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Abstract: Using the Numerical Renormalization Group method, we study the properties of a quantum
impurity coupled to a zigzag silicene nanoribbon (ZSNR) that is subjected to the action of a magnetic
field applied in a generic direction. We propose a simulation of what a scanning tunneling microscope
will see when investigating the Kondo peak of a magnetic impurity coupled to the metallic edge
of this topologically non-trivial nanoribbon. This system is subjected to an external magnetic field
that polarizes the host much more strongly than the impurity. Thus, we are indirectly analyzing
the ZSNR polarization through the STM analysis of the fate of the Kondo state subjected to the
influence of the polarized conduction electron band. Our numerical simulations demonstrate that the
spin-orbit-coupling-generated band polarization anisotropy is strong enough to have a qualitative
effect on the Kondo peak for magnetic fields applied along different directions, suggesting that this
contrast could be experimentally detected.

Keywords: Kondo effect; topological insulators; silicene

1. Introduction

Topological insulators have attracted much attention since the proposal by Charles
Kane and Eugene Mele [1,2] was made, stating that the spin-orbit interaction in graphene
could reproduce the properties of the seminal model proposed by Duncan Haldane in
1988 [3], which displayed topological properties similar to those of the quantum Hall effect;
however, without a net magnetic field. The topological effect in the so-called Kane–Mele
model, which was supposed to display ‘spin-momentum-locked’ edge states at the borders
of a graphene finite-size sample, was dubbed the ‘Quantum Spin Hall Effect’. Unfortu-
nately, graphene’s spin-orbit interaction (essential for the opening of a gap and the spin-
momentum-locking effect) proved to be vanishingly small, and this non-trivial topological
state had to be pursued in an specific quantum-well system, CdTe/HgTe [4,5]. However, it
so happens that the so-called Xenes (silicene, germanene and stanene, among others), which
form monolayers that share many similarities with graphene, have a spin-orbit interaction
that is three orders of magnitude larger than graphene [6]. This happens because of an
effect called ‘buckling’, where, contrary to graphene, the two sublattices forming the Xenes’
hexagonal structure are not coplanar, rather, they are shifted vertically. Thus, Xenes can be
very closely described by the Kane–Mele model, and therefore a zigzag silicene nanoribbon
(ZSNR), for example, will present a 1D helical state at its edges: counter-propagating spin-
momentum-locked states that form what became known as a helical 1D liquid. Reviews
of Xenes properties can be found in Refs. [7–15]. Investigations treating more specifically
the topological properties of silicene, germanene, and stanene are found in Refs. [16,17].
A detailed description of how to obtain the Kane–Mele model as a low energy effective
model for silicene, germanene, and stanene, starting from first principles calculations, can
be found in Ref. [6].

Given that the helical edge state is protected by time-reversal symmetry [1,2], and is
thus immune, in principle, to potential scattering, it is interesting to ask what the influence
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is on the helical state of magnetic impurities that couple to it. Indeed, due to the helical
state property of spin-momentum locking, back-scattering has to involve a spin-flip; thus,
it cannot occur for pure potential scattering, while a magnetic impurity, which can flip
its spin too, would provide a back-scattering mechanism. For example, the fact that
the conductance of the helical state in CdTe/HgTe was measured to be G < G0 = 2e2/h

and decreased with lowering temperature, was attributed, at least initially [18,19], to the
presence of either magnetic impurities coupled to the edges or to the presence of trapped
electrons that interact with the helical state [20]. It should be noticed that, recently, an
alternative interpretation to the conductance measurements in CdTe/HgTe quantum-wells
have been proposed, see Refs. [18,19]. In both cases, this can be modeled by a single-
impurity Anderson model (SIAM) [21], and points to the possible occurrence of a Kondo
effect [22]. For a detailed discussion of the various mechanisms invoked to explain the
G < G0 anomalous conductance, see Ref. [23].

Few studies have directly addressed the Kondo effect for the case of a quantum mag-
netic impurity coupled to the edge state associated with the Kane–Mele model. First,
Goth et al. [24] have used the continuous time quantum Monte Carlo method to study the
spatial dependence of the single-particle spectral functions and spin–spin correlation func-
tions when a single quantum impurity couples to the helical edge state. They concluded
that, contrary to what happens for a one-dimensional conductor, in a helical liquid, mag-
netic impurities cannot block transport below the Kondo temperature. Rather, the current
circumvents the impurity. A similar result was obtained by Allerdt et al. [25,26], using a
recently developed numerical method combined with the Density Matrix Renormalization
Group method [27,28]. It should also be noted that Weymann et al. [29], using the Numeri-
cal Renormalization Group (NRG) method, coupled to the Density Functional Theory, have
conducted a detailed study of the Kondo effect of a cobalt impurity deposited on top of
a 2D silicene sheet. As the host for their impurity has no edges, just bulk, they did not
analyze any of the properties of the edge state in relation to Kondo coupling. However, they
did perform a careful analysis of the effects of gating (variation of the band filling of the
host), as well as the effect of an external magnetic field acting just on the cobalt impurity.

