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The therapeutic outcomes of exosome-based therapies have greatly exceeded

initial expectations in many clinically intractable diseases due to the safety, low

toxicity, and immunogenicity of exosomes, but the production of the

exosomes is a bottleneck for wide use. To increase the yield of the

exosomes, various solutions have been tried, such as hypoxia, extracellular

acidic pH, etc. With a limited number of cells or exosomes, an alternative

approach has been developed to improve the efficacy of exosomes through

cell pretreatment recently. Melatonin is synthesized from tryptophan and

secreted in the pineal gland, presenting a protective effect in pathological

conditions. As a new pretreatment method, melatonin can effectively enhance

the antioxidant, anti-inflammatory, and anti-apoptotic function of exosomes in

chronic kidney disease, diabetic wound healing, and ischemia-reperfusion

treatments. However, the current use of melatonin pretreatment varies

widely. Here, we discuss the effects of melatonin pretreatment on the

heterogeneity of exosomes based on the role of melatonin and further

speculate on the possible mechanisms. Finally, the therapeutic use of

exosomes and the usage of melatonin pretreatment are described.

KEYWORDS
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Introduction

The therapeutic outcomes of exosome-based therapies have greatly exceeded initial

expectations in clinical refractory diseases (1), such as cardiovascular diseases,

neurodegenerative diseases, and cancer progression (2). Compared with cell therapy,

the exosome therapeutic platform has the advantages of safety, low toxicity, and

immunogenicity (3), which can be administered repeatedly (4). As a new therapeutic

platform, there are still many technical problems during application. The low yield of

exosomes remains a bottleneck in the large-scale implementation (5).
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Isolation of exosomes is the first step. Standard exosome

isolation techniques are based on differential ultracentrifugation,

size, bead, and polymer (6). All these methods are considered

tedious and challenging because they require large sample

volumes, multi-step operations, and several days. The low

production of exosomes greatly hinders their wide application

(5, 7). In the clinic, a dose of 10 (8) exosomes is typically needed

per treatment for a patient (9), which requires more than a week

and several hundred milliliters of cell supernatant (10, 11). Thus,

current productivity is insufficient (12).

Various solutions have been tried to increase the production

of exosomes. For example, Ban et al. found that exosome

production was increased through changes in environmental

pH values (13), but pH affected the stability of the exosomes.

Wang et al. reported that toward microfluidic-based exosome

isolation, it affects the biological functions of exosomes, such as

the targeting of exosomes (6). Hao et al. suggested that

knockdown or overexpression of certain genes promotes the

release of exosomes but destroys the natural structure of

exosomes (8). Up to now, how to regulate exosomes release

without impacting the native structure or functions remains

unsolved (14).

With a limited number of cells or exosomes, an alternative

approach has been developed to improve the efficacy of

exosomes through cell pretreatment recently. Melatonin

(N-acetyl-5-methoxytryptamine) can effectively enhance the

antioxidant, anti-inflammatory, and anti-apoptotic functions

of exosomes. Exosomes extracted from cells pretreated with

Melatonin are named MT-exosomes (15, 16). Some studies

revealed that the therapeutic potency of exosomes can be

improved by melatonin pretreatment in chronic kidney disease

(CKD), ischemia-reperfusion (IR) treatments, and wound

healing in diabetes (15–18). It is considered a booster to break

through the barrier of exosome application quickly. However,

there is great variability in the effect on MT-exosomes and how

to use the melatonin pretreatment.

Here, we discuss the effects of melatonin pretreatment on the

heterogeneity of exosomes based on the role of melatonin. Given

the application of melatonin pretreatment on exosomes is

immature, we further speculate on the possible mechanisms.

Finally, the therapeutic use of exosomes and the usage of

melatonin pretreatment are summarized. Encouragingly,

melatonin pretreatment provides a unique and new approach

to the exosomes, which gives a new way to overcome the “low

yield bottlenecks” of exosomes in the therapeutic platform.
Melatonin and melatonin pretreatment

Melatonin, an indole derivative discovered in 1958, is a

natural neurotransmitter (19). Controlled by the master clock

of the suprachiasmatic nucleus (SCN) of the hypothalamus,

melatonin is secreted by the pineal gland according to the
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circadian rhythm (20) (Figure 1). Melatonin has been known

for decades as an animal hormone. However, later in the 1990s,

it was also found in plants and is now widely considered a

common parental molecule that permeates and influences the

viability of all cells (21).

