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Abstract

Background and Purpose: To apply a texture analysis of apparent diffusion coefficient (ADC) maps to evaluate glioma
heterogeneity, which was correlated with tumor grade.

Materials and Methods: Forty patients with glioma (WHO grade II (n = 8), grade III (n = 10) and grade IV (n = 22)) underwent
diffusion-weighted imaging (DWI), and the corresponding ADC maps were obtained. Regions of interest containing the
lesions were drawn on every section of the ADC map containing the tumor, and volume-based data of the entire tumor
were constructed. Texture and first order features including entropy, skewness and kurtosis were derived from the ADC map
using in-house software. A histogram analysis of the ADC map was also performed. The texture and histogram parameters
were compared between low-grade and high-grade gliomas using an unpaired student’s t-test. Additionally, a one-way
analysis of variance analysis with a post-hoc test was performed to compare the parameters of each grade.

Results: Entropy was observed to be significantly higher in high-grade gliomas than low-grade tumors (6.86160.539 vs.
6.26160.412, P = 0.006). The fifth percentiles of the ADC cumulative histogram also showed a significant difference
between high and low grade gliomas (8366235 vs. 10306185, P = 0.037). Only entropy proved to be significantly different
between grades III and IV (6.29560.4963 vs. 7.11960.3165, P,0.001). The diagnostic accuracy of ADC entropy was
significantly higher than that of the fifth percentile of the ADC histogram (P = 0.0034) in distinguishing high- from low-grade
glioma.

Conclusion: A texture analysis of the ADC map based on the entire tumor volume can be useful for evaluating glioma
grade, which provides tumor heterogeneity.
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Introduction

Gliomas are the most common primary malignant brain

neoplasms, ranging in grade from low to high [1]. The accurate

grading of gliomas is critical for planning therapeutic strategies,

assessing prognosis, and monitoring response to therapy [2,3].

Currently, diffusion-weighted imaging (DWI) provides tumor

characterization and has been used to differentiate high- from low-

grade gliomas. A few recent reports have suggested that high-

grade gliomas exhibit lower apparent diffusion coefficients (ADCs)

[2,4–7] because of higher tumor cellularity. Recently, Kang et al.

revealed that the fifth percentile of the cumulative ADC histogram

obtained from DWI was the most promising parameter for

differentiating high- from low-grade gliomas [5].

However, the fifth percentile of the cumulative ADC histogram

reflects a small portion of the tumor. Instead, texture analysis

parameters, such as entropy, show the characteristics of the entire

tumor and have the advantage of noninvasively quantifying tumor

heterogeneity, something that cannot be achieved reliably via

simple visual analysis. It is important to assess tumor heterogeneity

because tumors with high intratumoral heterogeneity have been

shown to have poorer prognosis, which could be secondary to

intrinsic aggressive biology or treatment resistance [8].

Although there is no strict definition of the image texture, it is

easily perceived by humans and is believed to be a rich source of

visual information [9]. Generally speaking, textures are complex

visual patterns composed of entities, or subpatterns, that have

characteristic brightness, intensity, size, etc. Thus, texture can be

PLOS ONE | www.plosone.org 1 September 2014 | Volume 9 | Issue 9 | e108335

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.6084/m9.figshare.1155154
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0108335&domain=pdf


regarded as a similarity grouping in an image [10]. The local

subpattern properties derived from a computerized texture

analysis give rise to the perception of their attributes of the

texture as a whole [11].

Until now, some reports have been published regarding tumor

heterogeneity in extracranial tumor using CT and MRI texture

analysis. In esophageal cancer, B. Ganeshan et al. [12] found that

patients who had heterogeneous tumors with low uniformity and

high entropy values assessed via CT texture analysis demonstrated

poorer survival. Francesca Ng et al. [13] revealed that CT texture

features were associated with the 5-year overall survival rate in

patients with primary colorectal cancer. Additionally, textural

parameters reflecting tumor heterogeneity were associated with

tumor metabolism, stage, and prognosis in lung cancer on non-

contrast-enhanced CT [14,15]. Texture analysis has also been

used in breast cancer to improve the distinction between benign

and malignant lesions using contrast-enhanced MRI [16].