In the present work, using NRG, we intend to expand the research conducted on
the Kondo effect stemming from a quantum impurity coupled to a ZSNR. We study
the effect of a magnetic field applied upon the host, not just upon the impurity. It is
known that the magnetic polarization of the bands, due to an external magnetic field,
affects the Kondo state [30], mainly if the host displays spin-orbit interaction, as the band
magnetic polarization becomes anisotropic. Since there is ample choice of what kind of
magnetic impurity may be adsorbed into the ZSNR, demonstrating a wide variation in
their g-factor, we will explicitly consider a situation where the host g-factor, denoted gb
(see Equation (2)), is considerably larger than the impurity g-factor, denoted gimp (see
Equation (3)). This is intended to showcase the effect on the Kondo state caused by the
band magnetic polarization.

2. Theoretical Model
2.1. Model Hamiltonian

To model a magnetic impurity coupled to a ZSNR, as depicted in Figure 1, we use a
SIAM-like Hamiltonian [21], given by

H=HZSNR + Himp + Htip + HZSNR−imp + Himp−tip, (1)

where the first term describes a ZSNR, subjected to an external magnetic field and modeled
by a tight-binding Hamiltonian, which in real space reads as
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iσ

ε0c†
iσciσ −

t ∑
〈i,j〉σ

c†
iσcjσ − i

λSO

3
√

3
∑
〈〈i,j〉〉σ

σνijc†
iσcjσ + H.c.


+ µBgb ∑

i

~Si · ~B. (2)
Z

ig
za

g 
d
ir

e
ct

io
n

width

Top View Side View

Impurity at the hollow site

magnetic 
impurity

Figure 1. Schematic representation of a ZSNR (top view and side view) with a magnetic impurity
located at the so-called hollow site.

The first term in Equation (2) is the on-site energy, where the operator c†
iσ (ciσ) creates

(annihilates) an electron with energy ε0 and spin σ in the i-th site of the ZSNR. The second
term is the nearest-neighbor (NN) π-band tight-binding term, where tij = t is the hopping
between NN sites. The introduction of a next-NN hopping will not qualitatively alter the
results, since the presence of the impurity in a hollow-site configuration already breaks
particle-hole symmetry, see Ref. [31] for further details. The third term is the intrinsic next-
NN spin-orbit coupling (SOC) λSO, where νij = +1 if the NNN hopping is anticlockwise
and νij = −1 if it is clockwise (in relation to the positive z-axis) [6]. Note that, in the third
term, σ = ± for subindex σ = ↑↓, respectively. The fourth term is the Zeeman interaction
due to an external magnetic field ~B = (Bx, By, Bz), where µB stands for the Bohr magneton,
gb is the conduction electron g-factor for the ZSNR, and ~Si is the conduction electron spin
density in site i. Finally, all calculations are conducted with the ZSNR at half-filling and we
use the NN hopping t as our unit of energy. It is worth mentioning that the SOC term is
equivalent to an effective magnetic field perpendicular to the ZSNR (z-direction). This is
discussed in Appendix B.

The second term in Equation (1) describes the impurity, including a Zeeman interaction,

Himp = εd(nimp,↑ + nimp,↓) + Unimp,↑nimp,↓ + µBgimp~Sd · ~B, (3)

where nimp,σ = d†
σdσ and d†

σ (dσ) creates (annihilates) an electron at the impurity with orbital
energy εd, while double occupancy of the impurity costs Coulomb energy U. In the third
(Zeeman) term, gimp stands for the impurity g-factor and ~Sd is the impurity spin operator.

As most experimental setups that are employed to probe such systems count with
the aid of a scanning tunneling microscope (STM) device, we have also added a third
term to Equation (1), referring to an STM tip, which is modeled by the Hamiltonian
Htip = ∑M,k,σ εMkc†

MkσcMkσ, where c†
Mkσ (cMkσ) creates (annihilates) an electron with mo-

mentum k and spin σ in the metallic STM tip. The fourth term of Equation (1), which
couples the impurity to the ZSNR, is given by

HZSNR−imp = ∑
j,σ

(
Vjσc†

jσdσ + H.c.
)

, (4)
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while the fifth term, which couples the impurity to the STM tip, reads as

Himp−tip = ∑
k,σ

(
Vkc†

k,σdσ + H.c.
)

. (5)

In Equation (4), Vjσ represents the impurity-ZSNR hopping amplitude to the six
neighboring silicon atoms when the impurity is in the hollow-site configuration (see
Figure 1). Assuming the same coupling strength to the impurity for all the nearest-neighbor
Si atoms, we will set Vjσ ≡ V0. We have checked that considering the influence of the
buckling in the values of Vjσ, i.e., having different hoppings from the impurity to different
sublattice-sites, does not qualitatively change the results obtained. The value we used for
the sublattice vertical shift was 0.46 Å [17]. In addition, assuming a constant density of states
at the tip, ρtip, and taking Vk ≡ Vtip in Equation (5), we may write the tip hybridization
function as Γtip = πV2

tipρtip. Based on the results presented by Weymann et al. [29],
the energetically most favorable position for a cobalt impurity in silicene is the so-called
hollow-site configuration (depicted in Figure 1). We will thus present all our results for this
impurity-coupling configuration. Finally, to keep the analysis simple, we will neglect the
Rashba SOC, so that the only terms that control the band gap are the external magnetic
field and the intrinsic SOC, λSO.

