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Abstract: Measles virus (MeV), a member of the
paramyxovirus family of enveloped RNA viruses and one
of the most infectious viral pathogens identified, accounts
for major pediatric morbidity and mortality worldwide
although coordinated efforts to achieve global measles
control are in place. Target cell entry is mediated by two
viral envelope glycoproteins, the attachment (H) and
fusion (F) proteins, which form a complex that achieves
merger of the envelope with target cell membranes.
Despite continually expanding knowledge of the entry
strategies employed by enveloped viruses, our molecular
insight into the organization of functional paramyxovirus
fusion complexes and the mechanisms by which the
receptor binding by the attachment protein triggers the
required conformational rearrangements of the fusion
protein remain incomplete. Recently reported crystal
structures of the MeV attachment protein in complex
with its cellular receptors CD46 or SLAM and newly
developed functional assays have now illuminated some
of the fundamental principles that govern cell entry by
this archetype member of the paramyxovirus family. Here,
we review these advances in our molecular understanding
of MeV entry in the context of diverse entry strategies
employed by other members of the paramyxovirus family.

Paramyxoviruses: Receptors and Virus Entry

The Paramyxoviridae are enveloped, non-segmented, negative-

strand RNA viruses that include major human pathogens

belonging to two subfamilies. The Pneumonvirinae subfamily

includes respiratory syncytial virus (RSV) and the metapneumo-

viruses, while the Paramyxovirinae subfamily includes, amongst

others, measles virus (MeV), mumps virus, human parainfluenza

viruses (hPIV1-4), and the recently emerged, highly pathogenic

henipaviruses Hendra (HeV) and Nipah (NiV). Members of both

subfamilies are responsible for significant human morbidity and

mortality. MeV, in particular, remains a major cause of childhood

mortality worldwide despite the availability of a live-attenuated

vaccine [1].

Of the different paramyxovirus genera, only the morbilliviruses,

including MeV, and the henipaviruses are known to bind to

proteinaceous receptors displayed on the surface of target cells for

infection. Consequently, their attachment proteins lack neuramin-

idase activity, while all other members of the Paramyxovirinae

subfamily carry haemagglutinin-neuraminidase (HN) attachment

proteins with high specificity for sialic acid-containing oligosac-

charides or glycolipids [2]. Specifically, all MeV haemagglutinin

(H) attachment proteins analyzed thus far are capable of high-

affinity interaction with signaling lymphocytic activation molecule

(SLAM/CD150 w) [3,4]. H proteins derived from the attenuated

vaccine strain Edmonston and some isolates also bind to the

regulator of complement activation (CD46) [5–7]. Clinically,

systemic spread and viremia may be supported by a third MeV

receptor that has been hypothesized to be present on epithelial

cells [8,9]. The henipavirus attachment (G) proteins have adapted

to bind ephrinB2 and B3 as receptors [10–12].

All paramyxoviruses gain entry into and spread between cells by

promoting direct membrane fusion. Membrane merger is

mediated by the viral fusion (F) protein, which, like other class I

fusion proteins such as influenza HA and HIV env, first forms

metastable homo-trimers that require proteolytic activation to gain

functionality [2]. Receptor binding by the attachment protein is

thought to then trigger major conformational changes in mature F,

resulting first in insertion of a hydrophobic domain, the fusion

peptide, into the target membrane and ultimately in formation of a

fusion pore through juxtapositioning of the F transmembrane

domain and fusion peptide in the thermodynamically stable

postfusion conformation [13–17] (Figure 1). Unlike retro- or

orthomyxovirus entry, the complexity of the paramyxovirus fusion

triggering mechanism is raised to a higher level by the fact that the

receptor binding and fusion-promoting functions are contributed

by separately encoded envelope glycoproteins. This physical

separation of the two functions necessitates a mechanism of

posttranslational linkage, which is accomplished through the

formation of virus-specific hetero-oligomer complexes between

the two proteins [2]. However, the overall spatial organization of

functional Paramyxovirinae fusion complexes and the molecular

mechanism that links receptor binding with coordinated F protein

refolding into the postfusion conformation remain largely

unknown.