To date, there have been a few reports on glioma grading using

a texture analysis of imaging data. Most of these reports were

about the application of texture analysis in the characterization of

brain tumors, for example, to discriminate glioblastoma multi-

forme from malignant glioneuronal tumors, as well as metastasis

from gliomas [8,17–19]. There are only a few reports about

glioma grading using texture analysis. A study by Karoline et al.

[20] demonstrated the potential for CT texture analysis in

quantifying tumor heterogeneity in gliomas and showed a

correlation between tumor heterogeneity and tumor grade.

Additionally, Ananda et al. [21] also revealed that textural

features extracted on T2-weighted images were highly discrimi-

nant between grade I and grade III gliomas.

To the best of our knowledge, there have been no previous

reports examining the ADC textural analysis parameters for

glioma grading. We hypothesized that these ADC textural analysis

parameters could be helpful for glioma grading. Thus, the purpose

of our study was to explore the role of the texture analysis of ADC

maps based on the entire tumor volume in determining the grade

of gliomas and to identify the textural ADC parameter with the

best diagnostic accuracy in glioma grading.

Materials and Methods

This retrospective study was approved by the institutional

review board of the Seoul National University Hospital. The

institutional review board waived the need for written informed

consent from the participants.

Patient Selection
Eighty-seven patients with astrocytic tumors who had under-

gone initial MR imaging at Seoul National University Hospital

between October 2007 and January 2013 were selected from the

radiology report database. Inclusion criteria were as follows: (a) a

histopathologic diagnosis of astrocytic tumors according to the

World Health Organization (WHO) criteria without oligoden-

droglial components, and (b) MR imaging performed with DW at

the standard b value prior to surgery or chemoradiotherapy. We

excluded 47 patients due to the following reasons: (a) inadequate

MR imaging quality due to substantial motion or susceptibility

artifacts (n = 8), (b) MR imaging performed at 3 T (n = 38) and (c)

small size (maximum diameter #1 cm) of the tumor to perform

texture analysis (n = 1).

A total of 40 patients were included in the study. Among the 40

enrolled patients, 8, 10 and 21 exhibited WHO grade II

astrocytomas, III anaplastic astrocytomas, and IV glioblastomas,

respectively. Grade III astrocytomas and grade IV glioblastomas

were classified as high-grade gliomas, while grade II astrocytomas

were grouped as low-grade gliomas.

Image Acquisition
All MR images were obtained with a 1.5-T MR imager (Signa

HDx or HDxt; GE Medical Systems, Milwaukee, WI) with an

eight-channel head coil. The imaging protocol included axial T2-

weighted fast spin-echo (repetition time (TR)/echo time (TE),

5,000/131 msec; 25 sections; Flip angle (FA), 90u; section

thickness, 5 mm; intersection gap, 1 mm; field of view (FOV),

2206220 mm; matrix, 4486256; one acquired signal; echo train

length, 16; voxel resolution, 0.560.965.0 mm) and axial T1-

weighted spin-echo (TR/TE, 466/11 msec; FA, 70u; section

thickness, 5 mm; intersection gap, 1 mm; FOV, 2206220 mm;

matrix, 3206192; voxel resolution, 0.761.165 mm) or sagittal

T1-weighted 3D inversion recovery fast spoiled gradient echo

(TR/TE, 10/4.5 msec; FA, 20u; section thickness, 1 mm; inter-

section gap, 0 mm; FOV, 2206220 mm; matrix, 2406240; voxel

resolution, 0.960.961 mm) sequences with axial and coronal

reconstruction.

Echo-planar DW MR imaging (TR/TE, 10,000/63 msec: b = 0

and 1000 sec/mm2; 35 sections; bandwidth, 1953 Hz per voxel;

section thickness, 3 mm; intersection gap, 1 mm; FOV, 2406240

or 2206220 mm; matrix, 1606160; two acquired signals; voxel

resolution, 1.561.563.0 mm) was performed in the axial plane

prior to the injection of the contrast material.