Melatonin may be a cornucopia, with various therapeutic

effects such as antioxidant, anti-inflammatory, anti-infective,

and anti-tumor, assisting to treat fertility disorders,

osteoporosis, cardiovascular disease, Alzheimer’s disease,

obesity, influenza, gastrointestinal tumors, and non–small cell

lung cancer (22, 23). In many countries in Europe and the

United States, melatonin is widely used both as a prescription

drug and as a non-prescription supplement (24).

Melatonin can also be used for pretreatment, meaning that it

is added in advance of treatment or injury. Melatonin

pretreatment not only improves the therapeutic effect of some

diseases (25–27), such as blast injury and kidney IR injury, but

also alleviates the toxicity of drugs (28) and plants (Table 1) (29–

33). Studies have found that melatonin pretreatment improves

the survival rate and angiogenesis of cells (34), as well as the

therapeutic effect on solid organ cells (35). Pan et al. found that

melatonin inhibited the increase in the ameloblast-lineage cell

line (ALC) number in a time-dependent and dose-dependent

manner (0, 10–10, 10–8, 10–6, 10–4, and 10−3 M). With the

increase in melatonin concentration, the alkaline phosphatase

activity of ALCs gradually increased (36). Cells from different

sources respond differently to melatonin concentrations. Cucielo

et al. found that melatonin alters the mitochondrial membrane

and the size of human ovarian carcinoma cells (SKOV-3 cells).

After melatonin treatment, SKOV-3 cells showed a statistically

significant reduction in mitochondrial metabolism at all

concentrations (1.6, 3.2, and 4 mM) (37). Wang et al. found

that P21 (cell cycle–associated gene) expression was decreased in

granulosa cells treated with the high-concentration

(10−5 M) melatonin and increased in that treated with the

low-concentration (10−9 M) melatonin (38). Moreover,

melatonin pretreatment also affects the exosome release from

the donor cells and significantly enhances the therapeutic effects

of MT-exosomes (39, 40), which are discussed in the

following sections.
Effects of melatonin pretreatment
on exosome heterogeneity

The heterogeneity of exosomes mainly includes the size and

content of exosomes (41), functional effects on recipient cells,

and cell origin; different combinations lead to complex

heterogeneity of exosomes (2). Whether melatonin

pretreatment affects exosome heterogeneity or not is

controversial. In this section, we mainly discuss the

heterogeneity of MT-exosomes including size, production,

microRNA (miRNA), and protein (Figure 2). The effects of
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FIGURE 1

Metabolic processes influenced by melatonin signaling in peripheral and central tissues. Broken lines correspond to the function of melatonin,
which exact pathways remain to be elucidated. The dark blue wave-formed line illustrates the circadian clock oscillation. Reprinted by
permission from Copyright clearance center: Springer Nature, Nature Reviews Endocrinology, Melatonin in type 2 diabetes mellitus and obesity,
Angeliki Karamitri et al, COPYRIGHT (2018).
TABLE 1 Related research on melatonin pretreatment.

Author
(Year)

Subjects Methods Concentration Results

de Farias et al.
(2022) (25)

Zebrafish Melatonin was injected directly into the
aquarium 3 nights, and 7 nights before inducing
seizures

100 nM Melatonin promotes a neuroprotective response against
the epileptic profile in zebrafish.

Liang et al.
(2021) (28)

Neonatal C57BL/
6J mice

Mice were treated with melatonin at 0.5 h before
sevoflurane anesthesia.

10 mg/kg Melatonin pretreatment alleviates the long-term synaptic
toxicity and dysmyelination induced by neonatal
sevoflurane exposure.

Zhang et al.
(2021) (26)

8-week-old male
C57BL/6 mice

Mice were intraperitoneally injected with
melatonin for 7 consecutive days before blast
injury

20 mg/kg Melatonin pretreatment alleviated blast-induced behavioral
abnormalities in mice.