Current evidence suggests that members of different Paramyx-

ovirinae genera have developed distinct strategies by which the

Citation: Plemper RK, Brindley MA, Iorio RM (2011) Structural and Mechanistic
Studies of Measles Virus Illuminate Paramyxovirus Entry. PLoS Pathog 7(6):
e1002058. doi:10.1371/journal.ppat.1002058

Editor: Marianne Manchester, University of California San Diego, United States of
America

Published June 2, 2011

Copyright: � 2011 Plemper et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Funding: MAB was funded by an NRSA Postdoctoral Fellowship AI085763 from
the NIH/NIAID. This work was supported, in part, by U.S. Public Health Service
grants AI49268 (to RMI), a subproject of U10 grant AI057319 awarded to the
UMass Center for Translational Research on Human Immunology and Biodefense
(to RMI), AI071002 (to RKP) and AI083402 (to RKP) from the NIH/NIAID and a seed
grant from the Children’s Healthcare of Atlanta Vaccines & Immunology Center
(to RKP). The funders had no role in the study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests
exist.

* E-mail: rplempe@emory.edu

PLoS Pathogens | www.plospathogens.org 1 June 2011 | Volume 7 | Issue 6 | e1002058



glycoprotein interaction regulates triggering of the F protein [18–

20]. Based on endoplasmic reticulum (ER) co-retention studies

with hPIV3- and PIV5-derived glycoprotein pairs, which demon-

strated that an ER-retained glycoprotein mutant is unable to co-

retain its unmodified counterpart [21], and the characterization of

receptor binding–deficient HN proteins [22], it is thought that HN

attachment proteins do not interact intracellularly with F. For

paramyxoviruses that display HN, then, receptor binding and HN

tetramer rearrangement appear to induce tight interaction of the

HN and F oligomers at the cell surface, ultimately lowering the

energy barrier for F refolding in an association model [23].

By contrast, in the case of MeV, the H-F fusion complexes

appear to be pre-formed intracellularly [24]. Fusion promotion

appears to follow a dissociation model, in which receptor binding

results in separation of the preassembled H and F hetero-

oligomers. Henipavirus G-F-mediated fusion seems to be regulated

by a mechanism similar to MeV, since for both systems the level of

fusion was found to be inversely correlated to the avidity of the

glycoproteins for each other [25–27]. Also in both MeV and NiV,

decreased receptor binding activity strengthens the hetero-

oligomers [28,29].

Insight into the mechanism by which the MeV H protein

translates receptor binding into the activation of its homologous F

protein has emerged from the recent solution of the crystal

structures of H in complex with its receptors [30,31], as well as

from advances concerning the organization of MeV H-F fusion

complexes [32–34] and predictions about H oligomer rearrange-

ments that may take place during fusion [31]. Here, we will

summarize these advances and their impact on our understanding

of the mechanism of paramyxovirus fusion. In addition, we will

compare the mechanism of MeV fusion triggering with that of

other paramyxoviruses.

Attachment Protein Receptors and Structure: The
Structural Framework

The ectodomains of all Paramyxovirinae attachment proteins

are composed of a membrane-proximal stalk, which supports a

terminal globular head that mediates receptor binding. While the

stalk regions are absent from all currently available crystal

structures, circular dichroism analyses of PIV5 HN [35] and

structure predictions for the stalks of MeV H and PIV5 HN

[34,35] support an a-helical coiled-coil configuration. It has been

firmly established that the stalks of both HN and H determine F

specificity [34,36–38], and a domain in each that mediates the

interaction with F has been identified [33,39]. What remains

unknown for any paramyxovirus attachment protein is the cascade

of conformational and/or structural changes that translates

receptor binding to the head region to its stalk domain, followed

by triggering of F refolding.

Crystal structures of soluble head domains have been solved for

several paramyxovirus attachment proteins, including MeV H,

and reveal a common six-blade propeller fold typical of sialidase

structures [40–44]. The HN attachment proteins interact with

sialic acid through specific sites at the center of the b-propeller fold

[43–46]. Although the H and henipavirus G proteins do not bind

to sialic acid, they do both retain a vestigial central pocket

analogous to the sialic acid binding pocket in HN [31,40–42].