DW MR images were acquired in three orthogonal directions

and combined into a trace image. Using these data, ADC maps

were calculated on a voxel-by-voxel basis with the software

incorporated into the MR imaging unit.

T1-weighted sequences were repeated after the intravenous

administration of a single dose of 0.1 mmol per kilogram of body

weight and a rate of 4 mL/sec of gadopentetate dimeglumine

(Magnevist; Bayer Schering Pharma, Berlin, Germany) or

gadobutrol (Gadovist, Bayer Schering Pharma, Berlin, Germany).

Volume Acquisition/ADC histograms
The MR data for the ADC map were digitally transferred from

the PACS workstation to a personal computer, and 2-dimensional

(2-D) regions of interest (ROIs) were drawn manually using ImageJ

1.44 software (available at http://rsb.info.nih.gov/ij/) [22]; the

ADC values were summated from the 2-D ROIs. Then, our PC-

based in-house software (MISSTA - medical imaging solution for

segmentation and texture analysis) was used for the quantification

of several features and was implemented with a dedicated C++
language with MFC (Microsoft Foundation Classes, Microsoft,

Redmond, Wash). MISSTA calculated texture and first order

features automatically with the input ROI information. ROIs that

contained the entire tumor were drawn in each section of the ADC

maps. Tumor boundaries were defined with reference to the high-

signal intensity areas thought to represent tumor tissue on the

T2WI by one author (S.H.C., a neuroradiologist with eight years

of brain MR imaging experience) via visual inspection [23].

Definite cystic, necrotic, or hemorrhagic areas were excluded.

For visual inspection, we used strict criteria of ‘‘definite’’ necrosis

as a nonenhancing portion on contrast-enhanced a T1-weighted

image and similar signal intensity to CSF on T2-weighted and

FLAIR images. We did not define necrosis only as a nonenhancing

portion because 14–45% of nonenhancing supratentorial gliomas

are malignant, and 25–31% of the GBM showed faint or no

detectable enhancement [24] because contrast enhancement on

conventional MRI only means the disruption of the blood-brain

barrier, not neovascularization [25]. The data acquired from each
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section were summated to derive voxel-by-voxel ADCs for the

entire tumor; this was performed using in-house software.

ADC histograms were plotted with ADC values on the x-axis

with a bin size of 1610–6 mm2/sec, and the percentage of the total

lesion volume was calculated by dividing the frequency in each bin

by the total number of voxels analyzed on the y-axis. We also

performed a cumulative analysis with the ADC histograms in

which the cumulative number of observations in all of the bins up

to the specified bin was mapped onto the y-axis and was expressed

as a percentage.

For the cumulative ADC histograms, the fifth percentile ADC

value, which is the point at which 5% of the voxel values that form

the histogram are found to the left in the histogram, were

generated [5,26]. Additionally, 3-D height maps of the ADC signal

intensity were generated using in-house software for the repre-

sentative ADC maps for grades II, III and IV, respectively.

Texture Analysis
Texture analysis via Gray Level Co-occurrence Matrices

(GLCM) is a method for extracting second order statistical texture

features in the images. In this study, a texture analysis was

performed within ROIs on the area of interest, and we used 3

parameters for the quantitative analysis of the summation of the 2-

D ROIs, GLCM entropy as well as the skewness and kurtosis of

the image histogram.

For ROIs in the ADC map, entropy was determined as a

parameter that indicated both intensity and irregularity.

Entropy~{
XG{1

i~0

XG{1

j~0

p(i,j)|log(p(i,j))

G is the number of gray levels used. Px(i) is the ith entry in the

marginal-probability matrix obtained by summing the rows of P(i,
j). Higher entropy represents increased heterogeneity [27,28].

Histopathologic Analysis
The tissue samples were obtained via subtotal/total resection or

via image-guided tissue sampling. When performing image-guided

stereotaxic biopsy for brain tumors in our hospital, the biopsy-

targeted site was determined after preoperative MR imaging; the

biopsy was performed at the portion of the tumor that showed the

lowest signal on the ADC map and enhancement on the contrast-

enhanced T1-weighted image.

