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ABSTRACT

Genomic interactions provide important context to
our understanding of the state of the genome. One
question is whether specific transcription factor in-
teractions give rise to genome organization. We in-
troduce spatzie, an R package and a website that
implements statistical tests for significant transcrip-
tion factor motif cooperativity between enhancer–
promoter interactions. We conducted controlled ex-
periments under realistic simulated data from ChIP-
seq to confirm spatzie is capable of discovering
co-enriched motif interactions even in noisy condi-
tions. We then use spatzie to investigate cell type
specific transcription factor cooperativity within re-
cent human ChIA-PET enhancer–promoter interac-
tion data. The method is available online at https:
//spatzie.mit.edu.

INTRODUCTION

Genome organization plays an important role in the func-
tion of the genome in development (1–3) and disease (4).
Specific transcription factor cooperation is a potential ex-
planation for the cell type specificity of genomic interac-
tions, especially those that tether enhancers to promoters.
Recent methods seek to detect such transcription factor
cooperativity by generating models to predict enhancer–
promoter interactions and measuring the importance of
model features (5,6). However, these methods can be diffi-
cult to interpret due to the complexity of the computational
models, the use of shrinkage techniques that could eliminate
correlated features. Furthermore, an implementation of the

motif co-enrichment analysis is either not available (6) or
not straightforward to use, as motif sites have to be provided
by the user in a proprietary format (5).

Here, we introduce spatzie, an R/Bioconductor pack-
age named after the German diminutive for sparrow and
inspired by the long-range geographical patterns of their
songs (7), a reference to the long-range genomic interac-
tions of transcription factor cooperativity. Within spatzie
we implement a collection of statistical methods to iden-
tify transcription factor co-enrichment in experimental
data obtained by protein-centric chromatin conformation
methods such as ChIA-PET (8) and HiChIP (9). We
demonstrate the utility of spatzie by discovering the co-
enrichment of transcription factor binding motifs simu-
lated from ChIP-seq data. Furthermore, we apply spatzie
to investigate cell type-specific interactions from RAD21-
targeted ChIA-PET experiments across 24 human cell
lines.

MATERIALS AND METHODS

ChIP-seq data for simulated co-enrichment

We simulate a cooperative relationship where binding
of USF1 at promoters is co-dependent on binding of
ELF1 at enhancers. Raw ChIP-seq data for USF1 and
ELF1 from MEL mouse cells was downloaded from EN-
CODE (Supplementary Table S1). Reads were trimmed
for adaptors and low-quality positions using Trimgalore
(Cutadapt v0.6.2) (10) and aligned to the mouse genome
(mm10) with bwa mem (v0.7.1.7) (11) with default param-
eters. Duplicates were removed with samtools (v1.7.2) (12)
markdup, and ChIP binding events were called with GPS
(v3.4) (13) with default parameters.
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ChIA-PET datasets

ChIA-PET interaction data was downloaded as processed
files from Grubert et al. (Supplementary Material). Raw
data for all experiments is accessible from GEO (Supple-
mentary Table S1).

Genomic annotations

For simulated data, mm10 promoter annotations were
downloaded from the UCSC browser using the R pack-
age GenomicFeatures (14). For human RAD21 ChIA-PET,
hg19 promoter ensemble gene annotations were also down-
loaded from the UCSC browser using the same method.
Within interaction data, regions that were within 2.5 kb of
a promoter were classified as promoter regions. All other
regions were classified as gene-distal enhancer regions.

Statistical cooperativity calculation with spatzie

We implement three methods to measure the rela-
tionship between transcription factor binding motifs
in enhancer and promoter regions of genomic in-
teractions. Each method takes as input two vectors,
x = (x1, x2, . . . , xn−1, xn) and y = (y1, y2, . . . , yn−1, yn),
where n is the number of enhancer–promoter interactions.
xi is a set that contains all PWM scores for motif a in
the enhancer region of interaction i. yi, in contrast, con-
tains those scores for motif b in the promoter region of
interaction i.

Score-based correlation coefficient. We assume motif
scores follow a normal distribution and are independent be-
tween enhancers and promoters. We can therefore compute
how correlated scores of any two transcription factor motifs
are between enhancer and promoter regions using Pearson’s
product–moment correlation coefficient:

r =
∑

(x′
i − x̄′)(y′

i − ȳ′)√∑
(x′

i − x̄′)2
∑

(y′
i − ȳ′)2

,

where the input vectors x and y from above are transformed
to vectors x′ and y′ by replacing the set of scores with the
maximum score for each region:

x′
i = max xi

x′
i is then the maximum motif score of motif a in the en-

hancer region of interaction i, y′
i is the maximum motif

score of motif b in the promoter region of interaction i, and
x̄′ and ȳ′ are the sample means.

