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Abstract
Depression affects around 320 million people worldwide. Growing evidence proposes the immune system to be the core 
interface between psychosocial stress and the neurobiological and behavioural features of depression. Many studies have 
identified purinergic signalling via the P2X7 receptor (P2X7R) to be of great importance in depression genesis yet only a 
few have evaluated P2X7R antagonists in chronic stress-based depression models. This review summarizes their findings 
and analyses their methodology. The four available studies used three to nine weeks of unpredictable, chronic mild stress 
or unpredictable, chronic stress in male mice or rats. Stress paradigm composition varied moderately, with stimuli being 
primarily psychophysical rather than psychosocial. Behavioural testing was performed during or after the last week of stress 
application and resulted in depressive-like behaviours, immune changes (NLRP3 assembly, interleukin-1β level increase, 
microglia activation) and neuroplasticity impairment. During the second half of each stress paradigm, a P2X7R antagonist 
(Brilliant Blue G, A-438079, A-804598) was applied. Studies differed with regard to antagonist dosage and application tim-
ing. Nonetheless, all treatments attenuated the stress-induced neurobiological changes and depressive-like behaviours. The 
evidence at hand underpins the importance of P2X7R signalling in chronic stress and depression. However, improvements 
in study planning and reporting are necessary to minimize experimental bias and increase data purview. To achieve this, we 
propose adherence to the Research Domain Criteria and the STRANGE framework.
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Introduction

Depression is characterised by three main symptoms: low 
mood, anhedonia, and decreased energy [1]. Approximately 
320 million or 4.4% of the global population are affected 
[2]. Women have a twofold increased disease risk compared 
to men [3]. Depression sits among the top three causes of 
years lived with disability worldwide [4] and burdens indi-
vidual life prospects and health care systems alike [5–7]. 

Treatment employed depends on depression severity and 
patient response, yet overall yields heterogeneous outcomes 
[8, 9]. In fact, only 50–70% of depressed patients recover 
within 1 year of diagnosis [6, 10] and an alarming 15–20% 
experience a chronic course of depression (> 24 months) 
[6, 10, 11]. The latter is associated with reduced quality 
of life, limitations of daily activities, treatment resistance, 
suicide attempts and comorbidities [12]. Aside the seren-
dipitous discovery of ketamine, no other major therapeutic 
breakthroughs have been achieved in the past decades [13]. 
Moreover, no reliable and clinically applicable diagnosis 
or outcome prediction tools are available [8, 14]. This dire 
situation urges us to evaluate and optimize preclinical and 
clinical methods to advance novel therapeutic strategies [9].

Within recent years, the concept of depression has 
changed and now more than ever includes immunological 
disease features [15–18]. However, on a mere environmental 
level, psychosocial stress is still the most common and major 
risk factor of depression [14, 19–25]. Concerning the neuro-
biological link between stress and depression, several studies 
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have highlighted the role of microglia and macrophage (M/
Ms) activation [18, 26–32] mediated by purinergic signal-
ling via the membrane-bound adenosine triphosphate (ATP) 
receptor P2X7 (P2X7R) [33–40]. On a genetic level, stud-
ies in humans and mice have found an association between 
polymorphisms in the P2RX7 gene and depressive symptoms 
[41–46]. Meanwhile, a growing body of evidence empha-
sizes the potential of P2X7R as a novel drug target in depres-
sion [33, 35, 47–51] and small, placebo-controlled phase II 
studies investigating P2X7R antagonists in major depressive 
disorder are ongoing [52, 53]. Yet, only a handful of studies 
have evaluated P2X7R antagonistic drugs in chronic stress-
based depression models [34].

Based on the emerging role of P2X7R as an interface 
between stress and the immunological features of depres-
sion, this review aims to analyse the available studies on 
pharmacological P2X7R antagonism in translational murine 
depression models. Although no single approach can repre-
sent the plethora of environmental and biological factors of 
depression, chronic stress-based models are currently con-
sidered the most valid option in reflecting disease complex-
ity overall. They reliably induce core depressive symptoms, 
behaviours and biological changes by exposing animals 
to unpredictable, mild to moderate environmental stress 
over several days to weeks. Because of that, they are com-
mon models in translational neuropsychiatry [13, 54–56]. 
We thus included studies using chronic psychosocial and 
psychophysical stress (CPSS/CPPS) in the form of chronic 
unpredictable stress (CUS), unpredictable, chronic mild 
stress (UCMS/CMS) or chronic social defeat (CSD) in this 
review. After summarizing the evidence revolving around 
chronic stress, the immune system and P2X7R signalling in 
depression, we examine the available studies from which we 
can draw meaningful insights for future research.

