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Abstract

Lignocellulosic plant material is a viable source of biomass to produce alternative energy including ethanol and other biofuels.

However, several factors—including toxicbyproducts frombiomasspretreatmentandpoor fermentationofxyloseandotherpentose

sugars—currently limit the efficiency of microbial biofuel production. To begin to understand the genetic basis of desirable traits, we

characterized three strains of Saccharomyces cerevisiae with robust growth in a pretreated lignocellulosic hydrolysate or tolerance to

stress conditions relevant to industrial biofuelproduction, through genomeand transcriptome sequencinganalysis.All stress resistant

strains were highly mosaic, suggesting that genetic admixture may contribute to novel allele combinations underlying these pheno-

types. Strain-specific gene sets not found in the lab strain were functionally linked to the tolerances of particular strains. Furthermore,

genes with signatures of evolutionary selection were enriched for functional categories important for stress resistance and included

stress-responsive signaling factors. Comparison of the strains’ transcriptomic responses to heat and ethanol treatment—two stresses

relevant to industrial bioethanol production—pointed to physiological processes that were related to particular stress resistance

profiles. Many of the genotype-by-environment expression responses occurred at targets of transcription factors with signatures

of positive selection, suggesting that these strains have undergone positive selection for stress tolerance. Our results generate new

insights into potential mechanisms of tolerance to stresses relevant to biofuel production, including ethanol and heat, present

a backdrop for further engineering, and provide glimpses into the natural variation of stress tolerance in wild yeast strains.
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Background

Lignocellulosic plant material represents an untapped feed-

stock for microbial biofuel production. However, extracting

monomeric sugars in hemicellulose from the lignin and solid

fraction often requires harsh chemical pretreatments that gen-

erate toxins inhibitory to microbial fermentation. The precise

toxins generated vary by the pretreatment method as well

as the plant source material, and emerge both from the

treatment additives (such as strong acids, bases, or other

chemicals) as well as chemical reactions with plant materials,

including sugar-derived phenolic compounds (Almeida et al.

2007; Lau et al. 2009; Chundawat et al. 2010). The effect of

these lignotoxins is compounded by high osmolarity of the

resulting hydrolysates, elevated temperature of many fermen-

tation processes, and ethanol generated during anaerobic

fermentation (Jin et al. 2013; Sato et al. 2014). As such, the

combined stresses in cellulosic fermentations represent a

major bottleneck to efficient microbial conversion of biomass.
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One strategy is to improve microbial stress tolerance via

artificial, laboratory strain evolution, through many genera-

tions of selective growth in stressful conditions (Dragosits

and Mattanovich 2013). Although improved tolerance to

particular stresses can be selected in the lab, it often comes

at the cost of reduced fitness in unstressed conditions and/or

diminished biofuel production (Bennett and Lenski 2007;

Goodarzi et al. 2010; Watanabe et al. 2011; Dragosits and

Mattanovich 2013; Hong and Nielsen 2013). Furthermore, the

limited mutational landscape that is accessible from a single

starting strain prevents the broad sampling of genetic

possibilities.

An alternative approach is to start with natural isolates that

are inherently tolerant to relevant stresses, both to understand

the mechanism of their stress tolerance and to exploit for

further directed engineering. The genetic and phenotypic

variation of Saccharomyces cerevisiae is beginning to

emerge through studies of both wild and industrial yeast

isolates (Townsend 2003; Aa et al. 2006; Kvitek et al. 2008;

Liti et al. 2009; Borneman et al. 2011; Magwene et al.

2011; Warringer et al. 2011). Saccharomyces cerevisiae

populations represent at least 13 distinct lineages, with

many strains representing “mosaic” genomes due to recent,

but likely infrequent, admixture across the well-separated

lineages (Wei et al. 2007; Liti et al. 2009; Schacherer et al.