Jahan et al.
(2021) (29)

Tomato seedlings
(the fourth leaf
stage)

The seedlings were foliar-sprayed with melatonin
continued for 7 days before high-temperature
stress

100 µM Melatonin treatment markedly attenuated heat-induced
leaf senescence.

Tousi et al.
(2020) (30)

Mallow plant
seeds

The plants were placed in the pots with
melatonin. After 2 days, and Cd (NO3)2.4H2O
was added.

0, 15, 50, and 100
µM

Melatonin could reduce oxidative stress and improve
biomass in the plants exposed to cadmium.

Yang et al.
(2020) (14)

8–9-week-old
male C57BL/6
mice

Melatonin was intraperitoneally administered
24 h and 1 h before renal ischemia-reperfusion
injury

20 mg/kg Melatonin treatment provides protection for the kidney
against ischemia-reperfusion injury by enhancing
autophagy.

De Butte et al.
(2020) (31)

Female Sprague–
Dawley rats

Melatonin pellets (subcutaneous implants) were
present for 2 weeks prior to bilateral common
carotid occlusion.

5 mg
(60-day time)

Melatonin retains the ability to protect hippocampal
neurons from ischemia-induced damage in older female
rats.

Wang et al.
(2019) (32)

Male ICR mice Mice received melatonin 15 min prior to
methamphetamine administration

2.5, 5, and 10 mg/
kg

Melatonin has the capacity to reverse methamphetamine-
induced aggressive behaviors.

Nawaz et al.
(2018) (33)

Watermelon
seedlings

Watermelon seedlings were pretreated with
melatonin

0.1 mM Melatonin could be utilized to reduce the availability of
vanadium to plants, and improve plant growth and
vanadium stress tolerance.
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melatonin pretreatment on exosomes, among others, may vary

with specific cell types and conditions.
Size and production of MT-exosomes

Melatonin pretreatment affects the exosome size and

production with variable effects. On the one hand, some

studies suggest that melatonin pretreatment has no significant

effect on the size and production of exosomes. Liu et al. observed

that both MT-exosomes and exosomes were oval bilayer lipid

membrane vesicles with a diameter of about 120 nm and had no

significant difference in production (approximately 7.0 × 108 and

7.5 × 108, respectively) (15). Cheng et al. also demonstrated that

melatonin pretreatment does not affect exosome production in

hepatocellular carcinoma (HCC) (42).

On the other hand, some researchers hold different views

(43). Abd-Elhafeez et al. found melatonin pretreatment

significantly increases the size and production of exosomes in

telocytes (44). Pournaghi et al. reported that melatonin

pretreatment significantly reduced the exosome size but

increased the production in bovine granulosa cells (45).

Ozansoy et al. found that the production of exosomes in SH-

SY5Y human neuroblastoma cells decreased by 36.23% after

pretreatment with melatonin (46).
Frontiers in Immunology 04
Given the current evidence, melatonin may affect the

exosomes from various donor cells through different

biogenesis mechanisms (45). Heterogeneity can endow unique

properties on exosomes based on the organ and tissue from

which they originate (2). In addition, considering the difference

in experimental conditions, we believe that the concentration of

melatonin is another significant factor, which is discussed in the

following section.
miRNAs change in MT-exosomes

The heterogeneity of exosomes includes size and yield, as

well as content (miRNAs and proteins). In CKD-MSCs, Yoon

et al. found that miR-4516, miR-6806-3p, and miR-6794-5p

were increased in MT-exosomes (16). In smooth muscle, Xu

et al. reported that melatonin pretreatment significantly

increased the expression of miR-204 and miR-211 in exosomes

from smooth muscle cells (47). In bone, it is considered that

melatonin pretreatment increases the content of miR-181 in

exosomes and further improves the osteogenesis effect of

exosomes (48).