Immunohistochemistry was used to measure the Ki-67 labeling

index. The routinely used formalin-fixed, paraffin-embedded

tissue blocks were sectioned at 4-mm thickness and then used for

immunohistochemistry.

The areas with the highest cellularity on inspection were

selected, and the Ki-67 labeling index was evaluated using the

avidin-biotin complex immunohistochemical technique.

Statistical Analysis
All statistical analyses were performed with MedCalc software

(version 12.6.1.0 for Microsoft Windows 2000/XP/Vista/7;

MedCalc Software, Mariakerke, Belgium), SPSS (version 21.0,

SPSS Inc., Chicago, Illinois) and GraphPad InStat (version 3.05,

32 bits for Win 95/NT; GraphPad Software, San Diego, CA).

Results with P values less than.05 were considered to be

significant.

To compare the texture parameters and histogram parameters

of high- and low-grade gliomas, the unpaired Student’s t test and

receiver operating characteristic (ROC) analysis were applied.

Additionally, a one-way analysis of variance with a post-hoc test

and ROC analysis were performed to compare the parameters of

each grade. The leave-one-out method was used and the

McNemar test was performed to compare the accuracies. We

used the one-way analysis of variance with a post-hoc test to

compare the Ki-67 labeling index of each grade.

After determining the parameter with the highest diagnostic

accuracy through the above analyses, we planned to suggest a

potential diagnostic algorithm that can differentiate the three

different WHO glioma grades. With a Pearson linear regression

model, the ADC entropy and the fifth percentile ADC values

described above were correlated with the Ki-67 labeling index.

Results

Table 1 summarizes the ADC texture and histogram param-

eters of low- and high-grade gliomas. In terms of the comparisons

of multiple texture parameters, the entropy and skewness were

significantly different between low- and high-grade gliomas. The

entropy value was observed to be significantly higher in high-grade

gliomas than low-grade tumors (P = 0.006). Additionally, higher

skewness was observed in high-grade gliomas than low-grade

tumors (P = 0.045). No significant difference was found between

low- and high-grade gliomas with respect to kurtosis (P = 0.527).

In the cumulative histogram analysis, the fifth percentile of the

cumulative histogram showed significant differences between high-

and low-grade gliomas (P = 0.037).

In Table 2, the ADC texture and histogram parameters of the

grade II, III and IV gliomas are summarized. Entropy proved to

be significantly different between grades II and IV (P,0.001) and

between grades III and IV (P,0.001). Skewness differed

significantly between grades II and IV (P,0.05) but did not show

a significant difference between grades III and IV (P.0.05).

However, no significant difference was observed between the

grade II, III and IV gliomas with respect to kurtosis, mean ADC or

fifth percentile ADC value (P.0.05).

Table 3 summarizes the results of the ROC analyses of entropy

and fifth percentile ADC used to distinguish high- from low-grade

glioma. The entropy cutoff value of 6.501 exhibited a sensitivity,

specificity and accuracy of 78.1%, 87.5% and 80%, respectively.

The fifth percentile ADC cutoff value of 85961026 mm2/sec

exhibited a sensitivity, specificity and accuracy of 59.4%, 87.5%

and 65%, respectively. There was no significant difference

between the diagnostic accuracies of the entropy and fifth

percentile ADC (P = 0.551). However, in the leave-one-out

method, entropy showed higher diagnostic accuracy than the fifth

percentile of the ADC histogram (72.5% vs. 47.5%, respectively).

Additionally, the accuracy of entropy significantly differed from

that of the fifth percentile of the ADC histogram (P = 0.0034).

We performed ROC analyses of entropy for the differentiation

between grade III and IV gliomas (Table 4). The entropy cutoff

value of 6.792 exhibited a sensitivity, specificity and accuracy of

81.8%, 90% and 84.4%, respectively.

