with the lower suboxic zone and
the euxinic zone. PE-AEG 30:0 and 32:1 were also dominant
in this cluster, of which the same or similar components had
been associated with the euxinic zone from 2013 (which included
130 mbsl; Table 2). Also abundant were an AEG 32:3 (a later
eluting isomer to the AEG 32:3 seen in cluster F), AEG 30:2, 33:3,
and 35:3. Similar components were associated with the lower
suboxic zone of the 2013 dataset. Only one DEG-based lipid was
among the 10 most abundant in cluster G, PG-DEG with a 16:1
and 16:0 ether bound chain as had been seen in the euxinic zone-
associated cluster from 2013. Finally, an unassigned component
(III), m/z 512.1589 (Table 4; cf. Supplementary Figure 1C for
MS/MS spectrum).

In cluster H, associated with the remainder of the euxinic zone,
among the 10 most abundant component were two DAG-based
lipids, a betaine lipid, DGCC-DAG with a 16:0 and 18:5 fatty acid
and PC-DAG 35:1. Neither DGCCs nor PC-DAGs were seen in
the euxinic zone cluster from 2013 and both are associated with
photosynthetic organisms. Their presence at depth in 2017 may
be due to sinking algal material (typically in fecal pellets or marine
snow) present in the euxinic zone as particles slowly descend to
the sea floor. The majority of the 10 most abundant components
in this cluster were PE and MMPE DEG lipids with O-15:0, O-
16:0, and O-16:1 ether bound chains, as was also observed in the
euxinic zone-associated cluster from 2013. MMPE-DEG 30:0 has
previously be postulated to be associated with sulfate-reducing
bacteria in the anoxic zone of the Black Sea (Schubotz et al.,
2009). Another abundant component of cluster H was a PG-
DEG O-15:0, O-15:0. A similar component, PG-DEG O-16:0,
O-16:1, occurred also in the 2013 euxinic zone cluster. Also,
DEG O-15:0, O-15:0 without a polar head group was abundant.
Another unassigned component (IV) was also found in this
cluster, withm/z 730.2444 (Table 2; cf. Supplementary Figure 1D
for MS/MS spectrum).

Overall, the UHPLC-HRMS component extraction and
visualization method presented here provided, for both the 2013
and 2017 SPM datasets, a similar picture of a stratified lipidome,
in accordance with the three main redox zones. There were
many similarities between the two sample sets, for example
the clusters associated with the oxic zone were in both years
dominated by TAG lipids. The differences that were observed
are probably attributable to the different distribution of sampling
depths between the years (more sampling in of the oxic zone
in 2017, more of the suboxic zone in 2013; Table 1), which
led to a different clustering of depths. The similarity in the
dominant components highlights the similarity in the Black Sea
lipidome over time and hence the stability of the microbial
niches in this system.

CONCLUSION

We used an untargeted UHPLC-HRMS data analysis approach
to visualize components in the SPM from the Black Sea water
column collected in June 2013. This revealed distinct clusters
of known and unknown components, dominated by lipids,
associated with specific depths. The approach allows for a
rapid and unbiased view of the lipidome of an environment
and for the identification of unknown lipids which potentially
contain important ecological information. E.g., on (uncultivated)
microbes. A second dataset from March 2017 provided similar
results in the suboxic and euxinic zones. This rapid untargeted
data visualization approach unlocks a hidden potential in
UHPLC-HRMS data and provides a framework for further
lipidomic method development which includes the utilization of
MS/MS spectra (Ding et al., 2021).
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Supplementary Figure 1 | UHPLC-HRMS/MS spectra of unassigned
components (A) I, (B) II, (C) III, and (D) IV. Mmu, milli mass unit. 1

mmu = (measured mass − calculated mass) × 1000.

Supplementary Figure 2 | Partial MS1 spectra of double charged components
listed in Table 3.
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