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Rationale & Objective: While urine excretion of
nitrogen estimates the total protein intake, bio-
markers of specific dietary protein sources have
been sparsely studied. Using untargeted metab-
olomics, this study aimed to identify serum
metabolomic markers of 6 protein-rich foods and to
examine whether dietary protein–related
metabolites are associated with incident chronic
kidney disease (CKD).

Study Design: Prospective cohort study.

Setting & Participants: A total of 3,726 partici-
pants from the Atherosclerosis Risk in Commu-
nities study without CKD at baseline.

Exposures: Dietary intake of 6 protein-rich foods
(fish, nuts, legumes, red and processed meat,
eggs, and poultry), serum metabolites.

Outcomes: Incident CKD (estimated glomerular
filtration rate < 60 mL/min/1.73 m2 with ≥25%
estimated glomerular filtration rate decline relative
to visit 1, hospitalization or death related to CKD,
or end-stage kidney disease).

Analytical Approach: Multivariable linear regres-
sion models estimated cross-sectional
associations between protein-rich foods and
serum metabolites. C statistics assessed the
ability of the metabolites to improve the
discrimination of highest versus lower 3 quartiles
of intake of protein-rich foods beyond covariates
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(demographics, clinical factors, health behaviors,
and the intake of nonprotein food groups). Cox
regression models identified prospective
associations between protein-related metabolites
and incident CKD.

Results: Thirty significant associations were identi-
fied between protein-rich foods and serum
metabolites (fish, n = 8; nuts, n = 5; legumes,
n = 0; red and processed meat, n = 5; eggs,
n = 3; and poultry, n = 9). Metabolites collectively
and significantly improved the discrimination of
high intake of protein-rich foods compared with
covariates alone (difference in C statistics = 0.033,
0.051, 0.003, 0.024, and 0.025 for fish, nuts, red
and processed meat, eggs, and poultry-related
metabolites, respectively; P < 1.00 × 10-16 for all).
Dietary intake of fish was positively associated
with 1-docosahexaenoylglycerophosphocholine
(22:6n3), which was inversely associated with
incident CKD (HR, 0.82; 95% CI, 0.75-0.89;
P = 7.81 × 10-6).

Limitations: Residual confounding and sample-
storage duration.

Conclusions: We identified candidate bio-
markers of fish, nuts, red and processed meat,
eggs, and poultry. A fish-related metabolite,
1-docosahexaenoylglycerophosphocholine
(22:6n3), was associated with a lower risk of
CKD.
Diet biomarkers are needed to objectively assess dietary
intake and to improve on self-reported methods for

dietary assessment. Urine nitrogen is a well-established
biomarker of the total dietary intake of protein.1 How-
ever, few biomarkers are available for specific protein-
rich foods, such as nuts, red and processed meat, eggs,
poultry, and legumes.2-4 On the other hand, several
biomarkers have been validated as being reflective of the
habitual intake of fish (ie, eicosapentaenoic acid [EPA]
and docosahexaenoic acid [DHA]).5 Protein-rich foods
have distinct nutritional characteristics and variable as-
sociations with kidney outcomes.6-8 For example, in a
cohort of middle-aged US adults, a higher intake of red
and processed meat was associated with an elevated risk of
chronic kidney disease (CKD), whereas a higher intake of
fish, nuts, and legumes was associated with a lower CKD
risk.7
Nutritional metabolomics is an approach for charac-
terizing potential dietary biomarkers. The metabolome is
responsive to dietary intake,9 because many metabolites
are derived from or replenished by exogenous food
sources. Further, many metabolites are filtered and
excreted by the kidneys.10 After adjusting for the
glomerular filtration rate, a metabolomic approach is
useful for studying associations of metabolites with sour-
ces of dietary proteins and with the risk of kidney disease.
Metabolomic studies can improve our understanding of
the metabolic effects of specific sources of dietary proteins.
Identifying metabolomic markers of dietary proteins can
also lead to improved dietary assessment and inform di-
etary recommendations to modify kidney disease risk.