From stress to depression: the emerging role 
of the immune system

The pathogenesis of depression is complex and has been 
extensively investigated. Nowadays, explanatory approaches 
integrate the entirety of endocrine, neurochemical, and 
plasticity aberrations in a fine-grained framework of envi-
ronmental influences and epi-/genetic as well as psycho-
social vulnerabilities [14, 34, 57]. Since the concept of 
stress was introduced to the scientific community in 1936 
by Hans Selye [58, 59], a strong link between CPSS/CPPS 
and depression has been reported. Many studies and meta-
analyses have demonstrated an elevated depression risk 
following childhood maltreatment and adverse life events 
in adolescence and adulthood [21, 60–66]. The biologi-
cal mechanisms that translate this form of environmental 
stress into the nosological entity called depression are not 

yet fully understood, but the immune system, in particu-
lar cytokines and microglia, is proposed to be a principal 
component [16, 35, 67–69]. This notion stems from a larger 
number of human and rodent studies, which found elevated 
levels of inflammatory markers including but not limited 
to C-reactive protein (CRP), interleukin-1-family cytokines 
like interleukin-1 beta (IL-1β) and IL-18, tumour necrosis 
factor alpha (TNF-α) and IL-6 in CPSS/CPPS or depression 
[15, 70–78].

Interestingly and in line with this so-called cytokine 
hypothesis of depression [16], immunological diseases like 
asthma or diabetes are associated with elevated inflamma-
tory cytokine levels and an up to twofold increased depres-
sion risk [68, 79–82]. On a genetic level, a recent correla-
tion study based on a large genome-wide association study 
reported an overlap between CRP levels and depression 
symptoms as well as an association of upregulated IL-6 
with suicidality [72]. In 2014, a clinical study found ele-
vated NLR family pyrin domain containing 3 (NLRP3) and 
caspase-1 gene expression in the blood of n = 40 treatment-
naive depressed patients. The NLRP3 and caspase-1 expres-
sion along with IL-1β and IL-18 levels were ameliorated 
by amitriptyline treatment [83]. NLRP3 inflammasome 
assembly, caspase-1 activation and IL-1β release are gener-
ally known to be triggered by P2X7R activation, which is 
one of the main NLRP3 activators [36] and a potent inductor 
of M/Ms activation and proliferation [84, 85]. Accordingly, 
animal studies investigating acute and chronic stress in the 
context of depressive-like states reported altered recruitment 
and increased activation of M/Ms, predominantly in fron-
tolimbic regions [27, 86–95]. In humans, positron emission 
tomography studies in depressed patients detected elevated 
microglia activity in the prefrontal cortex (PFC), anterior 
cingulate cortex and insula by using a radiotracer for trans-
locator protein [96–98], a transmembrane protein located in 
the outer mitochondrial membrane that serves as a sensitive 
neuroinflammation marker [99]. Overall, these findings suit 
the recent notion of depression as a microgliopathy [26]. It is 
even discussed whether M/Ms are the key facilitators of the 
relation between CPSS/CPPS and depression [15, 18, 100]. 
In line with this, several studies have demonstrated the joint 
role of IL-1β, IL-6 and TNF-α along with M/Ms activation 
in tryptophan-kynurenine-pathway disruption, glutamate 
excitotoxicity, blood brain barrier disruption and neuronal 
loss in depressive and suicidal behaviour [101–104]. Based 
on these findings, the P2X7R-NLRP3-IL-1β cascade is 
proposed to be the primary interface between CPSS/CPPS, 
humoral and cellular immunity, and depression [15–17, 
33–35, 38, 67, 94, 100, 105].



