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1  Introduction
Pancreatic ductal adenocarcinoma (PDAC)is an aggressive disease with high surgical 
mortality and a 5-year survival rate often below 1%, making it the cancer with the worst 
prognosis [1, 2]. Studies have linked its development to factors like smoking, diabetes [3, 
4], obesity [5, 6] and chronic pancreatitis [7]. About 10% of cases have a genetic basis, 
involving mutations in genes such as CDKN2A, STK11, and PRSS1 [6, 8]. Other contrib-
uting mechanisms include chromosomal changes, epigenetic shifts, and transcriptional 
alterations [9]. By 2030, pancreatic cancer is expected to become the second leading 
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Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents significant diagnostic challenges 
at early stages due to the absence of specific symptoms and the rapid progression 
of the disease. Consequently, there is an urgent imperative to investigate the 
mechanisms underlying early detection and the biological processes that drive 
cancer progression. In response to this need, we conducted a paired design study 
employing differential protein analysis, Mendelian randomization (MR), and single-cell 
analysis to identify distinctive features associated with early-stage PDAC (E-PDAC). 
Our initial analysis in the RJ cohort identified 1,068 E-PDAC-related proteins from 
differential protein analysis. Subsequently, we employed a random forest approach to 
pinpoint 25 E-PDAC-specific proteins. These proteins informed the development of 
13 machine learning models aimed at predicting E-PDAC risk, which demonstrated 
an area under the curve (AUC) of approximately 0.9 in the discovery cohort and 
approximately 0.8 in external validation. Furthermore, MR and single-cell analysis 
were utilized to explore causal relationships and the composition of the tumor 
microenvironment. Through MR, we identified STX7 as a risk factor (odds ratio = 1.26; 
confidence interval: 1.03–1.54; p = 0.02), with LUM exhibiting a dual role (pro-
tumorigenic in proteomic analysis but anti-tumorigenic in MR analysis). Single-cell 
analysis revealed that LUM primarily aids in the generation of fibroblasts and T/B cells, 
serving as pro-tumorigenic and antitumorigenic agents, respectively. Our research 
offers valuable insights into protein biomarkers, cell types, and communication in 
E-PDAC, suggesting potential targets to improve screening efficiency.
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cause of cancer death in the United States [10]. PDAC is highly lethal primarily because 
it’s often detected late, after metastasis, due to its asymptomatic or vague symptom pre-
sentation. The pancreas’s location hinders routine screenings, and the lack of early-stage 
diagnostic biomarkers complicates the detection of localized tumor.

Pancreatic invasive neoplasia can take years to develop, offering a window for early 
detection, especially in high-risk groups [11, 12]. Biomarkers might help identify high-
grade precursors or early-stage pancreatic cancer. Some labs have screened accessible 
biological samples, finding TP53/SMAD4 mutations in pancreatic juice as PDAC risk 
factors [13]. Other biomarkers in PDAC patients’ blood include CA19-9, HbA1C, tumor 
markers [14–16], circulating tumor cells [17], exosomes, circulating-tumor DNA, or 
cell-free DNA [18]. However, low levels of peripheral DNA limit sensitivity in early-
stage PDAC detection. CA19-9 is the most used diagnostic biomarker, despite its limited 
sensitivity. CA19-9 remains the most commonly used diagnostic biomarker for PDAC, 
despite its sub-optimal sensitivity. It is important to note that any biomarker initiative 
for PDAC will inevitably result in false positives within the average-risk population, 
necessitating exceptionally high specificity and sensitivity. Investigating the molecular 
basis of PDAC is crucial. Proteins, key to biological functions and traits, provide valuable 
insights when measured directly. Researchers have effectively used proteome-focused 
cross-omics analyses to reveal tumor composition differences [19, 20]. The PDAC tumor 
microenvironment features abundant fibroblasts, a dense extracellular matrix, poor vas-
cularization, and a varied, mainly immunosuppressive cell population. Understanding 
changes and cell interactions in E-PDAC stages is vital.

Our investigation of E-PDAC was organized around several principal objectives. Ini-
tially, we identified and validated 25 E-PDAC-specific proteins which were potential 
biomarkers and therapeutic targets, utilizing a paired design approach. Subsequently, 
we developed a predictive model for E-PDAC screening, which exhibited robust perfor-
mance metrics. Furthermore, through Mendelian randomization analyses, we identified 
the proteins STX7 and LUM as potential factors for PDAC. Additionally, we conducted a 
comparative analysis of the PDAC tumor microenvironment across tumor-adjacent nor-
mal tissue, as well as early and late stages of the disease, leading to the identification of 
an E-PDAC-specific cell type. The workflow of the entire study is illustrated in Fig. 1.