As entropy displayed the highest diagnostic accuracy for

differentiating high- from low-grade gliomas and grade IV from

III gliomas, we designed a potential diagnostic algorithm with two

cutoff values of entropy. The entropy cutoff value of 6.501 was

used to differentiate high- from low-grade gliomas, and the

entropy cutoff value of 6.792 was used to identify grade IV gliomas

among high-grade gliomas.

The relationship between the entropy and Ki-67 labeling index

was a significantly positive (R2 = 0.1072, P = 0.039) and the fifth

percentile ADC value revealed a significantly negative relationship

with The Ki-67 labeling index (R2 = 0.2150, P = 0.003) (Figure 1).
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The Ki-67 labeling index differed significantly between grade II

and grade III (0.68960.798 vs. 9.34968.447, P = 0.030) and

between grade II and grade IV (0.68960.798 vs. 14.11767.928,

P = 0.0002). However, no significant difference was observed

between the grade III and IV gliomas (P = 0.387).

Figures 2, 3 and 4 show representative ADC maps and

histograms of grade II, III and IV, respectively. In Figure 2,

grade II glioma showed the narrowest spectrum of the ADC signal

intensity, exhibited a relatively flat appearance of the 3-D height

map of the ADC signal intensity and had a low ADC entropy

value (6.168). In contrast, in Figure 4, grade IV glioma showed the

widest spectrum of the ADC signal intensity, displayed a rugged

appearance in the 3-D height map for ADC signal intensity and

had a high ADC entropy value (7.05).

Discussion

The results of our study suggest that the high entropy, high

skewness and low fifth percentile values of the ADC histograms

based on the entire tumor volumes could be used to differentiate

between high- and low-grade gliomas; the high entropy may also

be useful for discriminating grade IV from III gliomas. The

diagnostic accuracy of the ADC entropy was significantly higher

than that of the fifth percentile of the ADC histogram in

distinguishing high- from low-grade gliomas. Thus, we believe

that the entropy value from the ADC maps can be used to

differentiate between high- and low-grade gliomas, as well as

between grade III and grade IV gliomas, which reflects the

heterogeneity of tumors.

Tumors are heterogeneous on both the genetic and histopath-

ological levels, with intratumoral spatial variation in the cellularity,

angiogenesis, extravascular extracellular matrix, and areas of

necrosis8; in the present study, these were evaluated using an ADC

histogram and texture analysis based on the whole tumors. The

utility of DWI and ADC mapping in the pre-operative diagnosis of

brain tumors has been examined by several groups with respect to

assessing cellularity or grade or predicting tumor response to

treatment. DWI and ADC have also been used in distinguishing

between enhancing and non-enhancing areas, between tumor and

perifocal vasogenic edema, or between viable tumor and necrosis;

an inverse relationship between cellularity and diffusivity has been

observed in various tumors, including lymphoma, high-grade

glioma, meningioma, and medulloblastoma [2,29–34]. However,

it is well known that the mean ADC value has limitations in the

evaluation of glioma grading and response to treatment due to the

heterogeneity of gliomas. Spatial and temporal heterogeneity in

the ADC signal is based on the destruction of normal anatomy by

tumors, vasogenic edema, tumor cellularity, degenerative changes

(hemorrhage, cystic or mucinous degeneration), or the compres-

sion of normal structures. Signal changes may be additive or

cancel each other out [35]. Additionally, Kang et al. [5] also found

that grade IV gliomas showed a higher mean ADC than either

grade II or grade III gliomas due to the inclusion of microscopic

areas of necrosis and the partial volume-averaging effect of

Table 1. ADC texture and histogram parameters of low- and high-grade gliomas.