2.2. Tight-Binding Bands

The tight-binding ZSNR Hamiltonian (Equation (2)) can be diagonalized by a Fourier
transform to reciprocal space, resulting in

HZSNR = ∑k Ψ†
kHZSNRΨk, (6)

where Ψ†
k = (c†

k↑, c†
k↓), c†

kσ creates an electron with wave vector k and spin σ =↑, ↓, and the
spectra is obtained by numerical diagonalization. In Figure 2, we show the resulting
band structure (left panels) and total density of states (DOS, right panels) for a ZSNR
with N = 26 zigzag chains. The top panels have results for the vanishing magnetic field,
with λSO = 0.0 (black curve) and λSO = 0.1 (red curve). In Ref. [6], the λSO estimates for
silicene, germanene, and stanene are (in meV), respectively, 3.9, 43.0, and 29.9. Thus, we are
assuming a relatively high-value for λSO (more appropriate for germanene); nonetheless,
the qualitative behavior of the results presented in the following sections still holds for the
case of a lower λSO. In the absence of intrinsic SOC, the well-known dispersionless bands
at the Fermi energy, associated to the edge states present in a graphene ZNR [32], can be
observed in Figure 2a (black curve), with a noticeable peak in the respective DOS, Figure 2b.
The introduction of the intrinsic SOC adds dispersion to these metallic bands (red curve),
besides polarizing the edge state spins [17]. When a magnetic field is applied to the ZSNR,
as shown in Figure 2c, there is a spin splitting proportional to the Zeeman energy. As a
consequence, the dispersionless λSO = 0.0 energy bands at the Fermi level (black curve) are
now symmetrically (particle-hole) shifted, but still present sharp singularities in the DOS,
which are only suppressed for λSO 6= 0 (red curve), as shown in Figure 2d. In the next
sections, we will demonstrate that these changes in the DOS have interesting consequences
to the Kondo effect.
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Figure 2. (a,c) N = 26 ZSNR energy bands, as a function of momentum, and the respective total DOS,
panels (b,d), for energies close to the Fermi level. Panel (a) presents results in the absence of magnetic
field for two different sets of parameters [see legend in panel (a)], while panel (c) presents results for
the same parameters as in panel (a), but with a magnetic field along the z-direction. Labels for each
curve in all panels are displayed in (a).

2.3. Hybridization Function

The impurity Green’s function Ĝimp(k, ω) can be written as

Ĝimp(k, ω) =
[
(ω− εd)σ0 − Σ̂(int)(k, ω)− Σ̂(0)(k, ω)

]−1
, (7)

where Σ̂(int)(k, ω) is the interaction self-energy, while Σ̂(0)(k, ω) = V̂ĜZSNR(k, ω)V̂† is the
hybridization self-energy, with V̂ = V0σ0 and ĜZSNR(k, ω) = [ωσ0 −HZSNR]

−1. For a
magnetic field applied along an arbitrary direction, Σ̂(0)(k, ω) has finite off-diagonal terms
and we have to deal with a spin-mixing hybridization function [33,34]

Γ̂(ω) =
1
2i

∫ π

−π

[
Σ̂(0)(k, ω− i0−)− Σ̂(0)(k, ω + i0+)

]
dk. (8)

This positive-definite Hermitian matrix can be decomposed in terms of Pauli matrices
as Γ̂(ω) = ∑α=0,x,y,z dα(ω)σα, where all dα(ω) are real quantities. In particular, d0(ω) is
proportional to the conduction-band density of states. More specifically, the spin-resolved
density of states is given by ρσσ(ω) = Γσσ(ω)/(πV2). Thus, ρ↑↑ ∝ d0 + dz, ρ↓↓ ∝ d0 − dz,
resulting in ρ = ρ↑↑ + ρ↓↓ ∝ 2d0.

In Figure 3, we show, in the main panels, the coefficients dα(ω) of the hybridization
function decomposition, in terms of the Pauli matrices σα, for the vanishing SOC. Each
panel contains a different magnetic field configuration: it vanishes in panel (a), and it takes
values Bα = 0.001, for α = x, y, z in panels (b) to (d), respectively. The coefficients dα contain
important physical information about the system under study. For instance, in panel (a),
in the absence of any interaction (vanishing SOC and magnetic field), the system presents a
localized edge state at the Fermi level, as shown in Figure 2b, whose signature is captured
by the d0 coefficient, which is directly proportional to the ZSNR DOS (see above), while
all the other coefficients vanish. For the case of finite magnetic field [panels (b) to (d)]
the d0 peak observed in panel (a) is spin-split due to the Zeeman interaction. In addition,
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for each field orientation Bα, besides d0, only the corresponding coefficient dα will be finite,
although its dependence with ω is the same for all three directions, as can be observed in
Figure 3b–d. This is a consequence of SU(2) symmetry (spatial isotropy of the conduction
electron spins) in the absence of SOC.