In chronic inflammatory diseases or autoimmune diseases,

Heo et al. found the specific miR-34a, miR-124, and miR-135b of

anti-inflammatory macrophages (M2) expressed significantly
FIGURE 2

Effects of Melatonin Pretreatment on Exosome heterogeneity: size, production, miRNAs, proteins. The heterogeneity of the effect of melatonin
pretreatment on exosomes is still controversial. We mainly list the changes in size, production, and content of exosomes reported by current
related studies.
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higher in MT-exosomes than in exosomes (49). MT-exosomes

can additively attenuate inflammation, which may provide a

therapeutic target for immunoregulation and anti-inflammatory

responses (50).
Proteins change in MT-exosomes

Specific molecules on the surface of exosomes determine the

internalization, immune escape, and targeting of the delivery of

exosomes (51), which mediate signaling and help them escape

the internalization and into target cells (52). Heo et al. suggested

that the exosome marker CD9 was not affected by melatonin

pretreatment (49). The same results were found in the CD9,

CD81, CD63, apoptosis-linked gene 2-interacting protein X

(Alix), and tumor susceptibility gene 101 (TSG101) (2), which

demonstrates that exosomes and MT-exosomes have similar

surface proteins (15, 16, 42, 49).

After melatonin pretreatment, the internal proteins carried

by exosomes change differently. In the murine hindlimb

ischemia model, the expression of the cellular prion protein

(PrPC) significantly increases in MT-exosomes of healthy MSCs

and CKD-MSCs (16), enhancing the proliferation and release of

angiogenic cytokines. Liu et al. found that the a-ketoglutarate
(metabolite contents) level from MT-exosomes was increased to

alleviate inflammatory response (53).

Interestingly, Ozansoy et al. found that the secretion of tau in

exosomes of the amyloid-beta (Ab) toxicity model varied with

the time sequence of melatonin treatment. The amount of total
Frontiers in Immunology 05
tau was not impacted by melatonin pretreatment but

significantly reduced by post-treatment of melatonin in

exosomes (46). They suggested that the amyloid-beta and

melatonin play an important role in the mechanism of

exosomes, and the effect of exosomal tau content was

time-sensitive in the 8-hour application cycle.

As the product of cells, exosomes are heterogeneous, and it is

difficult to isolate and to pool identical exosomes in exosome

studies. Currently, there are many methods for analyzing

exosome heterogeneity, such as flow cytometer, immunoaffinity

capture, and asymmetric flow-field flow fractionation (54).

Super-resolution microscopy enables us to accurately quantify

multiple characteristics of exosome secretion by single human

macrophages (55). This may be a crucial way to resolve and

understand the heterogeneity of MT-exosomes.
Possible mechanism of melatonin
pretreatment on exosomes

It is inconclusive that the heterogeneity of exosomes is more

or less affected by melatonin pretreatment. Alterations in

exosome heterogeneity may contribute to the complexity of

exosomes, the mechanism of which remains unknown. In this

section, we further speculate on the mechanism by which

exosomes are pretreated with melatonin as follows (Figure 3).

Notably, the mechanisms involved may vary with specific cell

types and different conditions.
FIGURE 3

Possible mechanisms of melatonin pretreatment on exosomes: cell exocytosis and autophagy.
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Generally, exosomes are produced through the endocytic

pathway and released through exocytosis (41). Exosomes

originate from the terminal endosomes formed by the inward

budding of the multivesicular bodies (MVBs) membrane (56, 57).

After MVBs dock with the plasma membrane, exosomes are

released to the extracellular through exocytosis (58), and

midbody remnants are produced by cytokine abscission of

interconnecting bridges between dividing cells (59). Otherwise, a

part of the MVBs is transported to be merged with the lysosomes

to degrade the cargo, and the autophagosome encapsulating the

protein and/or organelles can fuse with the endosomes forming an

amphisome, which then undergoes lysosomal breakdown (60).

Exosomes are regulated in different steps, including their

biogenesis, cargo selection, and cell-specific uptake. Among

them, exosome biogenesis is a multi-step biological process,

which represents the complexity of exosome composition and is

also the focus of exosome-related research (61).

Melatonin pretreatment regulates the biogenesis of

exosomes by modulating the exocytosis of donor cells.

Melatonin pretreatment enhances cell exocytosis to release

exosomes via the phosphatidylinositol 3-kinase/protein kinase

B (PI3K/Akt) axis inhibiting the activity of glycogen synthase

kinase 3 (GSK-3) (62). Melatonin pretreatment also increases

the flexibility and fluidity of donor cell membranes and

promotes cell exocytosis (63). Moreover, melatonin on fatty

acid metabolism may be a molecular mechanism affecting the

production of exosomes from donor cells (43, 45).