2  Materials and methods
2.1  Data source

Data collection and sources data are drawn from a range of sources, and multi-omics 
data were used in this research, including genome, transcriptome and proteome Table 1. 
For proteome data, the RJ-cohort data [21] and CPTAC data [22] were seen as the dis-
covery set and validation set separately. RJ-cohort was obtained from Shanghai Jiao 
Tong University Ruijin Hospital, which has made 281 samples * 4784 proteins data avail-
able publicly. In the CPTAC data, a total of 149 samples were collected in our study, 
which including 44 tumor adjacent samples and 105 PDAC tumor samples. The PDAC 
GWAS summary data was obtained from FinnGen research project [23], which aimed to 
identify genotype-phenotype correlations in the Finnish population. For the proteomic 
GWAS summary data, we integrated seven large-scaled proteomic studies (Pietzner et 
al., 4775 proteins [24]; Ferkingstad et al., 4719 proteins [25]; Sun_1 et al., 2995 proteins 
[26]; Sun_2 et al., 1463 proteins [27]; Suhre et al., 1124 proteins [28]; Folkersen et al., 90 
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proteins [29]; Yao et al., 71 proteins [30]), and extracted summary statistics of genetic 
associations with plasma proteins. The PDAC single cell data was from Peng’s research 
[31], which collected the PDAC tumor samples and non-PDAC tumor samples from 
Peking Union Medical College Hospital.

2.2  Differential protein analysis of the paired design

In this study, the RJ cohort was discovery set, and CPTAC was validation set. Firstly, we 
named E-PDAC or L-PDAC based on their clinical stage. Specifically, stages I/IIa (or I/
II if stage II was not further subdivided) were classified as E-PDAC, while the remain-
ing stages were designated as L-PDAC. Samples from adjacent non-tumorous tissue 
were labeled as Normal stage. Secondly, the paired design was conducted in discovery 
and validation sets. From the RJ cohort, comprising 281 samples, 67 E-PDAC & Normal 

Table 1  The data source
Data source Data type Sample size
RJ-cohort data PDAC Protein data 281
CPTAC data PDAC Protein data 149
FinnGen data PDAC GWAS data 347,110
Pietzner et al. Proteomic GWAS data 4775
Ferkingstad et al. Proteomic GWAS data 4719
Sun_1 et al. Proteomic GWAS data 2995
Sun_2 et al. Proteomic GWAS data 1463
Suhre et al. Proteomic GWAS data 1124
Folkersen et al. Proteomic GWAS data 90
Yao et al. Proteomic GWAS data 71
Peng et al. PDAC single cell data 35

Fig. 1  Research workflow diagram
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tissue pairs, as well as 23 L-PDAC & Normal tissue pairs, were identified. Additionally, 
27 E-PDAC & Normal tissue pairs from the CPTAC dataset were utilized to validate 
the findings from the RJ cohort. Thirdly, differential protein screening analysis was con-
ducted on both the E-PDAC & Normal pairs and the L-PDAC & Normal pairs, and the 
E-PDAC-related proteins and L-PDAC-related proteins were obtained. The E-PDAC-
specific proteins are E-PDAC-related proteins excluding L-PDAC-related proteins. A 
paired Wilcoxon rank-sum test was employed for statistical analysis, and all P-values 
were adjusted using the Bonferroni correction method.

2.3  E-PDAC-specific protein identification and predictive model construction

To refine the E-PDAC-specific proteins obtained previously, a random forest algorithm 
was employed. Proteins exhibiting an importance value greater than 0.5 in the ran-
dom forest analysis were designated as final E-PDAC-specific proteins. Utilizing these 
key proteins, 13 distinct machine learning methods were employed to develop the 
E-PDAC predictive model based on 10-fold cross-validation. These methods included 
ranger, nnet, kknn, naïve Bayes, logistic regression, SVM, C5.0, XGBoost, logistic, LDA, 
GBM, LightGBM, and random forest. During the 10-fold cross-validation, the data is 
divided into 10 subsets, or “folds.” The model is trained on 9 of these folds and tested 
on the remaining fold. This process is repeated 10 times, with each fold serving as the 
test set once. The results are then averaged to provide an overall performance metric. 
The 10-fold cross-validation could balance between bias and variance in the model 
evaluation. The primary evaluation metrics comprised the area under the curve (AUC), 
accuracy (ACC), sensitivity, and specificity. The predictive models were trained using 
E-PDAC and normal paired data from the RJ cohort, while the CPTAC dataset served 
as external validation to assess model performance. The “mlr” R package was utilized for 
this analysis.