If the intrinsic SOC is turned on, i.e., λSO = 0.1, first, as implied from Figure 2b (red
curve), the peak in d0 at the Fermi energy should be strongly suppressed and broadened,
as shown in the inset to Figure 3a. In addition, the spatial isotropy observed for the vanishing
SOC is broken. Indeed, as shown in the Appendix B, the intrinsic SOC may be interpreted
as a k-dependent effective magnetic field along the z-axis. Thus, the results for magnetic
field along the x- or y-axis should be identical (with y interchanged for x, see the insets in
Figure 3b,c), but they should differ from the results for the magnetic field along the z-axis
(see inset in Figure 3d). It is also important to mention that even though the ZSNR preserves
particle-hole (p-h) symmetry when SOC and magnetic fields are considered, for the impurity
located at the hollow site, the system is non-bipartite; therefore, the hybridization function
does not preserve particle-hole symmetry (p-h symmetry) [35]. However, the broken p-h
symmetry is highly pronounced only for high energies (not shown in the figures).

Before presenting the NRG results, we wish to discuss the results for the ZSNR band
polarization 〈Sb

α〉, which is calculated as ∑k〈k|Sb
α|k〉, where |k〉 are the eigenstates ofHZSNR

in Equation (6). The sum is over the first Brillouin zone, up to the Fermi energy. Figure 4
shows the results for vanishing SOC (black curve), when all magnetic field orientations
produce the same result, and for λSO = 0.1, where the 〈Sb

x/y〉 for a magnetic field applied

along the x or y-axis are identical (see red and green curves), while the polarization 〈Sb
z 〉

for a magnetic field applied along the z-axis is suppressed (blue curve). The anisotropy
observed in Figure 4 was already discussed in connection with Figure 3, being caused by
the SOC effective magnetic field oriented along the z-axis. As shown in the next section,
the considerably smaller polarization at finite SOC for the z-axis when compared to the
x- and y-axis, has sizable consequences for the Kondo effect when gimp = 0, which would
be experimentally detectable for a real situation where the magnetic impurity is such that
gimp � gb (this subject is discussed in detail in Appendix A).
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Figure 3. (a–d) Hybridization function coefficients dα=0,x,y,z(ω) for applied magnetic field along
different directions, for an impurity placed at the hollow-site configuration (at the edge). The insets
show the coefficients for λSO = 0.1. For all panels N = 26 and V0 = 0.05.
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Figure 4. Band polarization 〈Sb
α〉 for α = x, y, z, as a function of magnetic field applied along the

coordinate axes. The black curve is for vanishing SOC (thus the results are independent of magnetic
field orientation), while the red, green, and blue curves are for magnetic field applied along the x-, y-,
and z-axis, respectively, for λSO = 0.1.

In the following section, we discuss the Kondo effect when a magnetic impurity is
coupled to the edge of a ZSNR (see Figure 1). To do so, we perform NRG calculations to
obtain the spectral function and thermodynamic properties of this system. To this end, we
use the well-known NRG Ljubljana open source code [36]. For all calculations, we have
used the discretization parameter Λ = 2.0 and kept 2000 states at each iteration. We also
employ the z-trick [37] (with z = 0.2, 0.4, 0.6, 0.8 and 1.0) to remove unwanted oscillations
in the physical quantities. To map our 2 × 2 matrix hybridization function onto a Wilson
chain we have employed the scheme proposed by Liu et al. in Ref. [33]

2.4. Results and Discussion

To obtain the following numerical results, we have considered N = 26, Γtip = 0.01,
U = 0.5, and V0 = 0.05 for all figures, while different sets of values for λSO and ~B were
used. As mentioned in the Introduction, we also considered gimp = 0 (with gb = 1) in
all calculations.