1345European Archives of Psychiatry and Clinical Neuroscience (2021) 271:1343–1358	

1 3

Neuroinflammation, P2X7R‑signalling 
and chronic stress

Purinergic signalling is a phylogenetically ancient, ubiqui-
tous cellular mechanism involved in cell-to-cell crosstalk, 
tissue homeostasis and immune functioning [36, 106]. 
Nearly all cells release purines and bind them with a vari-
ety of membrane-bound receptors. The purine receptor 
family consists of P1 receptors for adenosine and P2 recep-
tors for nucleotides. The latter are again divided into eight 
metabotropic P2Y and seven ligand-gated ionotropic P2X 
receptors [36, 107]. The contribution of P2X7R signalling 
in sterile inflammation and infection has been examined 
in systemic and brain-specific entities like Parkinson’s or 
Alzheimer’s disease, bipolar disorder, and schizophrenia 
[36, 38, 43, 108, 109]. At the pathogenetic intersection of 
chronic stress and depression, P2X7R signalling has been 
identified as a pertinent factor in causing the numerous and 
complex neurobiological aberrations [33, 34, 39, 43, 48].

In the brain, P2X7R is strongly expressed on M/Ms 
[30, 110, 111] and mainly active in chronic, inflammatory 
conditions due to its high activation threshold and slow 
desensitization (half maximal effective ATP concentration: 
2–4 micromolar) compared to other P2X receptors [36, 
109, 111, 112]. The functional P2X7R is comprised of 
three congregating P2X7R monomers [36]. In the context 
of neuropsychiatric research, many studies have found that 
CPSS/CPPS intensifies glutamate release from neurons, 
which in return triggers more ATP release from neurons, 
astrocytes, and microglia [33, 35, 51, 67, 94, 113–116]. In 
the extracellular space, ATP is a part of damage-associated 
molecular patterns, which act as molecular distress signals 
[117, 118]. Following ATP binding, P2X7R allows imme-
diate potassium efflux, sodium and calcium influx and the 
passage of several large organic cations via an intrinsic 
macropore function [36, 47, 117]. The long-standing 
hypothesis of P2X7R pore dilation was recently disproved 
[36, 117, 119, 120]. Upon sustained P2X7R activation, for 
example by CPSS/CPPS, apoptosis or necrosis is triggered 
by caspase-3 cleavage [34, 47, 117].

Intracellularly, signal transduction is facilitated by the 
P2X7R-induced potassium concentration decline. This 
induces the NIMA-related kinase 7 (NEK7) dependent 
assembly of the NLRP3 inflammasome [121], a multi-
protein complex causing caspase-1 activation and the 
release of proinflammatory cytokines like IL-1β and IL-18 
from astrocytes and microglia [38, 94, 109, 122, 123]. In 
addition, calcium influx upregulates the cellular energy 
metabolism by stimulating glycolysis as well as oxidative 
phosphorylation and causes further glutamate and ATP 
release from microglia and astrocytes, leading to height-
ened excitotoxicity [34, 36]. Aside from this, P2X7R 

activates several other inflammatory pathways including 
nuclear factor ‘kappa-light-chain-enhancer’ of activated 
B-cells (NFƙB), which jointly cause increased pro-IL-1β 
and pro-IL-18 transcription as well as the production of 
IL-6, IL-1α and TNF-α [109, 123]. The P2X7R mediated 
IL-1β release also induces an array of inflammatory effec-
tor molecules including cyclooxygenases, eicosanoids and 
reactive oxygen as well as nitrogen species [34, 109, 124, 
125]. The pathways following P2X7R stimulation in M/Ms 
are illustrated in Fig. 1. Taken together, the multiple cellu-
lar and humoral immune processes downstream of P2X7R 
may translate CPSS/CPPS into the hallmark symptoms and 
neurobiological aberrations of depression [15–17, 33–35, 
76, 116, 126–128].

The P2X7R‑NLRP3‑IL‑1β cascade mediates 
depressive‑like behaviour

To support the importance of the P2X7R-NLRP3-IL-1β cas-
cade in mediating depressive-like behaviour, we present the 
evidence for each single pathway component.