Our objectives were to identify serum metabolomic
markers of 6 protein-rich foods (fish, nuts, red and pro-
cessed meat, eggs, poultry, and legumes) using an
1
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PLAIN-LANGUAGE SUMMARY
In this study, we aimed to identify associations between
protein-rich foods (fish, nuts, legumes, red and pro-
cessed meat, eggs, and poultry) and serum metabolites,
which are small biological molecules involved in
metabolism. Metabolites significantly associated with a
protein-rich food individually and collectively
improved the discrimination of the respective protein-
rich food, suggesting that these metabolites should be
prioritized in future diet biomarker research. We also
studied associations between significant diet-related
metabolites and incident kidney disease. One fish-
related metabolite was associated with a lower kidney
disease risk. This finding supports the recent nutritional
guidelines recommending a Mediterranean diet, which
includes fish as the main dietary protein source.
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untargeted approach, and to examine whether dietary
protein-related metabolites are associated with incident
CKD, to understand the early metabolic disturbances
related to CKD development. We aimed to study these
questions in healthy, free-living, middle-aged US adults to
provide broadly generalizable results for dietary assessment
and CKD primary prevention.
METHODS

Study Population and Design

The Atherosclerosis Risk in Communities (ARIC) study is a
prospective cohort study designed to identify determinants
of subclinical atherosclerosis.11 Between 1987 and 1989
(visit 1), a total of 15,792 middle-aged adults (aged 45-64
years) were enrolled in the ARIC study from 4 US com-
munities (Forsyth County, North Carolina; Jackson, Mis-
sissippi; Minneapolis, Minnesota; Washington County, and
Maryland) and returned for the following follow-up visits:
visit 2 (1990-1992), visit 3 (1993-1995), visit 4 (1996-
1998), visit 5 (2011-2013), visit 6 (2016-2017), visit 7
(2018-2019), visit 8 (2020), and visit 9 (2021-2022).
Participants provided written informed consent at each
visit, and the ARIC study has been approved by Johns
Hopkins Bloomberg School of Public Health
(IRB00011012) and Johns Hopkins Medicine
(IRB00311861; IRB00311999).

At visit 1, fasting blood specimens were collected and
stored at −80 �F. Metabolomic profiling was performed by
Metabolon, Inc at 2 time periods. In 2010, subgroup 1 was
analyzed, consisting of 1,977 African American partici-
pants from Jackson, Mississippi. In 2014, subgroup 2 was
analyzed, which was a group of 2,055 African American
and White participants from all the 4 centers. Participants
were excluded for the following reasons: prevalent CKD
(defined as an estimated glomerular filtration rate [eGFR]
2

of <60 mL/min/1.73 m2), missing follow-up times,
missing covariates, or missing the dietary intake of le-
gumes (Fig S1). Our study population included 3,726
participants.

Assessment of Protein-Rich Foods

Usual intake over the past year was assessed at visit 1
(1987-1989) using a 66-item food frequency question-
naire (FFQ) adapted from the Willett FFQ.12,13 We cate-
gorized the following 6 protein-rich foods: fish (tuna, dark
fish, seafood, and other fish), nuts, red and processed meat
(hamburger, red meat main or side dish, hot dogs, pro-
cessed meat, and bacon), eggs, poultry (chicken or turkey,
with or without skin), and legumes (peas, lima beans,
baked beans, and lentils). These foods were defined
similarly in a prior analysis, with the exception of nuts,
which did not include peanut butter in the present study to
be more comparable to a prior nutritional metabolomics
study.4,7

Metabolite Assessment

Metabolites were profiled using an untargeted gas chro-
matography/mass spectrometry- and liquid chromatog-
raphy/mass spectrometry-based protocol.14,15 Known
metabolites were identified using a 5-tiered verification
system, and all the metabolites in our study were verified
with the first 2 tiers. Tier 1 compared metabolites with a
reference standard and required metabolites to share at
least 2 orthogonal measurements with the standard.16-18

Tier 2 metabolites were those that did not have a refer-
ence standard but were identified based on physiochemical
properties or spectral similarities to the metabolite.17,18

Metabolites from tier 2 are denoted with an asterisk.
For metabolomic data cleaning, metabolite values were

rescaled to a median of 1 and transformed to a log2
scale.19-21 Metabolites with low variance (ie, <0.01) were
excluded. Values were capped at 5 standard deviations
from the mean metabolite value. Metabolites with missing
values for >80% of participants were excluded (subgroup
1: n = 13; subgroup 2: n = 34). For the remaining me-
tabolites, values that were missing or below the lower limit
of detection were imputed to the minimum observed value
within each subgroup. Our primary analysis was restricted
to metabolites that met inclusion criteria in both sub-
groups (n = 360 metabolites). In secondary analyses, we
studied metabolites in one subgroup (subgroup 1: n = 1
metabolite; subgroup 2: n = 365 metabolites).