In Figure 5 we show how the impurity density of states ρ(ω), at zero magnetic field
(black curve in both panels), is affected by the band magnetic polarization for a magnetic
field applied along x̂, ŷ, or ẑ (red, green, and blue curves, respectively). Panel (a) is for
vanishing SOC and panel (b) is for λSO = 0.1. In the absence of SOC and magnetic
field (black curve in Figure 5a), the Kondo peak suffers a splitting at ω = 0 (see black
curve in the inset for a detailed view). This resembles the physical behavior discussed in
Ref. [38], where the resonant level was provided by the nearby non-interacting quantum
dot coupled to a metallic lead. Here, it is provided by the propagating edge state of the
ribbon, as observed in the black line of Figure 2b. A similar effect has been predicted for
graphene zigzag nanoribbons [31]. In addition, at the vanishing SOC, ρ(ω) is the same
for all three magnetic field orientations. In the main panel, it is possible to see that the
Bz result (blue curve) slightly diverges from the Bx and By results (red and green curves).
This originates from the complexity of the Wilson chain discretization for the 2 × 2 matrix
hybridization function that presents highly localized peaks, which somehow induce a small
numerical error for a specific range of ω. For λSO = 0.1, the energy bands around ω = 0
become dispersive (see Figure 2a). This strongly suppresses the very narrow peak in the
DOS observed at the vanishing SOC, making it much broader, resulting in an almost flat
metallic DOS at the Fermi energy. As a consequence, the Kondo peak splitting, observed
for λSO = 0 in Figure 5a, caused by the very sharp peak in the DOS at the Fermi energy, is
suppressed, as can be observed in more detail for the black curve (for B = 0) in the inset to
Figure 5b. Obviously, this peak is split and suppressed once the magnetic field is switched
on. In addition, for B 6= 0, because of SOC, ρ(ω) for Bx and By are identical (red and green
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curves), while it differs when the field is along the z-axis. This could be already inferred
from the results shown in Figure 3b–d. This reflects the fact that the SOC effective magnetic
field is along the z-axis (see Appendix B). It is also interesting to notice that the splitting
and suppression of the Kondo peak, for finite SOC, is stronger when the field is applied in
the xy-plane than when applied along the z-direction. As shown below, this seems to occur
because the band is considerably more polarized when the field is applied in the xy-plane
than when it is applied along the z-direction.
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Figure 5. Impurity density of states, ρ(ω) = ρ↑(ω) + ρ↓(ω), for energies around the Fermi energy
(ω = 0). (a) Results for vanishing magnetic field (black curve) and for |B| = 0.001 along the three
coordinate axes (see legend), with λSO = 0.0. (b) Same magnetic field values as in panel (a), but for
λSO = 0.1. The insets show zooms of the Kondo peak.

To investigate how the band polarization affects the Kondo state, an analysis of the
impurity polarization 〈Simp

α=x,y,z〉 dependence on the temperature and magnetic field is
shown in Figure 6. We should remark that the impurity is polarized by the band; thus,
at low temperatures, once the band polarization has completely destroyed the Kondo state,
we should have a fully polarized impurity (〈Simp

α=x,y,z〉 ∼ 0.5, at sufficiently high fields).

Panel (a) shows (identical) results for 〈Simp
x 〉 and 〈Simp

y 〉, when the field is applied along

the x- and y-direction, respectively, while panel (b) shows results for 〈Simp
z 〉 when the

field is applied along the z-direction. Obviously, the other 〈Simp
α 〉 components vanish.

At high temperatures, as expected, all impurity magnetizations vanish for all values of
field due to charge fluctuations, while, in panel (a), at low temperatures, the impurity
polarization reaches a plateau, right below 〈Simp

x/y 〉 . 0.45 for the highest field value.
This value has increased monotonically with magnetic field from ∼ 0.4 (obtained for
|B| = 10−4). A qualitatively similar picture is obtained for 〈Simp

z 〉 [panel (b)], with the
difference that the plateaus are lower and they are formed at somewhat lower temperatures,
again indicating the fact that the band polarizes more strongly for magnetic fields in the xy-
plane. Thus, as observed above for the different properties, the SOC-generated anisotropy
is clearly observed.
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Figure 6. Impurity polarization 〈Simp
α=x,y,z〉 as a function of temperature for different applied magnetic

fields. (a) Magnetic field along x- and y-direction. (b) Same curves as in panel (a), but for magnetic
field along the z-direction, with λSO = 0.1 for both panels.

3. Summary and Conclusions

In this work, we have investigated the Kondo effect in a system composed of a
quantum magnetic impurity coupled to the edge of a ZSNR (in a hollow-site configuration).
The ZSNR, a finite topological insulator, thus having a metallic topological edge state, is
simulated by the Kane–Mele model, while the whole system is simulated by the SIAM. Our
main interest is to simulate what an STM probe, analyzing the impurity, would see when
the band is polarized by an external magnetic field applied along one of the coordinate
axes. To emphasize the band polarization effect, we consider gimp = 0, qualitatively similar
to an experimental situation where the impurity gyromagnetic-factor is much smaller
than the band gyromagnetic-factor, i.e., gimp � gb, something that may be experimentally
achieved by a judicious choice of the impurity. It turns out that the presence of the ZSNR
intrinsic SOC, responsible for an effective magnetic field applied perpendicular to the ZSNR
(z-direction), results, at small magnetic fields, in a considerably smaller band polarization
than when SOC vanishes. In addition, the SOC-broken SU(2) symmetry results in band
polarizations that, for |Bα = 0.001|, are related by 〈Sb

z〉/〈Sb
x/y〉∼0.2. This considerable difference

greatly magnifies the difference in what an STM sees when analyzing the impurity Kondo
peak for fields along different coordinate axes. Indeed, as expected, the Kondo peak is
much more strongly suppressed for a magnetic field along the x- or y-axis than along the
z-axis (see inset to Figure 6b). The same anisotropy and quantitative difference are observed
in the impurity polarization 〈Simp

x/y 〉 caused by the band polarization (compare panels (a)
and (b) in Figure 4).