2009; Wang et al. 2012; Cromie et al. 2013). A vast amount

of phenotypic diversity exists across these strains and in some

cases correlates with the niche from which the strains were

isolated (Kvitek et al. 2008; Will et al. 2010; Warringer et al.

2011). Understanding the genetic basis for natural variation in

stress tolerance is in its infancy but is being aided by quanti-

tative mapping within and between populations (reviewed in

[Liti and Louis 2012]). However, the genetic basis for extreme

tolerance remains poorly understood.

To address this question, we sequenced the genomes and

transcriptomes of three natural S. cerevisiae isolates with

extreme tolerance to stresses relevant to biofuel production,

including two strains with high thermotolerance or high

ethanol resistance and one multistress tolerant strain that

was particularly amenable to growth in plant-derived

hydrolysate. We report the genomic analysis of these

isolates and implicate key physiological processes related to

biofuel-relevant stress tolerance.

Materials and Methods

Yeast Strains

Yeast strains were grown in yeast extract peptone dextrose

(YPD; 10 g/l yeast extract, 20 g/l peptone, 20 g/l glucose) at

30 �C. For acquired ethanol resistance, cells were pretreated

with 5% v/v for 60 min and then exposed to one of 11 doses of

ethanol ranging from 5 to 25% v/v for 2 h before plating for

viability (Lewis et al. 2010). The maximum dose of ethanol

survived is plotted in figure 1. Growth rates under the other

conditions were calculated based on 96-well growth profiles in

a Tecan plate reader, using GCAT as previously described (Jin

et al. 2013; Sato et al. 2014). Strain phenotypes are available in

supplementary data set S4, Supplementary Material online.

Genome Sequencing, Read Mapping, and Single
Nucleotide Polymorphism Calling

Libraries were generated with a modified version of Illumina’s

standard protocol, using 1mg of genomic DNA. DNA was

sonicated (Covaris) to generate fragments, which were size

selected by SPRI to approximately 200 bp. Selected fragments

were end-repaired and phosphorylated, A-tailed with klenow,

and ligated with paired-end sequencing adapters (Illumina).

Libraries were PCR (polymerase chain reaction) amplified

and quantified using KAPA Biosystem’s next-generation

sequencing library qPCR kit and run on a Roche LightCycler

480 real-time PCR instrument. Each of the quantified sample

libraries were prepared for sequencing utilizing a paired-end

cluster generation kit (v4), and Illumina’s cBot instrument

to generate clusters. Sequencing was performed on the

Illumina GAIIx sequencer using SBS sequencing kits, v4,

following a 2� 76 run recipe.

Mapping was performed with Burrows–Wheeler

Alignment (v1.2.2; [Li and Durbin 2009]), combining

strains with multiple libraries (supplementary table S1,

Supplementary Material online). Single nucleotide polymor-

phism (SNP) and indel detection was performed with the

Genome Analysis Toolkit (v2.7; [McKenna et al. 2010]).

FIG. 1.—Stress tolerance profiles. (A) Acquired ethanol tolerance of

LEP, MUSH, CRB, and other strains from (Lewis et al. 2010). Cells were

exposed to high does of ethanol with (blue) or without (gray) prior treat-

ment of 5% v/v ethanol. (B and C) Growth rates (see Materials

and Methods) of S. cerevisiae strains in YPD at 40 �C (B) or in ACSH at

42 �C (C) relative to YPD (adapted from [Sato et al. 2014]).
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De novo genome assembly was performed using String Graph

Assembler (v0.9.19; [Simpson and Durbin 2012]), and contigs

were aligned with MUMmer (v3.0; [Kurtz et al. 2004]; supple-

mentary table S2, Supplementary Material online). Unique se-

quence not present in S288c was identified using custom Perl

scripts. Gene prediction on non-S288c sequence was per-

formed using GlimmerHMM (v3.0.2; [Majoros et al. 2004])

trained on S. cerevisiae transcripts. Additional details are avail-

able in supplementary methods, Supplementary Material

online. Genome sequencing data for each strain are available

(http://jgi.doe.gov/, last accessed September 15, 2014).