Significance is then computed by transforming the cor-
relation coefficient r to test statistic t, which is Student t-
distributed with n − 2 degrees of freedom.

t = r
√

n − 2√
1 − r 2

All P-values are calculated as one-tailed P-values of the
probability that scores are greater than or equal to r.

Count-based correlation coefficient. Instead of calculating
the correlation of motif scores directly, the count-based cor-
relation metric first tallies the number of instances of a given

motif within an enhancer or a promoter region, which are
defined as all positions in those regions with motif score P-
values of less than 5 × 10−5, which tends to work well for
human and mouse motifs (15,16). Formally, the input vec-
tors x and y are transformed to vectors x′′ and y′′ by re-
placing the set of scores with the cardinality of the set:

x′′
i = |xi |

And analogous for y′′
i . Finally, the correlation coefficient r

between x′′ and y′′ and its associated significance are calcu-
lated as described above.

Instance co-occurrence. Instance co-occurrence (or match
association) uses the presence or absence of a motif within
an enhancer or promoter to determine a statistically signif-
icant association, thus x′′′ and y′′′ are defined by:

x′′′
i = �x′′

i >0

The significance of instance co-occurrence is determined
by the hypergeometric test:

p =
Ea∑

k=Iab

(Ea
k

)(n−Ea
Pb−k

)
( n

Pb

) ,

where Iab is the number of interactions that contain a match
for motif a in the enhancer and motif b in the promoter,
Ea is the number of enhancers that contain motif a (Ea =∑n

i x′′′
i ), Pb is the number of promoters that contain motif

b (Pb = ∑n
i y′′′

i ), and n is the total number of interactions,
which is equal to the number of enhancers and to the num-
ber of promoters.

Multiple hypothesis testing. While the R package spatzie
supports several methods to adjust P-values, three to
control the family-wise error rate or FWER (Holm’s
method (17), Hochberg’s method (18), Bonferroni’s
method (19)) and two to control the false discovery rate or
FDR (Benjamini and Hochberg’s method (20), and Ben-
jamini and Yekutieli’s method (21)), all P-values presented
in this work were corrected using the method of Benjamini
and Hochberg.

RESULTS

spatzie tests transcription factor motifs for co-enrichment in
enhancer–promoter interactions

The goal of spatzie is to identify pairs of transcription fac-
tor motifs which have a relationship such that the presence
of motif A in an enhancer is associated with the presence of
motif B in the promoter, indicating these transcription fac-
tors may be cooperating to drive enhancer–promoter inter-
actions (Figure 1A). Given an input of interacting genomic
loci, we select only those interactions which contain one lo-
cus that is gene-distal, which we label enhancer, and one lo-
cus overlapping a gene transcription start site, which we la-
bel promoter. Then, we scan these regions for transcription
factor motifs using a database of DNA-binding motifs iden-
tified by ChIP-seq experiments, such as HOCOMOCO (22),
HOMER (23) or JASPAR (24). In order to limit hypothe-
sis testing, spatzie provides a function to filter transcription
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Select motifs with greater than T 
occurrence in promoters or enhancers

For each motif pair (M1,M2) compute pairwise signficance 
between motif co-occurrence* in enhancer vs promoter
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Interacting 
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Figure 1. spatzie identifies motif pairs underlying enhancer–promoter interactions using co-occurrence and correlation statistics. (A) spatzie is designed to
identify transcription factors which are facilitating interactions between enhancers and promoters based on detecting co-enrichment relationships between
the presence of DNA-binding motifs in enhancer–promoter pairs. (B) Given input of a database of transcription factor DNA-binding motifs and a set of
enhancer–promoter interactions, scan interactions for motifs, then limit analysis by filtering to motifs that are frequently present within the interactions of
interest. Next we compute pairwise significance of motif co-occurrence in the enhancer and promoter data. Finally, we filter motif pairs that significantly
co-occur under multiple hypothesis correction.

factor motifs to those present in some threshold number
of interactions. After filtering, we test transcription factor
motifs pairwise for co-enrichment between enhancer and
promoter pairs. Since the relationship between the DNA-
binding motif and transcription factor activity is complex,
spatzie provides three possibilities: (i) the strength of the
transcription factor motif match (i.e. the PWM score), (ii)
the number of motif sites within the sequence and (iii) the
presence or absence of motif sites. These definitions result
in three different statistical tests for co-enrichment: the sig-
nificance tests of (i) score-based or (ii) count-based corre-
lation coefficients and (iii) the hypergeometric test for co-
occurrence over-representation (Figure 1B). Finally, we ad-
just the significance of these co-enrichment scores to ac-

count for multiple hypothesis testing and report significant
transcription factor pairs.