The importance of our results rests in the fact that recent advances in nanoribbon
synthesis, STM sensitivity, and the STM ability to precisely place adsorbed magnetic
impurities in surfaces and monolayers, allow us to propose the use of the Kondo effect,
when its Kondo peak is STM-observed, to test the ability of the Kane–Mele model to
describe the basic properties of ZSNRs. We hope that our results will stimulate experimental
and theoretical groups alike to test our predictions.
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Appendix A. Calculations for Finite gimp

In an effort to soften the constraint gimp = 0, we present, in Figure A1, results for the
same parameters as in Figure 6, but now just for |B| = 0.0001 and four different values of
0.0 ≤ gimp/gb ≤ 0.3 [see labels in panel (a)]. As can be observed from the results, a finite
gimp/gb generates a monotonic increase of the plateau height for both 〈Simp

x 〉 = 〈S
imp
y 〉 and

〈Simp
z 〉, with the latter raising faster, but, despite that, at low temperatures there is still an

anisotropy between magnetic fields in the z-direction and along the xy-plane.
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Figure A1. Same results as in Figure 6, but now just for external magnetic field strength |B| = 0.0001
and four different values of 0.0 ≤ gimp/gb ≤ 0.3.

In case we assume that gb ≈ 2.0, one way of obtaining gimp/gb < 1.0 would be through
the use of a lanthanide magnetic impurity. For example, it is well known that Pr3+ ions
have a Landé factor of 4/5, which, given the conservative estimate made above for gb,
results in gimp/gb = 0.4.

Appendix B. Hamiltonian for Bulk Silicene

The Hamiltonian for the Kane–Mele model in two-dimensions, in reciprocal space,
may be written as

HKM = ∑
~k

Ψ†
~k

h~kΨ~k, (A1)

where Ψ†
~k
=
(

a†
~k↑

b†
~k↑

a†
~k↓

b†
~k↓

)
and

h~k = σ0 ⊗
(

∆~k,Rτx − ∆~k,Iτy

)
+ Σ~kσz ⊗ τz − ~B ·~σ⊗ τ0, (A2)
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where ∆~k,R and ∆~k,I are the real and imaginary parts, respectively, of the nearest-neighbor
hopping term

∆~k = −teikx
(

1 + 2 cos(
√

3ky/2)e−i3kx/2
)

, (A3)

and the k-dependent intrinsic spin-orbit term is given by

Σ~k =
4λSO

2
√

3
sin
(√

3ky/2
)
(sin(3kx/2)− cos(3kx/2)), (A4)

where the vector of Pauli matrices~σ = (σx, σy, σz) (~τ = (τx, τy, τz)) acts on spin (sublattice)
space, with σ0 (τ0) the 2× 2 identity matrix in spin (sublattice) space. This Hamiltonian
form makes it evident that the spin-orbit term may be interpreted as a k-dependent effective
magnetic field that points in the z-direction and has opposite signs for different sublattices.
This explains the anisotropy of the band-polarization results shown in the main text.
Indeed, based on the direction of the spin-orbit effective magnetic field, one expects that
〈Sb

x〉 = 〈Sb
y〉 6= 〈Sb

z 〉, as shown in Figure 4.

References and Notes
1. Kane, C.L.; Mele, E.J. Quantum Spin Hall Effect in Graphene. Phys. Rev. Lett. 2005, 95, 226801. [CrossRef] [PubMed]
2. Kane, C.L.; Mele, E.J. Z2 Topological Order and the Quantum Spin Hall Effect. Phys. Rev. Lett. 2005, 95, 146802. [CrossRef]

[PubMed]
3. Haldane, F.D.M. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity

Anomaly”. Phys. Rev. Lett. 1988, 61, 2015. [CrossRef] [PubMed]
4. König, M.; Wiedmann, S.; Brüne, C.; Roth, A.; Buhmann, H.; Molenkamp, L.W.; Qi, X.L.; Zhang, S.C. Quantum spin hall insulator

state in HgTe quantum wells. Science 2007, 318, 766. [CrossRef]
5. König, M.; Buhmann, H.; Molenkamp, L.W.; Hughes, T.; Liu, C.X.; Qi, X.L.; Zhang, S.C. The quantum spin Hall effect: Theory

and experiment. J. Phys. Soc. Jpn. 2008, 77, 1. [CrossRef]
6. Liu, C.C.; Jiang, H.; Yao, Y. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional

germanium and tin. Phys. Rev. B 2011, 84, 195430. [CrossRef]
7. Molle, A.; Goldberger, J.; Houssa, M.; Xu, Y.; Zhang, S.C.; Akinwande, D. Buckled two-dimensional Xene sheets. Nat. Mater. 2017,