Incident CKD Outcome

At visits 1 and 2, creatinine was measured in the serum
using the modified kinetic Jaffe method, and at visit 4,
creatinine was measured in the plasma using the Jaffe
method. Serum creatinine was measured at visits 3, 5, 6,
and 7 using the Roche enzymatic method. Creatinine
values from visits 1-5 were remeasured in 2011-2013, and
original values from visits 1, 2, and 4 were recalibrated.22
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Creatinine values were calibrated using a National Institute
of Standards and Technology standard.23,24 Calibrated
creatinine values were then used to estimate the glomer-
ular filtration rate with the 2021 CKD-EPI race-free equa-
tion.25 Incident CKD was defined as follows: new onset of
CKD stages 3-5 (eGFR < 60 mL/min/1.73 m2) with ≥25%
eGFR decline relative to visit 1, diagnostic codes for hos-
pitalization or death related to CKD stages 3-5, or end-
stage kidney disease identified by linkage to the US Renal
Data System registry through December 31, 2017.26,27

Assessment of Covariates

During visit 1, trained interviewers administered ques-
tionnaires to collect information on sociodemographic
characteristics (ie, age, sex, race, and education) and
health behaviors (ie, smoking status, alcohol consumption,
and physical activity). Trained staff measured participants’
weight using a calibrated scale and their height using a
stadiometer to calculate the body mass index. Physical
activity was quantified as a score from 1-5, incorporating
the intensity, duration, and frequency of sport-related
physical activity during leisure time.

The FFQ was used to estimate total energy intake.
Nonprotein food groups (vegetables, fruits, dairy, whole
grains, and refined grains) were categorized using food
items reported on the FFQ.

Diabetes included a nonfasting blood glucose level
of ≥200 mg/dL, a fasting blood glucose level of ≥126 mg/
dL, a self-report of diabetes mellitus diagnosed by a
physician, or a self-reported use of diabetic medications
within the past 2 weeks. Hypertension was defined using
visit measurements (systolic blood pressure ≥ 140 mm Hg
or diastolic blood pressure ≥ 90 mm Hg) or the self-
reported use of hypertensive medications within the past
2 weeks. The definition of coronary heart disease
comprised a self-reported diagnosis of myocardial infarc-
tion, prior coronary revascularization, or silent myocardial
infarction on electrocardiogram.

Statistical Analysis

We examined participant characteristics for the overall
study population and by subgroups. Multivariable linear
regression models were used to estimate cross-sectional
associations between protein-rich foods (fish, nuts, red
and processed meat, eggs, poultry, and legumes) and
serum metabolites in each subgroup and then meta-
analyzed using fixed-effects inverse-variance weighted
models. We adjusted for age, sex, body mass index, total
energy intake, eGFR, smoking status, physical activity,
education, and alcohol consumption. We additionally
adjusted for nonprotein food groups (dietary intake of
vegetables, fruits, dairy, whole grains, and refined grains)
to identify metabolites specifically related to protein-rich
foods. Race and center were covariates for analyses of
subgroup 2, given that this subgroup consisted of both
African American and White participants from all the 4
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centers. Bonferroni correction was used to minimize the
possibility of false-positive findings (eg, main analysis:
P = 0.05/[360 metabolites studied in both subgroups × 6
protein-rich groups] = 2.31 × 10-5; secondary analysis in
subgroup 2: P = 2.28 × 10-5).

Spearman correlation coefficients were calculated to
explore interrelationships of significant metabolites. We
used C statistics to examine the ability of individual me-
tabolites and panels of metabolites to discriminate the
highest versus lower 3 quartiles of dietary intake of
protein-rich foods beyond covariates. This empirical defi-
nition of an elevated protein intake was used owing to the
lack of a clinically relevant threshold. Covariates included
in C-statistic models were the same as the multivariable
linear regression models. To calculate the difference in C
statistics from the model with covariates versus the model
with covariates and metabolites, we ran 200 bootstrap it-
erations, computing a difference in C statistics within each
iteration, and reported the average of the 200 iterations.
The associated P value was computed using the ‘boot.pval’
R package through the inversion of confidence intervals (R
Foundation for Statistical Computing, Vienna, Austria).

Cox regression models were used to estimate associa-
tions between dietary protein-related metabolites and
incident CKD adjusted for all covariates included in the
linear regression models as well as the following CKD risk
factors: diabetes, hypertension, and coronary heart disease.
Hazard ratios were estimated per doubling of metabolites
(1-unit higher in log2-transformed metabolite levels). To
mitigate batch effects, we performed analyses separately in
each subgroup and then meta-analyzed results. Significance
thresholds were adjusted using Bonferroni correction (eg,
fish-related metabolites: 0.05/8 = 0.006).