Parameter Low grade (n = 8) High grade (n = 32) p-value*

Texture parameter

Entropy 6.26160.412 6.86160.539 0.006

Skewness 0.08260.176 0.58260.669 0.045

Kurtosis 0.47761.659 0.94562.358 0.527

ADC (x1026mm2/sec)

Mean 1,3276322 13006289 0.81

Fifth percentile 1,0306185 8366235 0.037

Note.–Values are the means 6 standard deviation.
*Significant difference between two groups (P,.05), The difference between two groups was evaluated using the unpaired student’s t-test.
doi:10.1371/journal.pone.0108335.t001

Table 2. ADC texture and histogram parameters of the grade II, III and IV gliomas.

p-value*

Parameter Grade II (n = 8) Grade III (n = 10) Grade IV (n = 22) II vs. III II vs. IV III vs. IV

Texture parameter

Entropy 6.26160.4120 6.29560.4963 7.11960.3165 .0.05 ,0.001 ,0.001

Skewness 0.08260.176 0.26560.572 0.73360.671 .0.05 ,0.05 .0.05

Kurtosis 0.47761.659 0.89862.068 0.96762.532 0.872**

ADC (x1026mm2/sec)

Mean 1,3276322 1,1776334 1,3556255 0.27**

Fifth percentile 1,0306185 8816261 8156226 0.088**

Note.–Values are the means 6 standard deviation.
*Significant difference between three groups (P,.05); P-values were calculated using a one-way analysis of variance with a post-hoc test.
**P values were calculated using a one-way analysis of variance, and a post-hoc test was not performed.
doi:10.1371/journal.pone.0108335.t002
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adjacent areas of necrosis. Thus, we postulated that the

heterogeneity of ADC values within gliomas can be useful for

their grading and found that the difference in entropy between

grade III and IV was bigger than that for grade II and III, which

indicates that the increased ADC entropy in high-grade glioma

can be explained by high heterogeneity.

Additionally, entropy may be representative of entire tumors. In

previous studies, the specific value, such as the minimum or fifth

percentile of the cumulative ADC histogram, was used to

distinguish between high- and low-grade gliomas. However,

specific feature values reflect only a small portion of the tumor.

Instead, texture analysis parameters, such as entropy, show the

characteristics of the entire tumor and have the advantage of

noninvasively quantifying tumor heterogeneity. A limited number

of texture parameters were described because we eliminated the

parameters that were statistically insignificant. We extracted

multiple texture features, including entropy, kurtosis, skewness,

homogeneity, GLCM moments, GLCM Inverse Difference

Moment, GLCM contrast, and variance; we also extracted

multiple shape descriptors, including volume, effective diameter,

surface area, sphericity, discrete compactness and roundness.

Then, after statistical analysis, the parameters that were statisti-

cally insignificant were excluded. We selected entropy from among

multiple texture analysis parameters because entropy was the most

commonly used texture analysis parameter in the previous studies

using CT texture analysis and because entropy reflects the

heterogeneity the tumor [12–15,27].

In our study, the entropy cutoff value of 6.501 exhibited a

sensitivity, specificity and accuracy of 78.1%, 87.5% and 80%,

respectively, for distinguishing between high- and low-grade

gliomas. The entropy cutoff value of 6.792 exhibited a sensitivity,

specificity and accuracy of 81.8%, 90% and 84.4%, respectively,

for the differentiation between grade III and IV gliomas; these

appear to be comparable with previous studies. Zacharaki et al.

revealed that the accuracy, sensitivity, and specificity of the binary

Support Vector Machine (SVM) classification were 88%, 85%,

and 96%, respectively, for discriminating between high- and low-

grade glioma, 55.6%, 90.9% and 75.0%, respectively, for

discriminating between grade II and III gliomas and 100%,

90.9% and 96.4%, respectively, for discriminating between grade

IV and grade II gliomas. This study required the co-registration of

all sequences (T1-weighted image, contrast-enhanced T1-weighted

image, T2-weighted image, T2 FLAIR image, relative cerebral

blood volume map) and computer-assisted multi-step classification

[18]. Additionally, based on T2-weighted imaging, the study of

Ananda et. al indicated that contrast, intensity and entropy,

kurtosis, and spectral energy showed differences between grade I

and grade III; sensitivity, specificity and accuracy were not

calculated [21]. We believe that a textural analysis using

multimodalities will be more helpful for the diagnosis and grading

of gliomas, and future studies are warranted.