2.4  Mendelian randomization

The MR analysis was performed to explore the relationship between proteomic data 
and PDAC based on the genome perspective. Out of seven large proteomic studies, only 
five plasma protein data of discovery results were found. The proteomic datasets were 
selected for inclusion in the analysis based on the following criteria [32]: (I) Genome-
wide significance: Only pQTLs that reached the genome-wide significance threshold 
(P < 5 × 10⁻⁸) were included to ensure the statistical robustness of the identified associa-
tions; (II) Exclusion of MHC regions: pQTLs located within the major histocompatibility 
complex (MHC, located in the 26–34  Mb region of chromosome 6) were excluded to 
reduce the potential interference of this highly polymorphic region on the results; (III) 
Linkage disequilibrium filtering: pQTLs with significant linkage disequilibrium (LD, r² 
< 0.001) were further screened to ensure the independence of the selected instrumen-
tal variables; (IV) F-statistic threshold: To ensure the strength of instrumental variables, 
we only keep the corresponding pQTL for each protein with an F-statistic greater than 
10, thereby minimizing the bias introduced by weak instrumental variables. The PDAC 
GWAS summary was from the FinnGen database, comprising 1,992 pancreatic cancer 
cases and 345,118 control samples.
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2.5  Single cell analysis of PDAC

Single-cell RNA sequencing data from PDAC, as reported in Peng et al. [33], was utilized 
to investigate the influence of E-PDAC-associated markers on the risk of E-PDAC. The 
cell types, as annotated by the original authors, were employed without further cluster-
ing. Initially, we analyzed the variations in cell type distribution across Normal, Early, 
and Late stages. Subsequently, we sought to identify stage-specific cell types and exam-
ined their relationship with E-PDAC. Finally, CellChat analysis was conducted to explore 
intercellular communication among various cell types, with a particular focus on stage-
specific cells.

3  Results
3.1  Proteome-wide differential analysis identification for E-PDAC

In this study, we sought to identify differential proteins associated with E-PDAC using 
data from the RJ cohort. Based on clinical information, patients with stage I and II PDAC 
were classified as E-PDAC, while those with more advanced stages were categorized as 
L-PDAC. To identify the most influential proteins in E-PDAC based on paired design, we 
selected PDAC patients who provided both tumor-adjacent normal and tumor samples. 
This selection resulted in 67 paired E-PDAC&N samples, and 23 paired L-PDAC&N 
samples. Paired analyses were conducted using the Wilcoxon signed-rank test. In the 
E-PDAC paired analysis, the proportions of differentially up-regulated, down-regulated, 
and non-differential proteins were 19.57%, 12.74%, and 67.68%, respectively (Fig. 2A). In 
contrast, the L-PDAC paired analysis revealed proportions of 6.16%, 4.09%, and 89.74% 
for up-regulated, down-regulated, and non-differential proteins, respectively (Fig. 2A). 
Overall, 1547 proteins were identified as differential variables in the E-PDAC analysis, 
while 491 proteins were identified in the L-PDAC analysis (Fig. 2B). The intersection of 
these analyses indicated that 479 proteins were common to both. The number of pro-
teins related to E-PDAC and L-PDAC were 1,068 and 12, respectively. Additionally, we 
presented heatmaps illustrating the differential proteins for both paired designs (Fig. 2C, 
D).

Fig. 2  Differential proteins between different stages in PDAC. A The role of differential proteins in Early and Late 
stage; B Wayne diagram of differential proteins in two stages; The heatmap of differential proteins in Early (C) and 
Late (D) stage. Up-regulated proteins were shown in red and down-regulated proteins were shown in blue
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3.2  25 E-PDAC-specific protein identification and 13 predictive models construction