spatzie identifies co-enrichment from simulated data

We validate spatzie by simulating a co-enrichment relation-
ship where binding of USF1 at promoters is co-dependent
on binding of ELF1 at enhancers. Using ELF1 and USF1
ChIP-seq data from ENCODE, we aligned and called bind-
ing events with GPS (13). We then filtered USF1 binding
sites to those that overlapped annotated promoters and fil-
tered ELF1 binding events to any event that did not over-
lap a promoter. Then, we matched the most significant
USF1 promoter event to the most significant ELF1 en-
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Figure 2. spatzie validates co-enrichment of ELF1 and USF1 on simulated enhancer–promoter interaction data. (A) spatzie cooperativity estimation com-
puted using correlation of motif scores shows significant enhancer–promoter interactions for USF1 and ELF1 motifs. (B) spatzie cooperativity estimation
computed using correlation of counts shows strongest enrichment between USF1 and ELF1 motifs. (C) spatzie cooperativity estimation computed using
motif instance co-occurrence shows significant co-enrichment of USF2 and ELF1 motifs. Adjusted P-values were corrected with the Benjamini-Hochberg
procedure. Randomization experiments where top N% of enhancer events are randomly permuted shows shrinking significance of co-enrichment under
noisy data for (D) score correlation, (E) count correlation and (F) hypergeometric co-enrichment. Dashed line represents the significance threshold at p <

0.05 under Bonferroni correction.
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hancer event, thus creating a simulated enhancer–promoter
interaction data set where the strongest USF1 promoter
events are matched with ELF1 enhancer events. We found
that the three described methods (score-based correlation,
count-based correlation, and motif presence/absence as-
sociation) all result in significant co-occurrence between
the USF1 motif and the ELF1 motif (Figure 2A–C). The
DNA binding motifs of all other transcription factors with
significant co-enrichment are highly similar to USF1 and
ELF1 (Supplementary Figure S1).

We also test that spatzie performs under noisy experi-
mental conditions. We take the top N percent of enhancer
interactions and randomly permute them such that they
are paired with new promoters and then run spatzie us-
ing score-based correlation, count-based correlation, and
motif presence/absence association (Figure 2D–F). We
find that all methods collapse after 75% and 100% of
the enhancers have been randomly permuted, indicating
that co-occurrence is a result of the strength of the co-
occurrence of the DNA binding motifs underlying the sim-
ulated enhancer–promoter interaction data.

spatzie identifies germ layer and tissue-specific enhancer–
promoter transcription factor interactions

Finally, we investigate enhancer–promoter interactions
from RAD21 ChIA-PET of 24 human cell lines from EN-
CODE (25). Based on the most significant co-enrichment
scores on simulated data coming from the score correla-
tion method, we chose to use score correlation to investi-
gate transcription factor motif co-occurrence in enhancer–
promoter interactions. After evaluating with spatzie the
score correlation of 50 286 enhancer–promoter interactions
that were present in at least one cell type, we find interac-
tions cluster by tissue and germ line (Figure 3A–C and Sup-
plementary Figure S3 for scatterplots with PC1, PC2 and
PC3), and that correlation of discovered motif pairs in-
creases among cell types from the same germ layer and
tissue (Figure 3D). While previous work has shown that
cohesin-mediated genomic interactions are similarly strat-
ified by germ layer and tissue (25), our analysis with spatzie
shows that there is sufficient information within the co-
enrichment of motifs underlying enhancer and promoter in-
teractions to reproduce biologically meaningful germ layer
and tissue layer organization. We found the tissue-level
correlation between spatzie-discovered co-enriched motifs
was reproducible with interaction calls using CID (Sup-
plementary Figure S2), which was previously shown to
recover more reproducible interactions from ChIA-PET
data (26). We then extracted enhancer–promoter interac-
tions that had the highest germ layer-specific expression
and found that these include transcription factors such as
Fox family members, which have a known role in endoderm
development (27,28) and ectoderm development (29,30),
and Nfatc4 in mesoderm interactions, which is a known T
cell (31) and myogenic (32,33) differentiation factor. (Fig-
ure 3E). Similarly, we examined tissue-level specific inter-
actions (Figure 3F) and found instances that were cell
type specific, which is indicative of a potential trade-off
in partnering of Sta5 at the enhancer with either Nfatc4
or Nanog at the promoter in blood or in liver tissues,

respectively, or of AP2B at the promoter with Nfia or
Zsc31 at the enhancers in breast or blood tissues, respec-
tively (Figure 3F). Supplementary Figure S4 shows exam-
ples of motif co-occurrence in enhancer–promoter inter-
actions. Furthermore, Supplementary Table S2 contains
results from a ChIA-PET reproducibility analysis using
IDR2D (34), showing that the ChIA-PET experiments from
two (Jurkat and MCF7) out of the three cell lines (Jurkat,
MCF7 and LX) that do not cluster with other cell lines
from the same germ layer (Figure 3A) suffer from poor
reproducibility.