Comparative Genomic Hybridization

Array-based comparative genomic hybridization (aCGH) was

performed in biological duplicate on CRB, LEP, and MUSH

relative to a DBY8268 control as previously described

(Pollack et al. 1999). Samples were labeled using amino-allyl

dUTP (Ambion), Klenow exo-polymerase (New England

Biolabs), and random hexamers, and coupled with cyanine

dyes (Amersham). Samples were hybridized to custom 385K

tiling arrays (NimbleGen) designed using chipD (Dufour et al.

2010) on the composite S. cerevisiae genome described

above. Arrays were hybridized in a NimbleGen hybridization

system 12 (BioMicro) and scanned using a scanning

laser (GenePix 4000B, Molecular Devices) according to

NimbleGen protocols (http://www.nimblegen.com/, last

accessed September 15, 2014). Data normalization was per-

formed using Bioconductor (Gentleman et al. 2004) and

custom Perl scripts. The affy() package (Gautier et al. 2004)

was used to apply probe-level quantile normalization to the

log2 ratios. We defined genes with increased copy number as

those with a log2 aCGH ratio greater than 0.7 (because rela-

tive intensity values are often slightly compressed from the

expected duplication log2 value of 1.0); genes with a log2

aCGH ratio<�1.0 were identified as potentially deleted. All

microarray data are available through the NCBI Gene

Expression Omnibus under the accession GSE56441.

RNA-Seq Library Construction and Sequencing

Each strain was subjected to 25–37 �C heat shock for 15 min

or 5% (v/v) ethanol treatment for 30 min. Cells were grown in

YPD medium to log phase (OD600 ~0.5) for at least four dou-

blings, at which point a sample of unstressed cells was

removed. RNA was extracted by hot phenol lysis (Gasch

2002) and mRNA was twice purified from total RNA using

the Absolutely mRNA purification kit (Stratagene). mRNA

samples were chemically fragmented to 200–250 bp using

1� fragmentation solution for 5 min at 70 �C (Ambion). First

strand cDNA was synthesized using Superscript II Reverse

Transcriptase (Invitrogen) and random hexamers. cDNA was

purified with Ampure SPRI beads. The second strand was syn-

thesized using dNTPs (dTTP replaced with dUTP), Escherichia

coli RNaseH, DNA Ligase, and DNA polymerase I for nick trans-

lation. dscDNA were purified and selected for 200–300 bp

fragments using a double Ampure SPRI bead selection,

blunt-ended, poly A tailed, and ligated with Truseq adaptors

using the Illumina DNA Sample Prep Kit (Illumina). Adaptor-

ligated DNA was purified using Ampure SPRI beads. The

second strand was removed by AmpErase UNG (Applied

Biosystems) using a method similar to (Parkhomchuk et al.

2009). Digested cDNA was cleaned with Ampure SPRI

beads. Paired-end 76 bp reads were generated by sequencing

using the Illumina HiSeq instrument.

RNA-Seq Read Processing, De Novo Assembly, and
Counting

Reads were filtered and mapped as described above.

Differential expression analysis was performed with edgeR()

(Robinson et al. 2010), using a general linearized model com-

paring expression in each strain relative to the average expres-

sion pattern across strains, with strain background and

environmental condition as factors and pairing replicate

samples. De novo transcript identification was performed

using Trinity (Grabherr et al. 2011). Resulting transcripts are

FIG. 2.—Distribution of SNPs across the genome. Homozygous (A, green) and heterozygous (B, blue) SNPs relative to the S288c reference for 16

S. cerevisiae chromosomes, with a sliding 1-kb window of 100 bp step size.
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available in supplementary data set S5, Supplementary

Material online.