Melatonin pretreatment affects the biogenesis of exosomes

by triggering cell exocytosis and autophagy (64, 65). Autophagy

is a regulated self-degrading process that modulates changes in

exosome biogenesis in response to changes in external stimuli

(66). The melatonin pretreatment in the donor cell causes cell

autophagy, which likely changes the biogenesis of exosomes

(67). Different autophagy proteins have been proven to regulate

exosome biogenesis (68, 69). Autophagy-related proteins

(ATGs) are essential regulators of cytosol and membrane

autophagy (70). Guo et al. found that ATG5 and ATG16L1

have common signaling pathways between autophagy and

exosome biogenesis (69). Melatonin directly stimulates

autophagy by activating the ATG4, 5, 7, 10, 12, and 16,

increasing the microtubule-associated protein 1A/1B light

chain 3 (LC3) II/I rate (71). Melatonin can enhance the

autophagy mechanism of cells (67), increasing MVB

autophagosome fusion and generating amphisomes (72). Then,

amphisomes use specific GTPases (including Rab8a and Rab27a)

to release exosomes and autophagic contents (68). Thus, the

exosome production and the contents they carry are altered.

To further explore the possible effects of melatonin

pretreatment on exosome biogenesis, Amini et al. conducted a

bioinformatics analysis based on common genes associated with

the melatonin signaling pathway, exosomes biogenesis, and the

Wnt cascade (43). Results showed that Pax2 and the

transducin-like enhancer of split 4 (TLE4) had interactions
Frontiers in Immunology 06
between melatonin and exosome biogenesis. It is almost

certain that the biogenesis of exosomes was regulated by

melatonin pretreatment. Host cells receive external or internal

stimuli by inducing specific intracellular signals that then

regulate exosome biogenesis (73). The detailed mechanism

regarding the effect of melatonin pretreatment on exosome

biogenesis still needs to be further clarified in the future.

In addition to regulating exosome biogenesis, we should also

consider whether exosomes are qualified to transfer melatonin

between cells. Exosomes are a carrier that reveals the nature of

the donor cells and the influence of external factors on the donor

cells. Direct passive diffusion of melatonin through the cell

membrane is acceptable given its lipophilicity and rapid passive

diffusion. Researchers continue to explore the mechanism of the

transfer of the melatonin receptor MT1 through internalization and

endocytic transport (43). When melatonin binds to MT1, the

vacuolar sorting machinery uses Rab5 to transfer the internalized

MT1 to early endosomes. Endosomes carryingMT1 can cycle to the

plasma membrane due to the activity of other GTPases.
Therapeutic potential of MT-exosomes

Currently, the heterogeneity and mechanism of melatonin

pretreatment affecting exosomes are still controversial, but it is

undeniable that MT-exosomes have greater therapeutic

potential. The use of melatonin pretreatment to enhance the

therapeutic effect of exosomes is summarized in Table 2.
Anti-inflammatory effects of MT-exosomes

Studies have shown that MT-exosomes significantly improve

the polarization of macrophages from proinflammatory

macrophages (M1) to anti-inflammatory macrophages (M2) (49).

Wang et al. found that melatonin enhances the anti-inflammatory

potential of the exosomes through the Toll-like receptors/nuclear

factor kappa-B (TLR4/NF-kB) pathway to combat post-stroke

inflammation (74). MT-exosomes promote the transformation of

macrophages to M2 type by a phosphatase and tensin homolog

deleted on the chromosome 10 (PTEN)/AKT signaling pathway

(15). MT-exosomes reduce inflammatory cytokines, including

interleukin-1b (IL-1b), IL-18, IL-6, and tumor necrosis

factor–alpha (TNF-a), increasing the release of anti-inflammatory

factors IL-10 and transforming growth factor–b (TGF-b) (Table 3).
Liu et al. suggested that melatonin mediates the

inflammatory response by increasing a-ketoglutarate (a-KG)
level and transferring to macrophages through exosomes in

adipose tissue (Figure 4) (53). Melatonin pretreatment

promotes the production of a-KG, which increases the DNA

demethylation of adipocytes. Melatonin drives the circadian

amplitude of mitochondrial isocitrate dehydrogenase 2 (Idh2)

in adipose inflammation, and the gene clock regulates Idh2 at the
frontiersin.org

https://doi.org/10.3389/fimmu.2022.933736
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2022.933736
TABLE 2 Therapeutic effect of MT-exosomes.