Ki-67, a nuclear antigen specific for proliferating cells [36], is

used for the evaluation of tumor proliferation, and the positive

relationships of Ki-67 with higher cell density and tumor grade

have been well-known for the astrocytic gliomas [37]. Some

studies showed that the minimum or fifth percentile values of the

ADC histogram correlated well with the Ki-67 labeling index, but

the relationship between the mean ADC and the Ki-67 labeling

index was insignificant in high-grade gliomas [38,39]. Our results

demonstrated that the fifth percentile values of the ADC histogram

had a negative correlation with the Ki-67 labeling index in

gliomas, including low-grade gliomas, and that entropy had a

Table 3. ROC results for Entropy and the Fifth percentile of the ADC histogram for glioma grading (low- vs. high-grade).

Entropy Fifth percentile ADC

AUC* 0.830 (0.676, 0.930) 0.750 (0.588,0.873)

Sensitivity (%){ 78.1 (25/32) 59.4 (19/32)

Specificity (%){ 87.5 (7/8) 87.5 (7/8)

Accuracy (%){ 80 (32/40) 65 (26/40)

Cutoff value .6.501 #859

P-value for ROC curve 0.0001 0.0027

P-value for the comparison of ROC curves 0.551

Note.–*The data in parentheses are 95% confidence intervals.
{Sensitivity and specificity for identifying high-grade tumors. The data in parentheses are the numbers used to calculate the percentages.
doi:10.1371/journal.pone.0108335.t003

Table 4. ROC result for Entropy of ADC for glioma grading (Grade III vs. IV).

Entropy

AUC* 0.941 (0.861, 1.000)

Sensitivity (%){ 81.8 (18/22)

Specificity (%){ 90 (9/10)

Accuracy (%){ 84.4 (27/32)

Cutoff value .6.792

P-value for ROC curve ,0.0001

Note.–*The data in parentheses are 95% confidence intervals.
{Sensitivity and specificity for identifying grade IV gliomas. The data in parentheses are the numbers used to calculate the percentages.
doi:10.1371/journal.pone.0108335.t004
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positive relationship with the Ki-67 labeling index. The elevated

Ki-67 labeling index correlates with tumor aggressiveness, and

entropy reflects spatial irregularity; these could be said to explain

the positive relationship between entropy and the Ki-67 labeling

index.

It is well known that oligodendrogliomas have different imaging

findings from astrocsytomas. Saito et al. have demonstrated that

the mean cerebral blood volumes measured via dynamic

susceptibility contrast perfusion imaging of the oligodendroglial

tumors were significantly higher than those of the astrocytic

tumors, irrespective of tumor grade [40]. Additionally, Cha et al.

Figure 1. The correlation study of the Ki-67 labeling index (A) with the entropy and (B) with the fifth percentile of ADC using a
linear regression model. The relationships were significant. (R2 = 0.1072, P = 0.039; R2 = 0.2150, P = 0.003, respectively). The tumor grades of the
tissue specimens were marked as colored dots (blue = grade II, orange = grade III, red = grade IV).
doi:10.1371/journal.pone.0108335.g001

Figure 2. Images of a 43-year-old male with a grade II astrocytoma. (A) T2-weighted image, (B) T2 FLAIR image, (C) T1-weighted image, (D)
contrast-enhanced T1-weighted image, (E) ADC map with ROI placement, with the corresponding (E) 3-D height map of the ADC signal intensity, (G)
histogram of ADC and (F) cumulative ADC histogram. The entropy value of ADC was 6.168.
doi:10.1371/journal.pone.0108335.g002
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Figure 3. Images of a 30-year-old male with a grade III anaplastic astrocytoma. (A) T2-weighted image, (B) T2 FLAIR image, (C) T1-weighted
image, (D) contrast-enhanced T1-weighted image, (E) ADC map with ROI placement, with the corresponding (E) 3-D height map of the ADC signal
intensity, (G) histogram of ADC and (F) cumulative ADC histogram. The entropy value of ADC was 6.792.
doi:10.1371/journal.pone.0108335.g003