For other expression analysis, genes with fewer than ten

mapped reads in at least one experiment were removed from

subsequent analysis. These data were subjected to model-

based clustering using mclust() (Fraley et al. 2012) with the

VII model and k = 100. Expression data were visualized using

Java TreeView (Saldanha 2004). Enriched gene ontology (GO)

categories were assigned using FunSpec or GO-TermFinder

(Robinson et al. 2002; Boyle et al. 2004). Additional details

are available in supplementary methods, Supplementary

Material online. Processed expression data are available in sup-

plementary data sets S6 and S7, Supplementary Material

online, respectively. Transcript sequencing data are available

through the NCBI Sequence Read Archive under the acces-

sions SRA051794 and SRA146858 (S288c), SRA051792 and

SRA146754 (CRB), SRA051801 and SRA146751 (LEP), and

SRA149355 (MUSH).

Population Genomics Analysis

We obtained whole-genome sequence from 63 additional

strains of S. cerevisiae (supplementary table S3,

Supplementary Material online) and performed pairwise

whole-genome alignments relative to the reference strain

S288c with MUMmer (v3.0; [Kurtz et al. 2004]). We con-

structed a neighbor-joining tree from all SNPs using PHYLIP

(v3.6; [Felsenstein 1989]) and used Structure (v2.3.2.1;

[Pritchard et al. 2000]) to infer the population history with

11,795 SNPs distributed approximately evenly across the

genome (~1 SNP/1 kb). We tested K from 1 to 7 under the

linkage model for 50,000 iterations, after a burn-in of 20,000

to 40,000 iterations. We estimated the posterior probability

for each K by assuming a uniform prior on K = {1, . . . , 7} and

determined that K = 6 is the most probable model that

captures the majority of structure in the data. We calculated

the nonsynonymous to synonymous substitution rate (Ka/Ks)

using the KaKsCalculator (v2.0; [Wang et al. 2010]) under the

MA model.

Results

Through the course of various phenotyping efforts, we iden-

tified three natural-isolate, diploid strains of S. cerevisiae that

were tolerant to stresses relevant to biofuel production.

Strains Y-2209 (“LEP,” isolated from Lepidopterous in

California) and Y-389 (“MUSH,” isolated from mushrooms)

were identified as being among the more tolerant to ethanol

treatment and high temperature, respectively (fig. 1). Strain

YB-210 (“CRB,” isolated from banana in Costa Rica) was tol-

erant to several stresses, including ethanol, heat, acetic acid,

phenolics, and sodium, as well as ammonia fiber-expansion

(AFEX)-treated corn stover hydrolysate (ACSH; [Jin et al. 2013]

and fig. 1). CRB, and to some extent MUSH, were also among

the strains that could grow well at 40 �C and in ACSH at 42 �C

(fig. 1).

Genome Sequencing Uncovers Extensive Genome
Differences

To examine the genotypes of these strains, we sequenced

their genomes with high-depth (>200�) short-read (76 bp)

Illumina sequencing (see Materials and Methods). After map-

ping to a composite reference genome representing multiple

strains, we identified approximately 44,000–78,000 SNPs and

approximately 5,000–10,000 indels for each strain relative to

the reference genome (table 1 and supplementary table S4,

Supplementary Material online). Approximately 82% of these

SNPs have been observed in least one other sequenced strain

(Goffeau et al. 1996; Wei et al. 2007; Borneman et al. 2008,

2011; Doniger et al. 2008; Argueso et al. 2009; Novo et al.

2009; Dowell et al. 2010; Akao et al. 2011; Babrzadeh et al.

2012). Of the 21,601 novel SNPs, all but 603 are found in only

one of our strains, suggesting they are either false-positive

identifications, have emerged through new mutation, or rep-

resent polymorphisms present in populations for which com-

plete genome sequence is not yet available (e.g., recent

Chinese isolates; [Wang et al. 2012]; supplementary fig. S1,

Supplementary Material online). Notably, MUSH contains the

largest number of novel SNPs (supplementary table S5,

Supplementary Material online).