Figure 1. Measles virus fusion model. (Left panel) Model representation of the MeV envelope glycoprotein prefusion hetero-oligomer. The H and
F complexes are aligned in a staggered head configuration in which the F head is thought to stand in contact with the H stalk [33,57]. (Middle and
right panels) Hypothetical dissociation model of F triggering. Upon binding to the cellular receptor, H and F dissociate, resulting in triggering of
major conformational changes in metastable prefusion F. Refolding into the stable postfusion conformation is considered to occur through a series of
intermediate conformations, including a hypothetical pre-hairpin intermediate [13,56]. Likely, refolding of multiple F complexes is required to open a
fusion pore and enable viral entry. For improved clarity, MeV H is represented as a single tetramer, and F as a single trimer in the hetero-oligomeric
fusion complex. More than one F trimer may interact, however, with each individual H tetramer. The insert shows an enlarged representation of
proposed lipid mixing intermediates. As F refolds, first the outer membranes are thought to fuse, creating a lipid stalk. Membrane merger is then
thought to advance through hemifusion to pore formation. For clarity, F complexes have been eliminated from the lipid mixing representations.
Structural renderings are based on original crystal structures (form I H head domains as in [31]), homology models of MeV F [55,58] based on
coordinates reported for pre- and post-fusion PIV5 and PIV3 F, respectively [56,59], or hypothetical structural models (F pre-hairpin intermediate). H
stalk domains are modeled in an assumed a-helical configuration [33]. High-resolution structural models were aligned at the level of the
transmembrane domain (viral envelope) and then morphed into low resolution images using the Sculptor (resolution 12, voxel size 3) package [60].
doi:10.1371/journal.ppat.1002058.g001
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However, the two proteins have clearly adapted in different ways

to be able to bind their respective receptors. While the ephrinB2/

B3 binding sites in G localize to the top of the propeller and

overlap with the sialic acid binding site in HN [40,47], both known

MeV receptor binding sites map to a position closer to the lateral

surface of the b-propeller [30,31] (Figure 2). Indeed, it appears

that the MeV H receptor binding site must be located proximal to

this position and away from the dimer interface in order to trigger

fusion [48]. This use of a lateral surface of the b-propeller for

receptor interaction was also confirmed by a mutational analysis of

canine distemper virus H [49], which was guided by the data

obtained for MeV H. Since canine distemper virus and MeV are

closely related members of the morbillivirus genus, these

observations suggest that lateral positioning of the receptor

binding site is likely common to all morbillivirus H proteins.

In addition, H head crystals assumed an overall more cube-like

structure when compared with the largely spherical folds of head

domains of the related Paramyxovirinae HN and G proteins

[41,42]. As noted by Bowden and colleagues [40], this is consistent

with: 1) the morbilliviruses and henipaviruses having adapted

independently to proteinaceous receptors; and, 2) morbillivirus H

being more distantly related to both HN and henipavirus G than

HN and G are to each other. Experimental results indicate that a

tetramer (dimer-of-dimers) may constitute the physiological

oligomer for henipavirus G and several paramyxovirus HN

attachment proteins [35,44,50]. The initial crystal structures of

soluble MeV H head domains showed a monomeric or, when one

of two intermolecular disulfide bonds in the H stalk domain was

present, dimeric organization of the head domains [41,42]. A

more recent crystal structure of MeV H head domains complexed

with CD46 confirmed the lateral position of the receptor binding

site [30]. The co-crystals spontaneously assumed a homo-dimer

configuration, despite the absence of stabilizing intermolecular

disulfide bonds from the H head construct. This suggests that the

presence of the ligand exerts a stabilizing effect on the H head

arrangement. However, full-length H complexes are found in a

predominantly tetrameric organization when subjected to mild-

detergent extraction and native PAGE analysis [32], indicating

that native MeV H, like HN, is tetrameric.

Compared to HN dimers, the MeV H head domains are twisted

relative to each other in dimeric configuration and the buried

protein–protein interface amounts to only approximately 1300 Å2,

considerably smaller than the 1800–2000 Å2 calculated for HN.

This may explain the largely monomeric nature of soluble H head

domains when expressed in the absence of a stabilizing

intermolecular disulfide bond. Most importantly, with respect to

the mechanism of fusion, the structures of free and CD46-bound

H head domains are virtually identical, arguing against receptor-

induced conformational changes of the head domain as the basis

for F triggering. Rather, similar to propositions for HN [44], a

general spatial reorganization of the H oligomers upon receptor

binding was suggested as a possible mechanism of fusion initiation.

If correct, this may indeed constitute a fundamentally conserved

theme of paramyxovirus entry.