Chronic (21 days) bilateral, stereotactic injection of ATP 
or 2’(3’)-O-(4-benzoylbenzoyl)-ATP (BzATP) into the hip-
pocampus of male Sprague–Dawley rats led to depressive-
like behaviour in the form of reduced rearing times and total 
distance travelled in the open field test (OFT) and decreased 
struggling and increased immobility in the tail suspension 
test (TST). Correspondingly, P2X7R knockout caused stress-
resilience in the forced swim test (FST) and OFT compared to 
C57BL/6 mice when exposed to a 5-week CUS regime [113]. 
Basso et al. [129] also found antidepressant-like effects of 
P2X7R inactivation in the FST and TST. In a 12-week UCMS 
model in male Wistar rats, Pan et al. [130] observed a sig-
nificant upregulation of NLRP3 and NFƙB signalling along 
with increased IL-1β serum und PFC levels. Wang et al. [88] 
performed a similar UCMS paradigm in male Sprague–Daw-
ley rats and reported depressive-like behaviour in the form of 
decreased struggling in the FST, reduced rearing and loco-
motor activity in the OFT and decreased open arm time in 
the elevated plus maze (EPM). In a related approach, Zhang 
et al. [131] demonstrated that a pre-treatment of 8-week-old, 
male BALB/c mice with the NLRP3 inhibitor VX-765 inhib-
ited the development of depressive-like behaviours. Com-
pared to untreated but stressed controls, the VX-765 group 
showed no changes in the sucrose preference test (SPT) nor 
TST after 4 weeks of UCMS. Serum and hippocampal IL-1β 
levels as well as NLRP3 and caspase-1 measures remained 
unaltered in the VX-765 UCMS group. Similar effects were 
observed following 30 days of immobilisation stress in male 
NLRP3-null C57BL/6 mice. These animals did not show 
ATP or IL-1β level increase in the PFC or hippocampus and 
social interaction, food intake as well as performance in the 
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SPT and FST remained unaltered [116]. Meanwhile, injection 
of recombinant IL-1β into the ventricle of Sprague–Dawley 
rats caused decreased sucrose intake in the SPT, increased 
immobility in the TST and supressed social interaction [132]. 
Vice versa, IL-1β antibody treatment during a 2-week CUS 
regime prevented depressive-like behaviour in the SPT and 
EPM compared to control mice receiving unspecific immu-
noglobulins (IgG) [94]. Analogously, 5 weeks of UCMS 
failed to induce behavioural or endocrine changes in male, 
IL-1 receptor knockout mice, while the same UCMS reduced 
neurogenesis, decreased sucrose preference in the SPT and 
lowered social exploration in C57BL/6 controls [133]. In line 
with these findings, intraventricular TNF-α injection induced 
depressive-like behaviour measured in the FST and TST in 
6-week old, male C57BL/6 mice [134], while chronic admin-
istration of a TNF-α inhibitor (Infliximab 5 mg/kg/week) was 
able to attenuate depressive-like behaviour in the FST, EPM 
and SPT after 8 weeks of UCMS [56, 135]. TNF receptor 
1 knockout mice also showed significantly decreased despair 

in the FST and TST compared to wild-type animals [134]. 
Last, application of an IL-6 antibody in male C57BL/6 mice 
exposed to 10 days of CSD reduced immobility in the TST 
and increased sucrose intake in the SPT [136]. Similarly, IL-6 
knockout mice displayed reduced despair in the FST and TST, 
enhanced sucrose preference in the SPT and a partial resist-
ance to learned helplessness compared to controls [137]. In 
summary, the evidence available demonstrates the importance 
of each component along the P2X7R-NLRP3-IL-1β cascade 
in mediating depressive-like behaviours and, when pharmaco-
logically or genetically inactivated, in stress resilience.

Fig. 1   Hypothesized inflammatory pathways downstream of P2X7R 
in M/Ms following psychosocial stress. Upon psychosocial stress 
exposure, neurons and astrocytes release ATP into the extracellular 
space (eATP). This activates P2X7R on microglia and macrophages 
and causes NLRP3 assembly, caspase-1 activation and NFƙB upregu-
lation. These mechanisms jointly cause increased IL-1β, IL-18, IL-6 
and TNF-α production and release. Ultimately, this leads to a cellu-
lar and humoral inflammatory response, neuroplasticity impairment 

and depressive-like behaviour. NEK7 NIMA-related kinase protein 
7, CARD caspase activation and recruitment domain, ASC apopto-
sis-associated speck-like protein containing a CARD, NFkB nuclear 
factor  ‘kappa-light-chain-enhancer’ of activated  B-cells, IKK IκB-
kinase-complex, HIF-α hypoxia-inducible factor 1-alpha, GSK-3 gly-
cogen synthase kinase 3, NFAT nuclear factor of activated T-cells, 
IL interleukin, TNF-α tumor necrosis factor alpha, cytokine receptor 
IL-R or TNFR
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P2X7R antagonists in murine chronic stress 
models

We identified a total of four studies, namely Farooq et al. 
2018, Aricioglu et al. 2009, Yue et al. 2017, and Iwata 
et  al. 2016, which used P2X7R antagonists in CPSS/
CPPS-based murine models of depression (Table 1).