Deviations in the proportional hazards’ assumption
were tested by the visual inspection of Schoenfeld residual
plots. As a sensitivity analysis, we repeated the analyses on
dietary protein-related metabolites and incident CKD,
excluding the first 3 years of follow-up. We used Stata
version 17 (StataCorp, College Station, Texas) and R
version 4.1.2 (R Foundation for Statistical Computing,
Vienna, Austria) to conduct these analyses.
RESULTS

Participant Characteristics

For the 3,726 participants, the mean age was 54 years,
60% were female, and 62% were African American
(Table 1). The mean body mass index was 29 kg/m2,
mean eGFR was 102 mL/min/1.73 m2, and the prevalence
of hypertension and diabetes was 44% and 13%, respec-
tively. On average, the participants consumed 1.2 serv-
ings/d of red and processed meat, 0.4 servings/d of fish,
0.4 servings/d of poultry, 0.3 servings/d of eggs, 0.3
servings/d of legumes, and 0.1 servings/d of nuts.

All participants from subgroup 1 were African American
and from Jackson, Mississippi, whereas 27% of participants
3



Table 1. Baseline Characteristics of Participants

Characteristics
Overall
(n = 3,726)

Subgroup 1
(n = 1,769)

Subgroup 2
(n = 1,957)

Age (y) 54.0 (5.8) 53.3 (5.7) 54.7 (5.7)
Female, n (%) 2242 (60.2) 1136 (64.2) 1106 (56.5)
African American, n (%) 2291 (61.5) 1769 (100) 522 (26.7)
Center, n (%)
Forsyth County, North Carolina 560 (15.0) 0 (0) 560 (28.6)
Jackson, Mississippi 2168 (58.2) 1769 (100) 399 (20.4)
Minneapolis Suburbs, Minneapolis 504 (13.5) 0 (0) 504 (25.8)
Washington County, Maryland 494 (13.3) 0 (0) 494 (25.2)

Body mass index (kg/m2) 28.7 (5.8) 29.6 (6.1) 27.9 (5.5)
Estimated glomerular filtration
rate (mL/min/1.73 m2)

101.5 (12.6) 100.4 (14.8) 101.6 (12.2)

Blood glucose level (mg/dL) 110.5 (41.6) 111.8 (43.0) 109.3 (40.2)
Smoking status, n (%)
Current smoker 1035 (27.8) 499 (28.2) 536 (27.4)
Former smoker 1037 (27.8) 406 (23.0) 631 (32.2)
Never smoker 1654 (44.4) 864 (48.8) 790 (40.4)

Education level, n (%)
Less than high school 1185 (31.8) 711 (40.2) 474 (24.2)
High school or vocational school 1282 (34.4) 499 (28.2) 783 (40.0)
Some college or more 1259 (33.8) 559 (31.6) 700 (35.8)

Alcohol consumption (g/wk) 36.7 (94.6) 32.6 (101.3) 40.4 (88.0)
Physical activitya 2.3 (0.8) 2.1 (0.7) 2.4 (0.8)
Coronary heart disease, n (%) 186 (5.0) 67 (3.8) 119 (6.1)
Hypertension, n (%) 1651 (44.3) 934 (52.8) 717 (36.6)
Diabetes, n (%) 500 (13.4) 279 (15.8) 221 (11.3)
Dietary variables
Total energy intake (kcal/d) 1621.4 (615.0) 1582.7 (621.3) 1656.3 (607.4)
Fish (servings/d) 0.4 (0.3) 0.4 (0.4) 0.3 (0.3)
Nuts (servings/d) 0.1 (0.2) 0.1 (0.3) 0.1 (0.2)
Red and processed meat (servings/d) 1.2 (0.8) 1.2 (0.8) 1.1 (0.8)
Eggs (servings/d) 0.3 (0.4) 0.3 (0.4) 0.3 (0.4)
Poultry (servings/d) 0.4 (0.3) 0.4 (0.3) 0.4 (0.3)
Legumes (servings/d) 0.3 (0.3) 0.3 (0.3) 0.3 (0.3)
Values are mean (standard deviation) or n (%).
aPhysical activity was quantified as a score (1-5), accounting for the intensity, duration, and frequency of sport-related physical activity during leisure time.
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from subgroup 2 were African American, with 20%-29%
from each of the 4 centers. In subgroup 1, 40% of par-
ticipants had less than high-school education versus 24%
in subgroup 2. On average, alcohol consumption was
higher in subgroup 2 at 40 g/wk versus 33 g/wk in
subgroup 1. The 2 subgroups had similar dietary intakes of
protein-rich foods.

Associations of Protein-Rich Foods With Serum

Metabolites

There were 30 significant associations between
protein-rich foods and serum metabolites (fish,
n = 8; nuts, n = 5; legumes, n = 0; red and pro-
cessed meat, n = 5; eggs, n = 3; poultry, n = 9).
Fish intake was significantly associated with 7
lipids, including 3-carboxy-4-methyl-5-propyl-2-
furanpropanoate (CMPF, β = 0.99), DHA (β = 0.27),
and EPA (β = 0.22) (Table 2 and Table S1). Nut
4

consumption was most strongly associated with
tryptophan betaine (β = 1.42), followed by 4-
vinylphenol sulfate (β = 0.87). Red and processed
meat intake was positively associated with one
amino acid (2-hydroxybutyrate) and 4 lipids,
including margarate (17:0). Egg consumption was
positively associated with one lipid (docosapentae-
noate [DPA]). Poultry intake was associated with 6
amino acids (eg, 3-methylhistidine and creatine).