The recently reported co-crystals of soluble H head domains

with SLAM receptor provide groundbreaking new insight into the

possible mechanism of F triggering. Unlike in previous H

structures, H:SLAM co-crystals spontaneously assumed tetrameric

configurations [31]. Two discrete spatial organizations were

found: the first form places the four SLAM binding sites easily

accessible on a relatively planar field, suggesting that all binding

sites are arranged perpendicular to the viral envelope; in contrast,

the second form, which was assumed by an H variant harboring

an L482R mutation, shifts two of the SLAM binding sites closely

Figure 2. Representation of MeV H head domains complexed with soluble Slam receptor based on the coordinates reported by
Hashiguchi and colleagues [31]. Slam moieties (dark green) and covalently linked H dimers (cyan and light purple) in the tetrameric arrangement
are highlighted. Receptor binding is proposed to trigger a significant reorganization of the non-covalent dimer-dimer interface (form I versus form II
[31]). In the original X-ray analysis, form II was observed when an additional L482R mutation was introduced into MeV H. This mutation was found to
enhance SLAM-dependent fusion and also appeared in a clinical MeV isolate of the D1 genotype [31]. Structural renderings were prepared as
described for Figure 1. Dotted lines highlight the dimer–dimer intersection. Hypothetical positions of the H stalk domains are marked in the side view
representations.
doi:10.1371/journal.ppat.1002058.g002
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into the structure (Figure 2). Form I is thought to correspond to

prefusion H immediately after receptor binding, whereas form II

may represent receptor-bound postfusion H that no longer interacts

with F [31]. Transition between the two configurations leaves the H

dimer structure itself largely intact, but results in the reorganization

of the dimers relative to each other. It also involves expansion of the

dimer–dimer interface (from 1312 Å2 in form I to 2099 Å2 in form

II). This, in turn, would reorganize the membrane-proximal stalks

from a predicted tightly grouped four-helix arrangement to an open

configuration in which the stalk domains of the two H dimers are

separated from one another. This dissociation of the tetrameric stalk

into the two dimers then presumably releases the F protein, resulting

in the triggering of the conformational changes in F by an as yet

undetermined mechanism.

In another recent study, the possibility of a requirement for an

alteration in the association between the monomers in each dimer

in the head of MeV H was explored by the introduction of

disulfide bonds across the dimer interface [48]. Such disulfide

bonds eliminated the ability of the protein to trigger the

homologous F protein. However, overall expression levels of this

mutated H were low compared to the standard protein,

complicating conclusions at this point. It has been hypothesized

[51] that the disulfide bonds could prevent minor adjustments in

dimer organization that may precede the significant tetramer

rearrangement proposed by Hashiguchi and colleagues [31].

Interestingly, opposite results were obtained when a similar dimer

stabilization approach was applied previously to the Newcastle

disease virus HN protein: fusion was slightly enhanced [52].

The Physiological MeV Fusion Complex:
Mechanism of F Triggering

While the X-ray structures of partial paramyxovirus ectodo-

mains, especially in complex with their receptors, constitute a

framework for our understanding of viral entry, they lack proof

that the physiological organization of native fusion complexes is

accurately represented. Furthermore, little light is shed on the

spatial arrangement of the functional hetero-oligomer consisting of

attachment and fusion protein spikes. Interfacing structural with

functional information will be required to dissect the mechanistic

principles of the functional paramyxovirus fusion complex.

As discussed above, data from attachment protein chimeras and

co-immunoprecipitation studies with site-directed mutants of HN

and H indicate that the attachment protein stalk domains mediate

the interaction with F. More recently, biochemical assessments

and in silico alignments of H and F structures [33,34] have

suggested that the MeV attachment and fusion protein head

domains are positioned at different levels relative to the viral

envelope, resulting in a staggered head model (Figure 1) rather

than the originally assumed lateral arrangement [33]. This model

assumes an a-helical conformation of the H stalk domains, which

is supported by secondary structure predictions [34,35], mutagen-

esis results [33], and circular dichroism analysis of the related

PIV5 HN [35]. Further experimental testing confirmed that H

stalk elongations membrane-distal, but not proximal, to the

proposed F binding domain are compatible with the formation

of functional fusion complexes, consistent with the ‘‘staggered

head’’ arrangement [33]. Membrane-proximal stalk extensions of

up to 50% of its predicted normal length (,60 Å of additional

length in a-helical configuration) were well tolerated, arguing

against direct functional contacts involving the MeV H and F head

domains.

Systematic mutagenesis of a domain in the H stalk membrane-

proximal to the postulated F contact zone revealed additional

residues that, when mutated, block F triggering without affecting

physical interaction of H and F and receptor binding [53],

suggesting that receptor binding and F triggering can be separated.