To induce depressive-like behaviour, two of the stud-
ies applied a UCMS paradigm, while the others used 
CUS. We could not find a single study that employed a 
CSD paradigm. The stimuli used in the different stress 
paradigms are almost identical, but reporting detail varied 
between studies. This was particulary true regarding the 
stimulus duration and the total amount of time animals 
were exposed to either one or several stimuli. All studies 
reported random stressor application and employed at least 
one stressor per day. Exclusively Farooq et al. 2018 gradu-
ally increased stressor density over the course of their 9 
weeks UCMS paradigm to five applications per day. In 
regards to the stressfull stimuli and their composition, 
the studies partially overlap. All disrupted the circadian 
rhythm and applied cage shake, tilt or rotation. Three stud-
ies used temperature-based stressors and half-employed 
immobilsation or food and water deprivation. Stressors 
like tail nip or stroboscope application were only found in 
one study. Psychophysical stressors were predominant in 
all stress paradigms, while psychosocial ones like preda-
tor sounds, social isolation or crowding were used in only 
half the studies to a minor and negligible degree. Stress 
paradigm duration was 3, 4, 8 or 9 weeks and thus differed 
between studies.

All studies exclusively included male animals. One 
study made use of BALB/cByJ mice, while the other three 
utilized either Sprague–Dawley or Wistar-Albino rats. 
Animal age at the start of UCMS or CUS varied between 
7 and 10 weeks. However, Yue and Iwata et al. did not 
report the animals’ age. Animal numbers per experimental 
group ranged between 7 and 15.

In terms of P2X7R antagonist and dosage, Farooq and 
Aricioglu et al. injected Brilliant Blue G (BBG) intra-
peritoneal (i.p.) at 25–50 mg/kg, while Yue et al. micro-
injected either BBG or A-438079 into both hippocampi. 
Exclusively Iwata et al. 2016 administered a novel, selec-
tive P2X7R antagonist called A-804598 i.p. with 5 mg/
kg. Antagonist application timing and frequency differed 
between the studies, with a tendency towards a single 
administration per day in the second half of the respective 
stress regime.

Experimenter blinding was reported in all studies, how-
ever, varying in extent. Behavioural assessment was non-
uniform among the studies: an overlap was only found 
for the FST and the SPT, which were applied in half 

the studies. Beyond this, the following tests were each 
applied in one single study: OFT, EPM, Coat State Score, 
Nest Building Score, Novelty Suppressed Feeding Test 
(NSFT). Throughout the studies, behavioural testing was 
performed after or during the last week of UCMS or CUS. 
Only Yue and colleagues performed testing using the FST 
and OFT both on the first and last day of their 3-week 
CUS paradigm.

Following chronic stress application, the studies reported 
findings consistent with depressive-like behaviour. In addi-
tion, neurobiological aberrations in the form of cellular 
as well as humoral immune changes in the blood and in 
frontolimbic areas were found. It must be noted that Iwata 
et al.2016) did not reportthese changes following their CUS 
regime, but in a separate subsection of their study employing 
acute immobilisation stress. Half the studies showed a sig-
nificant increase of P2X7R and NLRP3 expression alongside 
considerable M/Ms activation. Similarly, an upregulation of 
proinflammatory (NFƙB, IL-1β, IL-6) and apoptosis-related 
markers was found. Without exception, P2X7R antagonist 
application led to a significant attenuation of the UCMS- and 
CUS-induced neurobiological alterations and depressive-
like behaviours. Aricioglu et al. (2009) even reported dose-
dependent effects of BBG, with 50 mg/kg being more effec-
tive in reducing immobility in the FST than 25 mg/kg. None 
of the studies reported any side effects of BBG, A-438079 
or A-804598 administration.