Heterozygous sites were found in all three diploid

sequenced strains; however, there was a wide distribution in

the level of heterozygosity, spanning the range measured in

other sequenced strains (supplementary table S6,

Supplementary Material online; [Akao et al. 2011;

Borneman et al. 2011; Magwene et al. 2011; Babrzadeh

et al. 2012]). LEP is almost entirely homozygous, with only

267 heterozygous sites (table 1). Although both MUSH and

CRB are highly heterozygous, (67% and 65% biallelic SNPs,

respectively; table 1), MUSH also contains several regions of

loss of heterozygosity (LOH; fig. 2 and supplementary note S1,

Supplementary Material online). The genome-wide heterozy-

gosity of CRB may explain the low spore viability of this diploid

strain (~2% viability), which could mask recessive lethal alleles

that are uncovered in spores.

Table 1

Genomic Distribution of Intergenic (I), Synonymous (S), and

Nonsynonymous (NS) SNPs

CRB LEP MUSH

Hom. Het. Total Hom. Het. Total Hom. Het. Total

I 8,849 15,806 24,655 15,439 119 15,437 9,328 17,150 26,478

S 10,432 20,740 31,172 18,192 59 18,251 9,900 22,281 32,181

NS 6,102 10,592 16,694 10,518 89 10,607 6,310 13,085 19,395

Tot. 25,383 47,138 72,521 44,149 267 44,416 25,538 52,516 78,054

NOTE.—Hom., homozygous; Het., heterozygous.
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We also performed aCGH to assess copy number variation

(CNV) across individual genes (see Materials and Methods)

and observed extensive CNV in CRB, LEP, and MUSH relative

to the diploid reference lab strain DBY8628, most notably

in subtelomeric regions, which are known to be enriched

for genes involved in stress response and carbohydrate

metabolism ([Brown et al. 2010]; see supplementary note S2

and fig. S2, Supplementary Material online).

Nonrandom SNP Distributions Suggest Signatures
of Selection

For all three strains, approximately one-third of detected SNPs

were intergenic (table 1), whereas only about 25% of the

S. cerevisiae genome is noncoding (Cherry et al. 2012).

This indicates a significant skew toward intergenic SNPs in

all strains (Bonferroni-corrected P< 1e-92, hypergeometric

test comparing SNPs per total base pairs in each class), likely

due to reduced functional constraint in intergenic sequences

(Doniger et al. 2008). Novel SNPs show a similar distribution

(although with slightly more SNPs in coding regions;

Bonferroni-corrected P<1.89e-20 for CRB and MUSH, hyper-

geometric test comparing SNPs per total base pairs in each

class; supplementary table S5, Supplementary Material

online), and are also enriched for heterozygous SNPs relative

to the background distribution (supplementary table S5,

Supplementary Material online; P<1e-4 for all strains, hyper-

geometric test). This suggests that many of these SNPs repre-

sent true SNPs rather than sequencing error, and indicates

that our knowledge of the full spectrum of genetic variation

in S. cerevisiae is still incomplete.

Between 36% and 39% of SNPs detected in coding

regions are nonsynonymous relative to the S288c-derived dip-

loid strain DBY8268, indicating that they change the encoded

protein sequence (table 1). Interestingly, in CRB, one of the

most heterozygous strains, nonsynonymous mutations are

more frequent in homozygous SNPs than in heterozygous

SNPs (24% vs. 22%, respectively; P<0.0001, �2 test of asso-

ciation), suggesting that these mutations could represent

important functional adaptations. Among all three strains,

we identified 57 genes with homozygous nonsense muta-

tions, including 14 in CRB, 39 in LEP, and 27 in MUSH

(supplementary data set S1, Supplementary Material online).

Interestingly, several genes had premature stop codons in

multiple strains: Six genes had the same nonsense mutation

in all three strains, and 12 genes had the same nonsense

mutation in two of the three strains. None of these genes is

essential in S288c (Giaever et al. 2002), raising the possibility

that they may be undergoing pseudogenization in these

strains.