This was tested in a novel bi-molecular complementation assay

[32] of discrete H functional defects (Figure 3), which led to three

mechanistic conclusions: I) F interaction, receptor binding and F

triggering constitute discrete functions that can be complemented

in trans; II) efficient fusion promotion does not mandate

simultaneous high-affinity docking of receptor moieties to all

binding sites in an H oligomer; III) the functional H fusion

oligomer is a tetramer.

Remarkably, the F-interactive domains in MeV H and NiV/

HeV G may not fully overlap, since point mutations in the

corresponding stalk positions of HeV G, unlike similar mutations

in HN and H, do not abolish the physical interaction with F [54].

This suggests that the mechanisms used by G and H to regulate

fusion may not be completely equivalent. The henipaviruses may

have developed a more elaborate strategy to hold their F proteins

in the metastable pre-fusion conformation in contrast to

morbillivirus fusion complexes. While unknown at present, this

could possibly also involve G head contacts with F in addition to

the G stalk interactions.

Considering, however, that residues in the stalk domains of H,

HN, and G proteins have been implicated in determining F

triggering and that the disulfide backbone and hence the overall

architecture of prefusion F [55,56] are highly conserved among

the Paramyxovirinae, we propose an overall largely conserved

spatial organization that positions the functional paramyxovirus

hetero-oligomer in a staggered head arrangement. The stoichi-

ometry of the physiological hetero-oligomer remains unclear at

present. Space constraints very likely prevent the formation of F3/

(H4)3 or (F3)4/H4 complexes. However, an (F3)2/H4 hetero-

Figure 3. Schematic of bi-molecular H complementation to
explore the organization of the physiological complex. (Left
panel) Overview of previously identified functional domains in H,
responsible for interaction with F [33,34], receptor binding [29,61], or
required for F triggering [53]. For simplicity, an H dimer is shown
representing form I as described in [31]. (Right panel) Co-expression of
H variants defective in individual functions in all possible combinations
restores F fusion promotion activity through trans-complementation of
functionality [32]. Structural renderings were generated as outlined for
Figure 1.
doi:10.1371/journal.ppat.1002058.g003
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oligomer configuration appears as a structurally plausible

alternative to a simple F3/H4 arrangement. Morbillivirus- and

henipavirus-derived F proteins may feature a lower inherent

activation energy barrier for refolding than F proteins of

parainfluenza viruses, rendering them dependent on an interaction

with their attachment protein oligomer to stabilize the prefusion

conformation.

Independent of an association or dissociation mechanism of F

triggering, however, reorganization of the non-covalent head

domain dimer–dimer interface in a tetrameric attachment protein

complex upon receptor binding emerges as the common

denominator among the Paramyxovirinae to transmit receptor

binding to the F contact zone in the attachment protein stalk

domain. Short-range changes in the microenvironment between H

and F, either through receptor-induced transient association and

dissociation, or receptor-induced dissociation of preassembled

hetero-oligomer complexes, may then drive irreversible confor-

mational changes in F that ultimately must result in dissolution of

the hetero-oligomer and, in turn, membrane fusion.

Summary and Perspectives

A combination of structural and functional assays has

illuminated central mechanistic principles of paramyxovirus entry.

Differences exist among the Paramyxovirinae with regard to

morphology and relative orientation of the attachment protein

head domains, position of the receptor binding site on the head b-

propeller, and the strategies employed to control refolding of the

mature fusion protein. However, the overall spatial organization of

the paramyxovirus fusion hetero-oligomer and the transmission of

receptor binding from the attachment to the fusion protein emerge

as largely conserved. Receptor binding does not alter the

conformation of individual H monomers but likely results in

realignment of the non-covalent head domain dimer–dimer

interface. By altering the attachment protein stalk configuration,

the latter may change the microenvironment of the F contact

zone.

Conceptually, ‘‘trigger microdomains’’ at the interface of

functional fusion complexes constitute attractive targets for the

design of novel antivirals. However, the stoichiometry of the

functional hetero-oligomer, the detailed structure of the overall

complex, and the molecular nature of the F residues mediating H

specificity remain largely unknown, precluding structure-based

drug target identification efforts. Novel approaches such as cryo-

electron tomographic analysis of intact, native complexes over-

layed with the available partial X-ray data in pseudoatomic

structures may likely be required to address these questions.

Combined with further refined functional and biochemical

analyses, such procedures have the potential to advance our

molecular insight into the organization and functional foundation

of the fusion complex to a degree where in silico identification of

druggable sites for the development of future therapeutics and

prophylactics becomes meaningful.
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