DISCUSSION

Overall, spatzie contributes to a growing field of tools for
the analysis of enhancer–promoter interaction data by pro-
viding a collection of statistical tests to identify transcrip-
tion factor motif co-enrichment. While other methods such
as PEP-Motif (5) and the graphical lasso approach taken in
Pliner et al. (6) may identify such co-enrichment relation-
ships, they spend computational power to identify motifs
that predict the activity of enhancers and promoters inde-
pendent of their interactions, whereas spatzie focuses exclu-
sively on identifying motifs which share a co-enrichment
relationship between enhancer–promoter interactions. We
validate spatzie on experimental data where we use real
ChIP-seq data to simulate enhancer–promoter interactions
between USF1 binding at promoters and ELF1 binding
at enhancers. We show that spatzie’s three modes of motif
pair relationship (motif score correlation, motif count cor-
relation, and instance co-occurrence) all successfully iden-
tify USF1:ELF1 motif co-occurrence relationships even un-
der noisy conditions, with motif score correlation achiev-
ing the most robust results. We also apply spatzie to data
from 24 human cell lines and are able to show transcrip-
tion factor co-enrichments that are discovered by spatzie
cluster at germ-layer and tissue level, indicating these co-
enrichment relationships are related to the organization of
these cell types by germ layer and tissue. Furthermore, the
identified germ layer and tissue-specific transcription factor
interactions contain lineage-determining transcription fac-
tors, indicating that transcription factor co-enrichment be-
tween enhancers and promoters contains transcription fac-
tors that are known to play a role in differentiation and may
point to their function as players in the structural organiza-
tion of the genome. One concern with motif co-enrichment
approaches is that the primary effects discovered can be
attributed to the activity of cell type-specific transcription
factors without a cooperative relationship. However, as evi-
dence to the contrary we find examples of tissues that share
enhancer or promoter motifs with different partners, indi-
cating spatzie is identifying co-enrichment beyond general
transcription factor activity. This combined with evidence
that spatzie does not discover co-enrichment when we en-
tirely randomize the relationship between binding for sim-
ulated interactions from USF1 and ELF1 ChIP-seq sug-
gests that spatzie effects are not dominated by the general
over-enrichment of motifs, but instead are based on a de-
pendent relationship between a pair of transcription fac-
tors underlying enhancer–promoter interactions. In sum,
we hope spatzie provides biological insight into the cell
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Figure 3. spatzie identifies transcription factor cooperation underlying interactions that are germ line and tissue-specific. (A) Pearson correlation of pairwise
interactions shows similarity between related tissues. PCA on spatzie discovered transcription factor interactions shows (B) germ layer and (C) tissue type
clustering. (D) Pairwise correlation of spatzie transcription factor motif interactions shows increasing relatedness of germ layer and tissue type. Significance
computed by Wilcoxon rank-sum test. (E) Extraction of germ layer-specific transcription factor motif interactions include relevant lineage-determining
transcription factor families, such as Fox in endoderm and ectoderm. Spatzie correlation scores are z-scores normalized by row. Each column represents
an independent cell type, the colors above denote the germ layer. (F) Extraction of tissue-specific transcription factor motif interactions include potential
transcription factor trade-offs at the promoter and enhancer that may mediate tissue-specific enhancer–promoter interactions. Spatzie correlation scores
are z-scores normalized by row.
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type-specific rules of transcription factor cooperativity un-
derlying enhancer–promoter interactions.

DATA AVAILABILITY

The functionality of spatzie is bundled as an
R/Bioconductor package with the same name
(https://doi.org/doi:10.18129/B9.bioc.spatzie). The
source code of the R package is hosted on GitHub
(https://github.com/gifford-lab/spatzie). The core func-
tionality is also available online at https://spatzie.mit.edu,
which includes enhancer–promoter motif co-enrichment
analysis with HOCOMOCO or user-defined motifs on
interactions data mapped to either hg38, hg19, mm9 or
mm10.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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