16, 163. [CrossRef]
8. Wei, S.; Tang, X.; Liao, X.; Ge, Y.; Jin, H.; Chen, W.; Zhang, H.; Wei, Y. Recent progress of spintronics based on emerging 2D

materials: Crl(3) and Xenes. Mater. Res. Express 2019, 6, 122004. [CrossRef]
9. Bhatia, I.S.; Randhawa, D.K.K. Something more than graphene - futuristic two-dimensional nanomaterials. Curr. Sci. 2020,

118, 1656. [CrossRef]
10. Zhang, L.; Gong, T.; Yu, Z.; Dai, H.; Yang, Z.; Chen, G.; Li, J.; Pan, R.; Wang, H.; Guo, Z.; et al. Recent Advances in Hybridization,

Doping, and Functionalization of 2D Xenes. Adv. Funct. Mater. 2021, 31, 2005471. [CrossRef]
11. Balendhran, S.; Walia, S.; Nili, H.; Sriram, S.; Bhaskaran, M. Elemental Analogues of Graphene: Silicene, Germanene, Stanene,

and Phosphorene. Small 2015, 11, 640. [CrossRef] [PubMed]
12. Molle, A.; Grazianetti, C.; Tao, L.; Taneja, D.; Alam, M.H.; Akinwande, D. Silicene, silicene derivatives, and their device

applications. Chem. Soc. Rev. 2018, 47, 6370. [CrossRef] [PubMed]
13. Lyu, J.K.; Zhang, S.F.; Zhang, C.W.; Wang, P.J. Stanene: A Promising Material for New Electronic and Spintronic Applications.

Ann. Phys. (Berlin) 2019, 531, 1900017. [CrossRef]
14. Galbiati, M.; Motta, N.; De Crescenzi, M.; Camilli, L. Group-IV 2D materials beyond graphene on nonmetal substrates: Challenges,

recent progress, and future perspectives. Appl. Phys. Rev. 2019, 6, 041310. [CrossRef]
15. Hartman, T.; Sofer, Z. Beyond Graphene: Chemistry of Group 14 Graphene Analogues: Silicene, Germanene, and Stanene. ACS

Nano 2019, 13, 8566. [CrossRef] [PubMed]
16. Ezawa, M. A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J. Phys. 2012,

14, 033003. [CrossRef]
17. Ezawa, M. Monolayer Topological Insulators: Silicene, Germanene, and Stanene. J. Phys. Soc. Jpn. 2015, 84, 121003. [CrossRef]
18. Yaroshevich, A.S.; Kvon, Z.D.; Gusev, G.M.; Mikhailov, N.N. Microwave Photoresistance of a Two-Dimensional Topological

Insulator in a HgTe Quantum Well. J. Exp. Theor. Phys. Lett. 2020, 111, 121. [CrossRef]
19. Kvon, Z.D.; Kozlov, D.A.; Olshanetsky, E.B.; Gusev, G.M.; Mikhailov, N.N.; Dvoretsky, S.A. Topological insulators based on HgTe.

Physics-Uspekhi 2020, 63, 629. [CrossRef]
20. König, M. Spin-Related Transport Phenomena in HgTe-Based Quantum Well Structures. Ph.D. Thesis, Universität Würzburg,

Würzburg, Germany, 2007.
21. Anderson, P.W. Localized Magnetic States in Metals. Phys. Rev. 1961, 124, 41. [CrossRef]

http://doi.org/10.1103/PhysRevLett.95.226801
http://www.ncbi.nlm.nih.gov/pubmed/16384250
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://www.ncbi.nlm.nih.gov/pubmed/16241681
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://www.ncbi.nlm.nih.gov/pubmed/10038961
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1143/JPSJ.77.031007
http://dx.doi.org/10.1103/PhysRevB.84.195430
http://dx.doi.org/10.1038/nmat4802
http://dx.doi.org/10.1088/2053-1591/ab5d45
http://dx.doi.org/10.18520/cs/v118/i11/1656-1671
http://dx.doi.org/10.1002/adfm.202005471
http://dx.doi.org/10.1002/smll.201402041
http://www.ncbi.nlm.nih.gov/pubmed/25380184
http://dx.doi.org/10.1039/C8CS00338F
http://www.ncbi.nlm.nih.gov/pubmed/30065980
http://dx.doi.org/10.1002/andp.201900017
http://dx.doi.org/10.1063/1.5121276
http://dx.doi.org/10.1021/acsnano.9b04466
http://www.ncbi.nlm.nih.gov/pubmed/31294962
http://dx.doi.org/10.1088/1367-2630/14/3/033003
http://dx.doi.org/10.7566/JPSJ.84.121003
http://dx.doi.org/10.1134/S0021364020020113
http://dx.doi.org/10.3367/UFNe.2019.10.038669
http://dx.doi.org/10.1103/PhysRev.124.41


Nanomaterials 2022, 12, 1480 12 of 12

22. Hewson, A.C. The Kondo Problem to Heavy Fermions; Cambridge University Press: Cambridge, UK, 1993. [CrossRef]
23. Hsu, C.H.; Stano, P.; Klinovaja, J.; Loss, D. Helical liquids in semiconductors. Semicond. Sci. Technol. 2021, 36, 123003. [CrossRef]
24. Goth, F.; Luitz, D.J.; Assaad, F.F. Magnetic impurities in the Kane-Mele model. Phys. Rev. B 2013, 88, 075110. [CrossRef]
25. Allerdt, A.; Feiguin, A.E.; Martins, G.B. Spatial structure of correlations around a quantum impurity at the edge of a two-

dimensional topological insulator. Phys. Rev. B 2017, 96, 035109. [CrossRef]
26. Allerdt, A.; Feiguin, A.; Martins, G. Kondo effect in a two-dimensional topological insulator: Exact results for adatom impurities.