Author
(Year)

Application Subjects Melatonin pretreat-
ment

Therapeutic effect of MT-exosomes

Concentration Time Anti-
inflammatory

Antioxidation Anti-
apoptotic

Yea et al.
(2021) (18)

Regulate inflammation and fibrosis Human AD-derived MSCs/
Male mice

1 mM/ml 24 h √ √

Heo et al.
(2020) (49)

Attenuates inflammation Human adipose tissue-
derived MSCs

10mM 72 h √

Wang et al.
(2020) (74)

Promote stroke recovery Male rats √

TLR4/NF-kB
Pathway

Liu et al.
(2020) (15)

Promote diabetic wound healing hBMSCs and RAW264.7
cell/male rats

1 mmol/L 48 h √

PTEN/AKT
pathway

Alzahrani
et al.
(2019) (75)

Treatment of RIRI BMMSCs/female rats 5 mM 24 h √ √ √

Sun et al.
(2017) (76)

Treatment of acute hepatic
ischemia- reperfusion injury.

A macrophage cell line
RAW 264.7/male rats

50 µM 3 h √ √ √

Cheng et al.
(2017) (42)

Regulation of immunosuppressive
status

Human HCC cell
female BALB/c nude mice

0.1 mM √

STAT3 pathway
Frontiers in Im
munology
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 fro
Involve, √; AD, adipose; MSC, mesenchymal stem cells; HCC, hepatocellular carcinoma; RIRI, Renal ischemia-reperfusion injury.
TABLE 3 Expression of inflammation, oxidation, and expression of apoptotic factors in MT-exosomes.

Author (Year) Anti-Inflamma-
tory

Inflammatory Antioxidant
status

Oxidative stress
status

Anti-apopto-
tic

Apoptosis Reference

Yea et al.
(2021)

TNF- a↓
NFkB↓

Caspase 3↓ (18)

Heo et al.
(2020)

TGF-b↑
IL-10↑
Arg-1↑

(49)

Wang et al.
(2020)

TGF-b↑
IL-10↑

TNF-a↓
IL-1b↓
IL-18↓
IL-6↓

(74)

Liu et al.
(2020)

IL-10↑
Arg-1↑

TNF-a↓
IL-1b↓
iNOS↓

(15)

Alzahrani et al.
(2019)

IL-10↑ NFkB↓
IL-1b↓

HO-1↑
SOD↑
CAT↑
GPx↑

MDA↓
NOX2↓

Bcl2↑ Caspase 3↓
PARP1↓
Bax↓

(75)

Sun et al.
(2017)

TNF-a↓
IL-1b↓
MMP-9↓

HO-1↑
NQO1↑

NOX2↓ Caspase 3↓
PARP1↓

(76)

Cheng et al. (2017) TNF-a↓
IL-1b↓
IL-6↓

(42)
↓, Decrease; ↑, Increase; TGF-b, transforming growth factor–b; IL-10, interleukin-10; Arginine-1; TNF-a, tumor necrosis factor–alpha; IL-1b, interleukin-1b; NFkB, nuclear factor kappa B;
IL-18, interleukin-18; MMP-9, matrix metalloproteinase 9; IL-6, interleukin-6; iNOS, inducible nitric oxide synthase; MDA, malondialdehyde; NOX-2, NADPH oxidase 2; HO-1, heme
oxygenase-1; NQO1, NAD(P)H quinone dehydrogenase; SOD, superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase; PARP, poly(ADP-ribose) polymerase; Bax, B-cell
lymphoma 2–associated X; Bcl2, B-cell lymphoma 2.
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transcription level. Sirtuin 1 (Sirt1) and Idh2 formed a complex