In the secondary analysis, 11 significant associations
were observed between protein-rich foods and serum
metabolites, including positive associations between red
and processed meat and 1-stearoylplasmenylethanolamine
and between poultry and sulfate (Table S2).

Fish-related EPA and DHA were strongly related to
each other (r = 0.65) (Fig S2). Nut-related metabolites
were weakly correlated (Fig S3). Several long odd-chain
fatty acids related to red and processed meat were
Kidney Med Vol 6 | Iss 4 | April 2024 | 100793



Table 2. Thirty Significant Associations Between Protein-Rich Foods and Serum Metabolites Per Serving Higher in Protein-Rich Foods

Protein-Rich
Food Group Metabolite Superpathway Subpathway

Meta-
Analyzed β

Meta-
Analyzed
SE

Meta-
Analyzed
P Value

Fish CMPF Lipid Fatty acid, dicarboxylate 0.989 0.069 3.41 × 10-47

Fish DHA (22:6n3) Lipid Polyunsaturated fatty
acid (n3 and n6)

0.268 0.023 3.95 × 10-31

Fish 1-Docosahexaenoylglycerophosphocholine
(22:6n3)a

Lipid Lysolipid 0.227 0.031 1.28 × 10-13

Fish 1-Docosahexaenoylglycerophosphoethanolaminea Lipid Lysolipid 0.196 0.030 7.64 × 10-11

Fish EPA (20:5n3) Lipid Polyunsaturated fatty
acid (n3 and n6)

0.215 0.035 1.01 × 10-9

Fish n-6 DPA (22:5n6) Lipid Polyunsaturated fatty
acid (n3 and n6)

-0.192 0.038 3.53 × 10-7

Fish 2-Aminobutyrate Amino acid Methionine, cysteine,
SAM, and taurine
metabolism

0.099 0.023 1.28 × 10-5

Fish 1-Eicosatrienoylglycerophosphocholine (20:3)a Lipid Lysolipid -0.130 0.030 2.04 × 10-5

Nuts Tryptophan betaine Amino acid Tryptophan metabolism 1.42 0.095 2.01 × 10-50

Nuts 4-Vinylphenol sulfate Xenobiotics Benzoate metabolism 0.873 0.101 4.23 × 10-18

Nuts Stearoyl sphingomyelin Lipid Sphingolipid metabolism -0.174 0.026 5.14 × 10-11

Nuts Heptanoate (7:0) Lipid Medium-chain fatty acid 0.092 0.019 6.58 × 10-7

Nuts Catechol sulfate Xenobiotics Benzoate metabolism 0.285 0.059 1.20 × 10-6

Red and
processed meat

AHB Amino acid Methionine, cysteine,
SAM, and taurine
metabolism

0.100 0.016 6.39 × 10-10

Red and
processed meat

Margarate (17:0) Lipid Long-chain fatty acid 0.057 0.012 1.51 × 10-6

Red and
processed meat

10-Heptadecenoate (17:1n7) Lipid Long-chain fatty acid 0.061 0.013 3.78 × 10-6

Red and
processed meat

Decanoylcarnitine Lipid Fatty acid metabolism
(acyl carnitine)

0.085 0.019 6.99 × 10-6

Red and
processed meat

10-Nonadecenoate (19:1n9) Lipid Long-chain fatty acid 0.067 0.015 1.22 × 10-5

Eggs n-6 DPA (22:5n6) Lipid Polyunsaturated fatty
acid (n3 and n6)

0.291 0.029 8.80 × 10-24

Eggs Tryptophan betaine Amino acid Tryptophan metabolism -0.427 0.059 4.63 × 10-13

Eggs Gamma-CEHC Cofactors and
vitamins

Tocopherol metabolism -0.227 0.048 1.95 × 10-6

Poultry 3-Methylhistidine Amino acid Histidine metabolism 0.995 0.091 1.21 × 10-27

Poultry N1-methyl-2-pyridone-5-carboxamide Cofactors and
vitamins

Nicotinate and
nicotinamide metabolism

0.179 0.033 8.80 × 10-8

Poultry Urea Amino acid Urea cycle; arginine and
proline metabolism

0.130 0.025 1.76 × 10-7

Poultry Pyroglutaminea Amino acid Glutamate metabolism -0.217 0.043 5.15 × 10-7

(Continued)
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strongly correlated (margarate [17:0], 10-heptadecenoate
[17:1n7], and 10-nonadecenoate [19:1n9]) (Fig S4).
Egg-related metabolites were weakly correlated (Fig S5).
For poultry-related metabolites, pyroglutamine and
creatine were strongly inversely correlated (r = -0.64)
(Fig S6).