J. Phys. Chem. Solids 2019, 128, 202. [CrossRef]
27. Büsser, C.A.; Martins, G.B.; Feiguin, A.E. Lanczos transformation for quantum impurity problems in d -dimensional lattices:

Application to graphene nanoribbons. Phys. Rev. B 2013, 88, 245113. [CrossRef]
28. Allerdt, A.; Büsser, C.A.; Martins, G.B.; Feiguin, A.E. Kondo versus indirect exchange: Role of lattice and actual range of RKKY

interactions in real materials. Phys. Rev. B 2015, 91, 085101. [CrossRef]
29. Weymann, I.; Zwierzycki, M.; Krompiewski, S. Spectral properties and the Kondo effect of cobalt adatoms on silicene. Phys. Rev.

B 2017, 96, 115452. [CrossRef]
30. Vernek, E.; Martins, G.B.; Žitko, R. Anisotropic Kondo screening induced by spin-orbit coupling in quantum wires. Phys. Rev. B

2020, 102, 155114. [CrossRef]
31. Diniz, G.S.; Luiz, G.I.; Latgé, A.; Vernek, E. From Kondo to local singlet state in graphene nanoribbons with magnetic impurities.

Phys. Rev. B 2018, 97, 115444. [CrossRef]
32. Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M.S. Edge state in graphene ribbons: Nanometer size effect and edge shape

dependence. Phys. Rev. B 1996, 54, 17954. [CrossRef]
33. Liu, J.G.; Wang, D.; Wang, Q.H. Quantum impurities in channel mixing baths. Phys. Rev. B 2016, 93, 035102. [CrossRef]
34. Osolin, V.; Žitko, R. Fine structure of the spectra of the Kondo lattice model: Two-site cellular dynamical mean-field theory study.

Phys. Rev. B 2017, 95, 035107. [CrossRef]
35. Demchenko, D.O.; Joura, A.V.; Freericks, J.K. Effect of Particle-Hole Asymmetry on the Mott-Hubbard Metal-Insulator Transition.

Phys. Rev. Lett. 2004, 92, 216401. [CrossRef] [PubMed]
36. Zitko, R. NRG Ljubljana. 2021. Available online: https://zenodo.org/record/4841076#.Yl1EmOFByUk (accessed on

8 May 2021).
37. Campo, V.L.; Oliveira, L.N. Alternative discretization in the numerical renormalization-group method. Phys. Rev. B 2005,

72, 104432. [CrossRef]
38. Dias da Silva, L.G.G.V.; Sandler, N.P.; Ingersent, K.; Ulloa, S.E. Zero-Field Kondo Splitting and Quantum-Critical Transition in

Double Quantum Dots. Phys. Rev. Lett. 2006, 97, 096603. [CrossRef]

http://dx.doi.org/10.1017/ CBO9780511470752
http://dx.doi.org/10.1088/1361-6641/ac2c27
http://dx.doi.org/10.1103/PhysRevB.88.075110
http://dx.doi.org/10.1103/PhysRevB.96.035109
http://dx.doi.org/10.1016/j.jpcs.2017.11.006
http://dx.doi.org/10.1103/PhysRevB.88.245113
http://dx.doi.org/10.1103/PhysRevB.91.085101
http://dx.doi.org/10.1103/PhysRevB.96.115452
http://dx.doi.org/10.1103/PhysRevB.102.155114
http://dx.doi.org/10.1103/PhysRevB.97.115444
http://dx.doi.org/10.1103/PhysRevB.54.17954
http://dx.doi.org/10.1103/PhysRevB.93.035102
http://dx.doi.org/10.1103/PhysRevB.95.035107
http://dx.doi.org/10.1103/PhysRevLett.92.216401
http://www.ncbi.nlm.nih.gov/pubmed/15245299
https://zenodo.org/record/4841076#.Yl1EmOFByUk
http://dx.doi.org/10.1103/PhysRevB.72.104432
http://dx.doi.org/10.1103/PhysRevLett.97.096603

	Introduction
	Theoretical Model
	Model Hamiltonian
	Tight-Binding Bands
	Hybridization Function
	Results and Discussion

	Summary and Conclusions
	Appendix ACalculations for Finite gimp
	Appendix BHamiltonian for Bulk Silicene
	References