In this part, we aimed to narrow down the E-PDAC related proteins using random for-
est to find out the most accurate E-PDAC-specific protein. According to the feature 
importance scores given in the random forest analysis, the proteins with importance 
value greater than 0.5 were named as E-PDAC-specific protein. In this way, we obtained 
25 proteins which were strongly link with E-PDAC, including TPM2, SIDT2, RRBP1, 
RENBP, PFN1, PICALM, MMP14, MSN, MRC2, GPX8, IGKV3D.7, HCLS1, JCHAIN, 
GIMAP1, TTC39C, TPM2, LUM, FBLN2, CNN3, C1S, ARPC3, CNN2, C1QB, C11orf96 
and ASPN (Fig. 3A). Based on these 25 E-PDAC-specific proteins, the 13 machine learn-
ing algorithms were used to construct models for E-PDAC prediction. We trained and 
validated our models using 10 folds cross-validation based on the E-PDAC data of RJ-
cohort. As Fig. 3B showed, AUC, ACC, sensitivity and specificity were almost greater 
than 0.8. The AUC performance of ranger, naïve Bayes, SVM, LDA, GBM, lightGBM and 
random forest was relatively better, with more than 0.9. All seven of the above machine 
learning methods showed a high accuracy of more than 0.85. In addition, the specificity 
was intermediate between the two. In contrast, although the sensitivity of these machine 
learning methods was relatively low, it still exhibited greater than 0.8.

3.3  External validation of 25 E-PDAC-specific proteins and 13 predictive models

This part served as an in-depth verification of findings based on the external valida-
tion data. In our study, the E-PDAC protein data of CPTAC dataset were treated as the 
external validation set. Similar with RJ-cohort, we named stage I and stage II as E-PDAC 
to analyze more granularly, and we collected 27 patients for paired E-PDAC analysis. 
Unfortunately, two E-PDAC-specific proteins were missing from the CPTAC dataset, 
and only 23 E-PDAC-specific proteins were found. In order to maintain the consistency 
of variables, we rebuilt prediction models using these 23 proteins based on RJ-cohort. 
Then these models were validated on the CPTAC dataset. The performance of validation 
has somewhat larger fluctuations than the discovery set. As Fig. 3C showed, the AUC 

Fig. 3  E-PDAC-related signature in discovery and validation set. A Point plot of E-PDAC-related signature, which 
was in red. The 13 models’ performance in discovery (B) and validation (D) set. C The boxplot of E-PDAC-related 
signature in validation set
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values were greater than 0.8 in the most of models, such as C50, GBM, KKNN, LDA, 
lightGBM, Random Forest, SVM, and XGboost. Similar trends were observed in ACC 
performance. Compared to the AUC and ACC, the sensitivity and specificity showed 
fewer stable performances, which might be related to the smaller sample size. Beyond 
that, we carried out the paired sum-rank test on 23 E-PDAC related proteins in CPTAC 
data. As our expected, all the proteins’ difference between the E-PDAC and Normal was 
statistically significant (Fig. 3D). These results further verified the aforementioned find-
ings. As anticipated, the variations among the 23 E-PDAC-specific proteins were statisti-
cally significant (Fig. 3D), thereby providing additional validation for the aforementioned 
findings.

3.4  Proteome-wide MR analysis verified two proteins

To further verify the observed findings, we performed MR analysis for E-PDAC-specific 
proteins with full summary-level data. 5 protein GWAS summary data were found from 
seven large-scaled proteomic studies. According to the Wald ratio and IVW results, 2 
proteins (STX7 and LUM) were significantly related to PDAC risk (Fig.  4A). Geneti-
cally predicted higher levels of STX7 were associated with an increased risk of PDAC 
(OR = 1.26; 95%CI:1.03–1.54; p = 0.02), while the LUM proteins were negatively associ-
ated with PDAC risk (OR = 0.52; 95%CI:0.32–0.85; p = 0.01). No causal or correlations 
relationship was found between the other three proteins (HCLS1, JCHAIN and TPM2) 
and PDAC. To further confirm the conclusion of genetic MR analysis, we compared the 
expression of STX7 and LUM in paired human cancer specimens and adjacent non-can-
cerous tissues based on TCGA by GEPIA 2.0 (Fig. 4B, C). As expected, we observed the 
expression of STX7 in PDAC is higher than cancer adjacent, which was consistent with 
our previous findings and suggested STX7 is the risk factor of PDAC (Fig. 4B). Surpris-
ingly, we observed the opposite LUM effect compared to the previous one. From TCGA 
transcriptome differential analysis, the expression of LUM in the PDAC is much higher 
than tumor adjacent non-cancerous tissues. This difference pattern was most apparent 
in the pan-cancer analysis (Fig. 4C). LUM, also known as Lumican, is an extracellular 
matrix protein, and the effects of LUM on PDAC warrant further investigation.