to increase a-KG levels that exosomes inactivate signal

transducer and the transcriptional activator 3 (STAT3)/

NF-kappaB pathways. Exosomes a-KG transports to

macrophages, which promote their transformation to M2 and

reduce inflammation (TNFa, IL-6, and IL-1b).
The role of MT-exosome is to improve its efficacy based on

the therapy of exosomes, which can better alleviate the

progression of cell pathology. MT-exosomes can alleviate the

pathogenic effects of pathological exosomes on cells, such as

exosomes secreted by HCCs. Tumor cells can change the

immune status of the tumor microenvironment by

upregulating programmed death-ligand 1 (PD-1), and related

inflammatory factors such as TNF-a, IL-6, and IL-1b increase

significantly. Cheng et al. found that MT-exosomes from HCC

cells reverse this effect by downregulating the expression of PD-1

and altering the secretion of macrophage cytokines by

inactivating the STAT3 signaling pathway (Figure 4) (42).
Antioxidant and anti-apoptotic effects of
MT-exosomes

Melatonin is a powerful antioxidant that scavenges

different types of free radicals in body fluids and cells (77,
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78). Chen et al. reported that melatonin exerts the protective

effect of cellular oxidative stress, also through its anti-

apoptosis effect (79). Compared with exosomes, MT-

exosomes could play a neuroprotective role by increasing the

expression of the anti-apoptotic protein B-cell lymphoma 2

gene (Bcl2) (75).

Inflammation, oxidation, and apoptosis are closely associated

with each other. IR injury is a complex, sterile inflammatory

cascade (80) and a major cause of cell death and organ damage in

many diseases such as myocardial infarction, stroke, and acute

kidney injury (81). MT-exosomes have been found to suppress

inflammation, oxidative stress, and apoptosis in protecting the

liver against IR injury (76). Alzahrani et al. found that treatment

with MT-exosomes provided the best protective effect against

renal IR injury, compared to the therapy by MSCs or exosomes

(75) . MT-exosomes decl ine oxidative stress status

(malondialdehyde level and NADPH oxidase 2 protein) and

increase antioxidant status (heme oxygenase-1 gene and

superoxide dismutase, catalase, glutathione, and peroxidase

activities). Moreover, MT-exosomes decline apoptosis (B-cell

lymphoma 2–associated X protein genes and caspase 3 activity)

and induce an anti-apoptotic effect (Bcl-2) (Table 3). Through the

expression of antioxidant and anti-apoptotic markers, it is not

difficult to find the enhancement of the antioxidant and anti-

apoptotic ability of MT-exosomes.
FIGURE 4

Regulation of anti-inflammatory effect of MT-exosomes. Melatonin mediates the inflammatory response by increasing a-ketoglutarate (a KG)
level and transferring to macrophages through exosomes in adipose tissue. MT-exosomes from HCC cells reverse this effect by down-
regulating the expression of PD-1 and altering the secretion of macrophage cytokines through inactivating the STAT3 signaling pathway.
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Usage of melatonin pretreatment

The full use of melatonin pretreatment is firstly summarized

in this review. Some studies do not mention whether the

concentration of melatonin pretreatment could cause damage

to other tissues or any cells. Therefore, we should also pay

attention to the potential risks of melatonin pretreatment.
Route of administration

There are two main methods of pretreatment with

melatonin. The former is that melatonin is injected into the

body through intravenous injection, and then the blood is

collected to extract exosomes (74). The latter is to collect

melatonin-pretreated cells and then collect the exosomes

secreted by the cells (15).
Concentration

Based on Amini et al. and Pournagi et al., et al., recent findings

about melatonin pretreatment alter exosome size and production

in bovine granulosa cells in a dose-dependent manner in which

higher-melatonin concentrations (0.1 nM~0.1 mM) contribute to

the elevated release of small-sized exosomes (43, 45).

There is no uniform standard for the concentration of

melatonin pretreatment in vivo and in vitro (Table 2) (82, 83).
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Further consideration needs to be given to the variation of

optimal concentration of melatonin pretreatment from

individual to individual. Through dissolving melatonin in 0.9%

saline (with 5% DMSO), Wang et al. injected intraperitoneally

(10 mg/kg) the solution for 7 consecutive days and found

reduced brain damage in the stroke rats (84).
Indications

Melatonin can enhance the therapeutic effect of exosomes,

mainly including anti-inflammatory and antioxidant effects.