Discussion and perspectives

The four studies jointly demonstrate that CUS and UCMS 
induces depressive-like behaviour in rodents. The observed 
behavioural aberrations were accompanied by frontal and 
limbic M/Ms activation and NLRP3-/NFƙB-mediated IL-1β 
increase. Moreover, the administration of a P2X7R antag-
onist ameliorated the stress effects on a cellular, humoral 
and behavioural level throughout the different experimental 
settings. These findings are in line with existing evidence 
demonstrating that CPSS/CPPS models like CUS, UCMS, 
CSD, chronic restraint or social isolation lead to NLRP3-/
NFƙB-related cytokine release (IL-1β, IL-6, TNF-α) [35, 
88, 130, 133, 141] and M/Ms activation, primarily in limbic 
structures like the PFC, hippocampus and nucleus accum-
bens [90, 91, 95, 130, 142–145].

In addition, and consistent with studies of NLRP3-, 
P2X7R- and IL-1β knockout strains [94, 113, 116, 129, 133, 
146], chronic P2X7R antagonist injection led to considerable 
antidepressive and anti-inflammatory effects in each study. 
Similar effects were reported by Ribeiro et al. 2019, Catan-
zaro et al. 2014 and in a subsection of Iwata et al. 2016 in 
the context of acute stress [67, 94, 147, 148]. Related stud-
ies from other immunological research like alcohol-induced 
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cirrhosis, rheumatoid arthritis and multiple sclerosis demon-
strate comparably beneficial and anti-inflammatory proper-
ties of P2X7R antagonists [43, 107, 149, 150]. Overall, these 
results and commonalities with related studies substantiate 
the upcoming notion of inflammation as an important ele-
ment in depression genesis [15, 16, 26, 27, 151].

Modelling depression in animals is traditionally based on 
the application of CPSS/CPPS or certain biological stress-
ors during development, adolescence and adulthood [152]. 
In the light of three core validity criteria (construct/face/
predictive), each different method can at least model one dis-
tinct environmental, neurobiological, or behavioural feature 
of depression [152, 153]. Although no single approach can 
resemble all disease factors, chronic, stress-based models 
like UCMS or CUS are considered the most valid options in 
reflecting disease complexity overall [13, 54–56]. However, 
the models reviewed here mostly lack psychosocial stressors 
and thus are much more CPPS than CPSS models [25, 154]. 
In this regard and in line with existing research [155–157], 
Du Preez et al. [158] previously showed distinct behavioural 
and neurobiological differences between CPSS, CPPS and 
combined CPSS/CPPS paradigms in male mice. Repeated 
saline injections led to anxiety-like behaviour in the OFT 
and NSFT, increased M/Ms activation and reduced TNF-α 
serum levels, corticosterone reactivity and hippocampal neu-
roplasticity. Meanwhile, social isolation resulted in depres-
sive-like behaviour in the SPT as well as FST, increased 
hippocampal plasticity and elevated serum TNF-α, accom-
panied by decreased IL-1β, corticosterone reactivity and M/
Ms density. Intriguingly, the combination of stressors led to 
yet another phenotype with increased anxiety-like features, 
reduced serum IL-1β levels and hippocampal plasticity but 
without significant alterations in corticosterone reactivity 
and M/Ms activation. These findings indicate that the bio-
logical and behavioural response strongly depends on the 
quality and composition of chronic stressors.

Despite the major role of CPSS in depression pathogen-
esis in humans, no translational studies have so far evaluated 
the effects of P2X7R antagonists in a CPSS-based depres-
sion-model like CSD. To measure stress effects, the reviewed 
studies used well-established behavioural tests. However, 
test battery composition was heterogenous and performed 
based on an endophenotype-driven hypothesis, increasing 
the risk of constraint and selection. In principle, neuro-
cognitive and behavioural assessment needs to evolve past 
single test limitations and work towards a comprehensive 
approach to capture the entirety of psychosocial alterations 
of a distinct neuropsychiatric phenotype [13, 159]. Though 
different sentiments exist on how to best assess and class 
animal models and behaviours [159], the National Institute 
of Mental Health Research Domain Criteria (RDoC) are a 
fine-grained matrix interconnecting complex neurobiologi-
cal aberrations and behavioural domains [55, 153, 160]. 

This enables precise, endophenotype-driven modelling of 
physiological systems involved in the pathogenesis of neu-
ropsychiatric disorders. In addition, due to the interspecies 
homology within the RDoC domains, findings can be trans-
lated from animals to humans and vice versa [13, 14].