3.5  ScRNA-seq analysis uncovered the cell type enrichment of E-PDAC-specific proteins

To delve deeper into the mechanism of E-PDAC progression, we implemented scRNA-
seq analysis to illustrate the cell type distribution based on E-PDAC-specific proteins. 

Fig. 4  Mendelian randomization analysis result of E-PDAC-related signature. A The forest plot of E-PDAC-related 
signature. The gene expression of STX7 (B) and LUM (C) in pan-cancer
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The Peng’s data provided the rich information in cell annotation, and we no longer re-
annotated each single cell. Different from RJ-cohort described earlier, the stage II was 
divided into IIA and IIB. Therefore, we named stage I and stage IIA as E-PDAC, and 
remaining was seen as L-PDAC. Finally, a total of 11 normal samples, E-PDAC samples 
and L-PDAC samples were collected, which covered 57,423 cells. These cells partially 
derived from the pancreatic cell, partially from blood vessel, partially from fibroblast, 
and partially from immune cells (Fig. 5A). Here, these cells were presented from PDAC 
stage perspective (Fig.  5B), including Normal, E-PDAC and L-PDAC. Considering 
Fig.  5A, B, we found that some cell types presented throughout three stages, such as 
pancreatic ductal cell. Interestingly, some cell was only seen in the early or late stage, 
such as subset of the pancreatic ductal cell and fibroblast cell. As the disease progresses, 
changes occur in endothelial and pancreatic cells, suggesting heterogeneity within these 
cell types, which can be further subdivided. If true, we would expect stage-specific cell 
subgroups. In normal stages, cells are mainly in the top-left area, while early-stage cells 
are in the bottom-right. Figure 5C shows cell type proportions at different stages. With 
disease progression, the proportions of pancreatic stellate, fibroblast, and immune cells 
increase, while blood vessel endothelial, pancreatic acinar, and ductal cells decrease.

To associate E-PDAC signatures with cell types, we plotted violin graphs for Normal, 
Early, and Late stages (Fig. 5D). Pancreatic epsilon cells appeared in the early stage but 
were absent in the normal stage (Table S1), similar to memory B cells, proliferating B 
cells, CD8 T cells, regulatory T cells, and neural cells. Genes LUM, MMP14, ARPC3, 
PICALM, and CNN3 were enriched in pancreatic epsilon cells, while CNN2, MSN, 
ARPC3, C1S, PFN1, and HCLS1 were enriched in T and B cells. These changes were 
not observed in the L-PDAC phase. The LUM gene was mainly found in fibroblasts dur-
ing the normal stage but became enriched in immune cells, including T and B cells, as 
the disease progressed. We also examined cell communication differences across stages 
(Fig. 5E), noting increased cell-cell communication with PDAC progression. In the nor-
mal stage, ductal, endocrine, and endothelial cells communicated more frequently, a 

Fig. 5  Single-cell analysis of PDAC. The cell type (A) and stage (B) distribution of PDAC. C The cell type proportion 
in Normal, Early and Late PDAC. D The violin plot of E-PDAC signature in Early and Late PDAC. (E) The cell commu-
nication of Normal, Early and Late PDAC
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pattern that persisted throughout the PDAC stages. The interaction between acinar cells 
and other cell types was observed to intensify, with a similar trend noted in T and B 
lymphocytes. This suggests a progressive strengthening of intercellular communication, 
whereby the cells increasingly exert influence on one another.

4  Discussion
In this study, we performed a comprehensive multi-omics analysis, including pro-
teomics, genomics, and transcriptomics, to investigate E-PDAC. We identified 25 
E-PDAC-specific proteins by comparing tumor and adjacent normal tissues. From 
this, we developed 13 predictive models and validated them with an external dataset. 
MR analysis, using genome-wide association study data, linked two proteins, LUM and 
STX7, to PDAC. ScRNA analysis showed changes in cell type proportions as PDAC 
progressed, with increased immune cells. LUM was expressed in fibroblasts in normal 
stages but found in immune cells in both E-PDAC and L-PDAC.