Discrimination of Protein-Rich Foods With

Metabolites

The panels of metabolites all significantly improved the
discrimination of high intake of protein-rich foods
(Table S3). For fish, 7 out of 8 metabolites improved
discrimination, with the greatest improvement observed
for CMPF (difference in C statistics = 0.019) and DHA
(difference in C statistics = 0.016). For nuts, all but one
metabolite was significant, with tryptophan betaine
improving discrimination the most (difference in C
statistics = 0.046), followed by 4-vinylphenol sulfate
(difference in C statistics = 0.017). For red and processed
meat, 2-hydroxybutyrate and decanoylcarnitine marginally
but statistically significantly improved discrimination. For
eggs, DPA (n-6; 22:5n6) (difference in C
statistics = 0.018) and tryptophan betaine (difference in C
statistics = 0.005) improved discrimination. For poultry, 5
metabolites improved discrimination, with 3-
methylhistidine offering the greatest improvement (dif-
ference in C statistics = 0.016). Smaller combinations of
metabolites similarly improved discrimination of the
respective protein-rich group relative to the full panel of
metabolites.
Associations of Protein-Related Metabolites With

Incident CKD

A total of 1,412 (37.8%) participants developed incident
CKD over a median follow-up of 24 years (interquartile
range, 14-29 years). One fish-related metabolite, 1-
docosahexaenoylglycerophosphocholine (22:6n3), was
positively associated with fish intake (β = 0.23) (Table 2)
and inversely associated with incident CKD (Fig 1). A
doubling of 1-docosahexaenoylglycerophosphocholine
(22:6n3) was associated with 18% lower risk of incident
CKD (hazard ratio, 0.82; 95% confidence interval: 0.75,
0.89; P = 7.81 × 10-6) (Table 3).

Another metabolite, 1-eicosatrienoylglycerophospho
choline (20:3), was inversely associated with fish intake
(Table 2) and inversely associated with incident CKD
(Table 3). In the secondary analysis of metabolites
analyzed only in subgroup 2, sulfate was positively asso-
ciated with poultry (Table S2) and positively associated
with incident CKD (Table 3), and 1-
stearoylplasmenylethanolamine was positively associated
with red and processed meat (Table S2) and inversely
associated with CKD (Table 3).

Visual inspection of Schoenfeld residual plots demon-
strated deviations that appeared to occur within the first
few years of follow-up. Sensitivity analyses excluding the
Kidney Med Vol 6 | Iss 4 | April 2024 | 100793



Figure 1. Meta-analyzed associations between fish-related metabolites and incident chronic kidney disease. Cox regression models
are adjusted for age, sex, race (in subgroup 2), study center (in subgroup 2), body mass index, total energy intake, and estimated
glomerular filtration rate based on creatinine, smoking status, physical activity, education, alcohol consumption, total vegetable intake,
total fruit intake, dairy intake, whole grain intake, refined grain intake, diabetes, hypertension, and coronary heart disease. The red
dashed vertical line denotes the null value (hazard ratio = 1.0). The red dashed horizontal line denotes the statistical significance
threshold, defined using the Bonferroni method as follows: -ln (0.05/8 fish-related metabolites) = 5.08. *Tier 2 metabolites that
had no reference standard available but were identified based on physiochemical properties or spectral similarities. CI, confidence
interval; HR, hazard ratio.
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first 3 years of follow-up produced similar estimates to the
main analysis (Table S4).
DISCUSSION

In this study of 3,726 middle-aged US adults, we identi-
fied 30 significant associations between serum metabolites
and protein-rich foods (fish, n = 8; nuts, n = 5; red and
processed meat, n = 5; eggs, n = 3; poultry, n = 9), which
are supported by research conducted in humans and
Table 3. Significant Associations Between Protein-Related Metab

Protein-Rich
Food

Full cohort (N = 3,726)
1-Eicosatrienoyl-GPC (20:3)a Fish
1-Docosahexaenoyl-GPC (22:6n3)a Fish