On a related note, the studies at hand only used male ani-
mals at the verge of adulthood. In neuropsychiatric research, 
considerable sex effects have been shown for animal behav-
iour varying by disease state, species and strain [161–163] 
as well as for the cellular response in general and M/Ms 
response in particular [163–166]. Moreover, contemporary 
studies have emphasized the need of a proper age-translation 
matrix between rodents and human in research [167, 168]. 
Future studies using P2X7R antagonists in murine depres-
sion models should include both sexes, account for age 
effects and employ standardized and comprehensive behav-
ioural assessments. In addition to that, the widespread use 
of imprecise language in reporting behavioural results of 
neuropsychiatric animal models needs to be improved to 
reduce the risk of false interpretation primarily in the form 
of overgeneralisation [13, 153, 169, 170].

Our analysis of the pharmacological properties of the 
P2X7R antagonists used in the four studies is as follows: 
BBG, the most used substance, is a non-selective P2X7R 
antagonist, that penetrates the blood–brain barrier and, 
aside P2X7R, binds P2X1/2/3/4/5R and voltage-gated 
sodium channels [43, 108, 171, 172]. In general, antago-
nist affinity varies depending on the drug itself, the P2X-
subtype, and the species as well as strain [173, 174]. The 
half maximal inhibitory concentration of BBG for P2X7R 
in rat and human cells lies between 10 and 200 nM, mean-
ing it is up to 50-fold lower than for the other receptors 
[43, 107, 174]. It even acts 1000-times stronger on P2X7R 
than on P2X4R [174], making it a semi- rather than a non-
selective antagonist. BBG has been used in a variety of 
research settings revolving around the role of P2X7R and 
M/Ms in neuroinflammation, which overall yielded posi-
tive and anti-inflammatory results [43, 175, 176]. However, 
a lack of in vivo pharmacodynamic analyses in regards to 
BBG-mediated P2X7R antagonism in the brain has been 
demonstrated, questioning the overall validity and interpret-
ability of published data [176]. A-804598 and A-438079 
can cross the blood–brain barrier and are selective P2X7R 
antagonists [43, 173, 177]. A-438079 has been used in sev-
eral inflammatory disease models, causing beneficial effects 
[178]. However, due to its short biological half-life and lim-
ited bioavailability it is considered unsuitable for chronic or 
clinical application [108, 177, 179]. In contrast, A-804598 
has been used in different inflammation models [30, 43, 149, 
150, 180] as well as in acute stress [147, 148] and mania 
models [181]. Based on the limited evidence in the context 
of neuropsychiatry, the used antagonists can be considered 
contemporary and appropriate. However, the application 
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of antagonists with different pharmacological properties in 
various stress paradigms allows only mixed receptor block-
age along with paradigm-selective behavioural effects to be 
deducted. Results are, therefore, only partially comparable 
and must be interpreted with caution [108]. In the future, the 
attribution of study findings for P2X7R should be reserved 
for models using highly selective antagonists. Furthermore, 
studies should take the pharmacological properties, such as 
P2X7R affinity, into account and favour selective over non-
selective drugs [176].

Altogether, we propose a strict commitment to the RDoC 
and to the newly introduced STRANGE framework (social 
background, trappability and self-selection, rearing history, 
acclimation and habituation, natural changes in respon-
siveness, genetic make-up, experience) in study planning 
and reporting in translational neuropsychiatry to minimize 
experimental bias, maximize animal usage, increase animal 
data quality and impact by enhancing reproducibility and 
generalizability overall [55, 153, 160, 182, 183].

Conclusion

The four reviewed studies successfully induced depressive-
like behaviour, immune changes (NLRP3 assembly, IL-1β 
level increase, M/Ms activation) and hippocampal neuro-
plasticity impairment by use of different chronic, psycho-
physical stress paradigms. P2X7R antagonist application 
(BBG, A-438079, A-804598) led to an attenuation of the 
stress-induced neurobiological and behavioural aberrations 
in all four studies. These findings highlight the potential 
of P2X7R modulation in chronic stress and depression. 
However, to advance our understanding of specific P2X7R-
related effects, methodological refinements are needed. We 
propose a commitment to the RDoC and the STRANGE 
framework in study planning and reporting to reduce meth-
odological and pharmacological heterogeneity, minimize 
bias and increase data validity, reliability, and generaliz-
ability. Ultimately, we believe this to be the roadmap to 
reform animal data impact and improve the life of depressed 
patients worldwide.
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