Current studies have focused on IR (brain, liver, and kidney),

liver cancer, CKD, and wound healing in diabetes (Figure 5). As

described above, the MT-exosomes were significantly superior to

the exosomes, increasing the therapeutic efficiency by about 0.5

to 3 times (42, 74, 75). However, there is currently no unified

standard for quantifying the efficiency of exosome treatment.

The quantification of exosome therapeutic efficiency should be

further confirmed by further studies.
Potential risks

Melatonin is widely used in medicine and food (24). As

observed in animal and human studies, the acute toxicity of

melatonin is not lethal even at 800 mg/kg (85). Therefore, the

potential risks of melatonin were often overlooked. However,
FIGURE 5

Improve the therapeutic effect of MT-exosomes, mainly including anti-inflammatory and antioxidant effects. Current studies have focused on IR
(brain, liver and kidney), liver cancer, AIC, CKD, traumatic spinal cord injury, embryonic development and wound healing in diabetes.
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there are different responses to melatonin in clinical trials: mild

side effects of melatonin in the short and medium terms, such as

irritability, headache, and drowsiness (86, 87). Severe or

clinically significant adverse events are rare, including

excitement, nightmares, mood swings, fatigue, and skin

irritation. Most of these effects either subside spontaneously

within a few days without adjusting the dose or subside

immediately after discontinuation of the treatment (88, 89).

There is no evidence that people develop tolerance to

melatonin (85). The risk of melatonin pretreatment has not

been clearly reported so far, and we speculate its potential risk

through the side effects of melatonin.

Melatonin pretreatment can repair abnormal cells to play its

anti-inflammatory and antioxidant role. It is worth considering

whether melatonin pretreatment can cause damage to normal

cells (90). Melatonin pretreatment is relatively nontoxic but has

side effects at high concentrations. The cell survival rate began to

decrease when the concentration was higher than 0.1 mM (45).

Whether the melatonin pretreatment makes the same effect on

the secreted exosomes or not is still unclear. Therefore, we

should pay more attention to its potential risks in the future,

and more preclinical studies are needed to explore the impact,

focusing on possible complications.
Concluding remarks and perspectives

As nanoscale biological vesicles, exosomes protect their

contents from degradation and facilitate their intercellular

transfer, and their natural origin and biological properties

facilitate the application of exosomes, making them safe and

effective for drug delivery. How to better use exosomes as a

therapeutic drug has become a focus of attention.

Melatonin is a potent-free radical scavenger and metal

chelator with the ability to relieve oxidative stress and

inflammatory responses and stabilize cell membranes.

Melatonin pretreatment has emerged as a potentially favored

alternative approach to enhance exosome function. There are

differences in the pretreatment methods of melatonin, including

the way, concentration, and time of pretreatment. The

melatonin pretreatment can improve the therapeutic potential

of exosomes, such as anti-inflammatory, antioxidant, and

anti-apoptotic, by changing the proteins and miRNAs carried

in exosomes. Related research has focused on cancer, IR, CKD,

and wound healing in diabetes. Melatonin is considered one of

the most promising approaches to breaking through the

dilemma of exosomes.

However, the application of melatonin pretreatment on

exosomes is inchoate, and the complexity of exosome

heterogeneity makes the exosomes secreted by cells varied

after melatonin pretreatment. There are unknown features of

the interaction between exosomes with melatonin pretreatment,
Frontiers in Immunology 10
which needed to be explored in the future: (1) More specific

molecular mechanism of melatonin pretreatment on exosomes.

We should always remember that mechanisms may vary with

specific cell types and conditions. (2) Cross-talk between

melatonin pretreatment with different extracellular vesicles

subtypes (exosomes are a subtype of extracellular vesicles). (3)

The effects of melatonin pretreatment on exosomes from

different cell sources and different disease states are likely to be

different. (4) Assessing possible risks and application barriers of

melatonin pretreatment on exosomes when there is a

reproducible effect of melatonin pretreatment on exosomes.

(5) Exploring the long-term effects on cells and the exosomes

they secrete with melatonin pretreatment, and the possibility of

producing exosomes in bulk.
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