The tumor microenvironment (TME) of PDAC is complex and significantly influences 
disease progression and treatment resistance. LUM, a proteoglycan that regulates col-
lagen fibril assembly, is found in the PDAC extracellular matrix and is associated with 
improved patient outcomes after therapy and surgery. Activated pancreatic stellate cells 
are primary producers of LUM, but its secretion is inhibited by TGF-β through SMAD 
binding elements in the LUM gene promoter, indicating LUM’s role in ECM modulation 
and stromal behavior [34]. Additionally, LUM affects immune cell infiltration, poten-
tially contributing to PDAC’s immunosuppressive environment and impacting immu-
notherapy effectiveness [35]. Its interactions with cancer-associated fibroblasts (CAFs), 
which drive the desmoplastic reaction in PDAC, may also influence tumor progression, 
suggesting that targeting specific CAF subtypes alongside LUM could be a promising 
therapeutic strategy. LUM’s interaction with pathways like PI3K-AKT may uncover 
mechanisms of tumor progression and therapy resistance, emphasizing the ECM’s role 
in cancer [36]. While LUM shows promise as a PDAC biomarker due to its involvement 
in the tumor microenvironment and key signaling pathways, further research is needed 
to fully understand its diagnostic and prognostic value. Combining LUM with other 
biomarkers like CA19-9 and microRNAs could enhance early detection and treatment 
strategies for PDAC.

The LUM’s role in proteomic and MR analysis differed due to two main reasons. First, 
protein post-translational modifications, like phosphorylation, can alter protein interac-
tions, potentially impairing tumor suppressor functions and even promoting cancer, as 
seen with the p53 protein [37]. Second, the tumor microenvironment can influence gene 
roles, with proteins from genes initially seen as tumor suppressors potentially promoting 
tumor growth and migration in breast cancer due to factors secreted by tumor-associ-
ated macrophages [38]. LUM is a common ECM component that organizes the collagen 
matrix and influences cell proliferation signals in cancer. In cancer biology, LUM expres-
sion in the tumor microenvironment can have either pro-tumorigenic or anti-tumor-
igenic effects. Its role varies with the stroma-rich tumor microenvironment, involving 
the activation of FAK, MAPK, and MMP-9. High levels of LUM in cancer tissue may 
lead to chemoresistance, increasing malignancy risk and potentially promoting tumor 
growth [39].



Page 10 of 12Huang et al. Discover Oncology         (2025) 16:1531 

Our study found distinct cell type changes during PDAC research. In the normal 
phase, pancreatic ductal and blood vessel endothelial cells were prevalent. There was 
a marked increase in fibroblast and immune cells in E-PDAC, which continued into 
L-PDAC. However, the rise in pancreatic stellate cells seen in E-PDAC did not persist in 
L-PDAC. As the disease advances, E-PDAC-related signatures within cell types change, 
altering the tumor microenvironment. Research indicates that cells in this environment 
can work together to promote tumor development [40, 41]. With advancements in can-
cer treatment, targeting intercellular communication is crucial, not just focusing on cell 
types or counts. Enhanced communication between acinar, endothelial, and ductal cells 
has been observed. Adult pancreatic acinar cells can transform into progenitor-like cells 
with ductal traits, aiding in pancreatic regeneration after injury [42]. This phenomenon 
also offers theoretical support for the targeted treatment of PDAC.

Our study identified E-PDAC-specific proteins (LUM and STX7) via multi-omics 
analysis, offering new insights into its etiology and early detection. Further research is 
needed to evaluate these proteins’ utility and validate our findings.

4.1  Limitations

A key strength of this study is its paired design in discovering E-PDAC-related signa-
tures, reducing confounding factors. However, improvements are needed: increasing 
the PDAC proteomic sample size for broader validation, dynamically measuring plasma 
protein levels with trajectory analysis, and addressing potential group stratification bias 
from merging GWAS data. Ultimately, the study’s results will aid in developing rapid 
detection kits.

5  Conclusions
Our analysis identified 25 E-PDAC-specific proteins using paired differential pro-
teins analysis and random forest approach. Based on these proteins, we developed 13 
machine learning models to predict E-PDAC risk, achieving an AUC of ~ 0.9 in the dis-
covery cohort and ~ 0.8 in external validation. Using MR and single-cell analysis, we 
found STX7 as a risk factor (OR = 1.26), and LUM as dual role (pro-tumorigenic in pro-
teomic analysis but anti-tumorigenic in MR analysis). Single-cell analysis further clari-
fied that LUM primarily facilitates the development of fibroblasts and T/B cells, which 
demonstrate pro-tumorigenic and antitumorigenic effects, respectively. Collectively, our 
extensive proteomic, Mendelian randomization, and single-cell analyses offer significant 
insights into the molecular mechanisms underlying E-PDAC.
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