Subgroup 2 only (N = 1,957)
Sulfatea Poultry
1-Stearoylplasmenylethanolaminea Red and

processed m
Cox regression models are adjusted for age, sex, race (in subgroup 2), study center
filtration rate based on creatinine, smoking status, physical activity, education, alcoh
intake, refined grain intake, diabetes, hypertension, and coronary heart disease. Bonfe
cohort) = 0.006; poultry: 0.05/(2 poultry-related metabolites in subgroup 2 only) =
metabolites in subgroup 2 only) = 0.05. The values provided are per doubling of di
Abbreviations: CI, confidence interval; CKD, chronic kidney disease; GPC, glycero
aTier 2 metabolites that did not have a reference standard available but were ident

Kidney Med Vol 6 | Iss 4 | April 2024 | 100793
animals. Panels of metabolites and many individual me-
tabolites improved discrimination of the dietary intake of
fish, nuts, red and processed meat, eggs, and poultry,
suggesting that these candidate markers have the potential
to contribute to dietary assessment in the future.
One metabolite, 1-docosahexaenoylglycerophosphocholine
(22:6n3), was positively associated with the dietary intake
of fish and inversely associated with incident CKD. These
findings have implications for dietary assessment and CKD
prevention.
olites and Incident CKD

Meta-Analyzed
HR (95% CI)

Meta-Analyzed
P -Value

0.86 (0.78, 0.94) 0.001
0.82 (0.75, 0.89) 7.81 × 10-6

1.73 (1.22, 2.46) 0.002

eat
0.86 (0.76, 0.97) 0.01

(in subgroup 2), body mass index, total energy intake, and estimated glomerular
ol consumption, total vegetable intake, total fruit intake, dairy intake, whole grain
rroni-adjusted P values are as follows. Fish: 0.05/(8 fish-related metabolites in full
0.03; and red and processed meat: 0.05/(1 red and processed meat–related

etary protein-related metabolites.
phosphocholine; HR, hazard ratio.
ified based on physiochemical properties or spectral similarities.
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Several of our metabolomic markers of the dietary
intake of protein-rich foods are consistent with prior
research. The dietary intake of fish was significantly posi-
tively associated with CMPF, DHA, and EPA. EPA and DHA
have been directly measured in fish, and in prior human
studies, all 3 metabolites have been consistently associated
with fish intake.2,5,28,29 Moreover, we found that EPA and
DHA were strongly correlated (r = 0.65), which is
coherent with their known metabolism by which EPA can
be converted to DPA and then DHA.30 Nut intake was
strongly associated with tryptophan betaine and 4-
vinylphenol sulfate. Peanuts have been previously associ-
ated with these 2 metabolites in a nested case-control study
of 502 US adults,4 and both metabolites have been iden-
tified as peanut constituents.31,32 Nuts have also been
associated with tryptophan betaine in 3 Canadian birth
cohorts (N = 900).33 In our study, poultry intake was
significantly associated with 3-methylhistidine, creatine,
and ectoine. 3-methylhistidine is a well-recognized
biomarker of chicken intake and has also been associated
with the total protein intake in the Modification of Diet in
Renal Disease study.33-35 Poultry and a protein-rich dietary
pattern have been associated with creatine in prior studies,
including the Modification of Diet in Renal Disease study
and the OmniHeart trial.35-38 Creatine is derived from both
exogenous (ie, animal proteins) and endogenous (ie,
muscle breakdown) sources.39 Ectoine, a xenobiotic, is
synthesized in the gut microbiota of chickens and has been
associated with poultry intake in previous human
studies.36,40 Altogether, our study has added evidence that
these 8 metabolites (CMPF, EPA, DHA, tryptophan betaine,
4-vinylphenol sulfate, 3-methylhistidine, creatine, and
ectoine) are strong markers of specific protein-rich foods.

We also identified many novel associations between
protein-rich foods and serum metabolites. Red and pro-
cessed meat intake was positively associated with an
acylcarnitine, decanoylcarnitine. Researchers have previ-
ously found that short- and medium-chain acylcarnitines
are positively associated with red and processed meat
intake.36,41 Egg intake was positively associated with an n-
6 polyunsaturated fatty acid, DPA (22:5 n-6). Eggs are a
known source of n-6 polyunsaturated fatty acids, and DPA
was previously associated with egg consumption in a
smaller subset of ARIC study participants (subgroup 1,
n = 1,977).2,42 Upon replication, these promising candi-
date metabolites could serve as new markers of protein-
rich foods.

Panels of metabolites significantly improved the
discrimination of a higher intake of fish, nuts, red and
processed meat, eggs, and poultry, although the
improvement beyond covariates was marginal for red and
processed meat. Panels of multiple metabolites may better
reflect the diverse biochemistry of foods and offer a greater
discrimination value than a single metabolite for dietary
assessment.43 Selected individual metabolites also largely
improved the discrimination of a higher intake of protein-
rich foods, that is, CMPF and DHA for fish, tryptophan
8

betaine and 4-vinylphenol sulfate for nuts, 3-
methylhistidine for poultry, and DPA (22:5n6) for eggs.
These findings help to prioritize candidate diet biomarkers
for future research.