Figure 4. Images of a 62-year-old male with a grade IV glioblastoma. (A) T2-weighted image, (B) T2 FLAIR image, (C) T1-weighted image, (D)
contrast-enhanced T1-weighted image, (E) ADC map with ROI placement, with the corresponding (E) 3-D height map of the ADC signal intensity, (G)
histogram of ADC and (F) cumulative ADC histogram. The entropy value of ADC was 7.05.
doi:10.1371/journal.pone.0108335.g004
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postulated that the reason for elevated cerebral blood volume in

oligodendroglioma compared with other gliomas could be that

most oligodendroglial tumors are located in cortical areas and

have a direct involvement with gray matter. Because the normal

cortical gray matter contains a greater number of blood vessels

compared with that of white matter, tumors involving the gray

matter may exhibit higher vascular density [41]. Additionally,

gliomas with oligodendroglial components are reported to have

better clinical outcomes compared with pure astrocytic tumors

[42,43]. Thus, we believe that the gliomas with oligodendroglial

components should be dealt as other glioma entities, and future

study is warranted for this issue.

In terms of T1 shortening within the glioma, which can affect

ADC values, the major factors include hemorrhage and calcifica-

tion. We excluded gliomas with oligodendroglial components, so

hemorrhage could affect the ADC values (a decrease in ADC). We

believe that hemorrhage is also one of imaging findings for high-

grade glioma (especially for glioblastoma) and makes tumor

imaging heterogeneous; thus, we assert that hemorrhage is also

helpful for glioma grading.

Apart from the intrinsic limits of any retrospective study, our

study has several limitations. First, relatively few patients were

included in this study given the enrollment period. We excluded

patients who performed MR imaging at 3T or using outside

hospital MR scanners to minimize the variation of image quality.

The difference in signal intensities on diffusion-weighted images

obtained at different magnetic fields is regarded as insignificant

because molecular movement is independent from the magnetic

field [44]. Thus, a texture analysis of the ADC map on 3T MRI

may be similar to this study on 1.5T MRI. Additionally, MR

images obtained on 3T enable the increase of the contrast-to-noise

ratio between normal brain parenchyma and the infiltrative

tumor, which could make it easy to determine tumor boundaries

on ADC map. We believe that future study at 3T is warranted for

this issue. Only a small number of low-grade gliomas (n = 8) was

included; however, it is well known that low-grade gliomas

account for 10–15% of all adult primary intracranial tumors [45],

which is very similar to our study setting. A further prospective

study that includes a larger population is warranted to strengthen

the statistical power. Second, the tumor boundary was defined

with reference to a high signal intensity on T2WIs, and tumor

infiltration as well as peri-tumoral edema was included in the

ROIs. However, the differentiation between these two compo-

nents ‘is impossible in the imaging studies. Third, despite the

exclusion of any visible foci of suspected artifacts on the ADC map

from the ROI measurements [46], the possibility of including

extreme ADCs resulting from DW MR imaging and ADC map

misregistration artifacts remains. The texture analysis parameters

obtained from the ADC map can be presumed to be less affected

by these artifacts and, therefore, appear to be more reliable

histogram parameters than the specific percentile of the cumula-

tive ADC histogram (such as the minimum or fifth percentile).

Fourth, in this study, the whole tumor was used for texture

analysis, and the study did not use the individual phenotypes of

enhancement, necrosis and edema/invasion. The differentiations

between edema and tumor infiltration and between the none-

nhancing solid portion of the tumor and microcystic necrosis are

impossible via visual inspection because microcystic necrosis and

nonenhancing solid portions showed intermediate signal intensity

on T2WI and hypointensity on contrast-enhanced T1WI [24].

However, we believe that the inclusion of microcystic necrosis can

represent true microenvironment of the tumor. Fifth, we used the

manual segmentation method to define tumor boundaries, which

can be labor-intensive and limited by inter- and intra-observer

reproducibility.

In conclusion, this study reveals that the entropy of the ADC

histogram could be used for distinguishing between high- and low-

grade gliomas, as well as between grade IV and III gliomas with

diagnostic accuracies of 80% and 84.4%, respectively. We suggest

a potential glioma grading schema using two ADC entropy cutoff

values for separating the three different WHO glioma grades.
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