We also found that one metabolite that was positively
associated with fish intake, 1-docosahexaenoyl-glycer-
ophosphocholine (1-docosahexaenoyl-GPC) (22:6n3), a
lipid, was associated with a reduced risk of incident CKD.
In a prior ARIC study (n = 3,799), docosahexaenoyl-GPC
(22:6n3) was inversely associated with kidney failure, as
was a metabolite cluster composed mainly of GPC lipids.21

Previous results have also identified a closely related lipid,
1-docosapentaenoyl-GPC (22:5n3), as a marker of pro-
gressive nephrotic syndrome.44 Our findings on 1-
docosahexaenoyl-GPC (22:6n3), within the context of
these other findings, suggest that fish consumption could
be beneficial for reducing CKD risk through a favorable
impact on serum lipids. In the main analysis, we identified
inverse associations between 1-eicosatrienoyl-GPC (20:3)
and fish intake as well as CKD, which is inconsistent with
what we would have expected, given that a higher fish
intake has been associated with a reduced risk of CKD.7

This metabolite was also individually related to a lower
risk of kidney failure in a prior ARIC study.21 In the sec-
ondary analysis, 1-stearoylplasmenylethanolamine was
positively associated with red and processed meat, yet
inversely related to CKD. Plasmalogens were positively
associated with red and processed meat in the Chronic
Renal Insufficiency Cohort study, so our observed diet-
metabolite association is plausible.45 More work is
needed to elucidate how 1-eicosatrienoyl-GPC (20:3) and
1-stearoylplasmenylethanolamine mechanistically affect
CKD development.

Several limitations warrant discussion. Given that the
ARIC study is an observational study, residual confounding
is possible, though we adjusted for 16 covariates that were
rigorously collected. The long storage duration of serum
specimens before metabolomic profiling could have
affected metabolite values. However, 3 compounds (ie,
urea, glucose, and cholesterol) that were measured using
clinical assays in 1989 were moderately correlated with
metabolite values.46 We did not identify any metabolites
significantly associated with legume consumption. Addi-
tional research on metabolites of protein-rich foods, and
the dietary intake of legumes in particular, and incident
CKD in independent study populations is necessary to
provide greater validity of our findings.

This study also had several strengths. Our sample of
African American and White participants was large
(n = 3,726) and representative of multiple geographic
regions. In both the cross-sectional and prospective ana-
lyses, we studied associations within each ARIC subgroup
before doing a meta-analysis. This approach mitigated the
possibility of batch effects, which is important considering
metabolomic analyses were performed at different points
in time. We were able to report unique metabolites asso-
ciated with 5 distinct protein-rich foods, which highlights
Kidney Med Vol 6 | Iss 4 | April 2024 | 100793
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the diverse metabolic implications of protein sources of
food.

These findings have several implications for dietary
assessment and kidney disease prevention. Our findings on
metabolomic markers of protein-rich foods help to pri-
oritize candidate diet biomarkers for quantitative assay
development, and eventually for integration with self-
reported data to improve dietary assessment. Further-
more, our finding of the positive association between 1-
docosahexaenoylglycerophosphocholine (22:6n3) and
fish and its inverse association with incident CKD provides
support for the 2020 Kidney Disease Outcomes Quality
Initiative guideline for nutrition, which suggests pre-
scribing a Mediterranean diet, which emphasizes fish as the
main dietary protein source to adults with CKD stages 1-5,
to improve plasma lipid profiles.47

In conclusion, we identified 30 associations between
protein-rich foods and serum metabolites (fish, n = 8;
nuts, n = 5; red and processed meat, n = 5; eggs, n = 3;
poultry, n = 9), including 8 associations that were sub-
stantiated by prior studies (CMPF, EPA, DHA, tryptophan
betaine, 4-vinylphenol sulfate, 3-methylhistidine, creatine,
and ectoine). Metabolites collectively and individually had
a strong discrimination value for the dietary intake of
protein-rich foods, especially CMPF, DHA, tryptophan
betaine, 4-vinylphenol sulfate, 3-methylhistidine, and
DPA. These metabolites improved the discrimination of the
dietary intake of proteins beyond covariates (de-
mographics, clinical factors, health behaviors, and intake
of nonprotein food groups). One fish-related metabolite
(1-docosahexaenoyl-GPC [22:6n3]) was inversely associ-
ated with the risk of incident CKD. These metabolites are
candidate biomarkers of dietary intake, and 1-
docosahexaenoyl-GPC (22:6n3), as a marker of fish
intake, may be important for the primary prevention of
CKD.
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