We assessed the nonsynonymous to synonymous substitu-

tion rate (Ka/Ks) relative to the S288c lab strain to identify

genes with higher than expected rates of coding change

(i.e., Ka/Ks>1; supplementary table S8, Supplementary

Material online). Although this analysis is complicated by

short evolutionary timescales (where polymorphisms may be

unique to a single lineage and not fixed in the population;

Kryazhimskiy and Plotkin 2008), we nonetheless sought to

identify genes subject to higher rates of coding polymorphism.

Several stress-responsive transcription factors displayed

Ka/Ks>1 in both CRB (including GCN4, Ka/Ks = 1.13; FLO8,

Ka/Ks = 1.27; MOT3, Ka/Ks = 2.54; and HOT1, Ka/Ks = 1.07;

supplementary data set S2a, Supplementary Material on-

line) and MUSH (including MSN4, Ka/Ks = 1.12; MOT3,

Ka/Ks = 1.43; and HOT1, Ka/Ks = 1.80; supplementary data

set S2c, Supplementary Material online). Strikingly, fast-

evolving genes in LEP include components of the cell wall

integrity PKC MAPKKK pathway (including WSC2, Ka/

Ks = 1.8; WSC3, Ka/Ks = 1.10, and BCK1, Ka/Ks = 1.26;

P<0.003, hypergeometric distribution; supplementary data

set S2b, Supplementary Material online). Importantly, enrich-

ment of functional categories is not expected, unless many

genes involved in the same functional processes have experi-

enced stepwise coevolution (Bullard et al. 2010). These differ-

ences may point to mechanisms of increased stress tolerance

in these strains (see Discussion).

Multistress Resistant Strains Have Highly Mosaic
Genome Structures

We inferred the population structure of 66 strains of

S. cerevisiae, including CRB, LEP, and MUSH (fig. 3 and sup-

plementary figs. S3 and S4, and table S3, Supplementary

Material online). Similar to previous studies, we identified

five pure lineages among the strains we analyzed

(Malaysian, West African, Sake, North American/oak, and

European/wine lineages; Liti et al. 2009; Schacherer et al.

2009). However, the genomes of CRB, LEP, and MUSH

are all highly mosaic—portions of their genomes have been

inherited from each of the ancestral populations. A large por-

tion of the MUSH genome is similar to those of laboratory

strains. By contrast, both the CRB and LEP genomes have seg-

ments similar to European/wine and Sake strains. The mosaic

nature of these genomes is likely due to infrequent mating

among ancestral genomes, leading to novel allele combina-

tions that could underlie the extreme stress tolerance of these

strains (see Discussion).

Non-S288c Genes Are Enriched for Specific
Functional Processes

We sought to identify unique genes present in these newly

sequenced natural isolates but missing from the common

S288c genome reference, through several approaches.

First, we mapped the DNA sequencing reads to a composite

genome sequence that included approximately 50 kb found in

the biofuel strain JAY291 but missing from S288c (Argueso

et al. 2009). We found that reads from CRB, but not MUSH or

LEP, aligned to the JAY291 sequence. Second, we performed
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de novo assembly of the short-read sequences and annotated

regions that did not align with the S288c lab strain. Finally,

we generated RNA-seq data for each strain (see below) and

identified transcripts through de novo assembly.

Analysis of non-S288c genome sequence revealed several

genes present in our newly sequenced natural isolates, but

absent from the reference strain S288c (fig. 4 and supplemen-

tary tables S9–S11 Supplementary Material online). We de-

tected 25 genes in 269 kb of non-S288c sequence in CRB,

15 genes in 86 kb of non-S288c sequence in LEP, and 12

genes in 53 kb of non-S288c sequence in MUSH. In all three

strains, the majority of genes in non-S288c regions are pre-

dicted to be involved in carbon or nitrogen metabolism and

transport. LEP showed a preponderance of genes linked to the

cell wall and nitrogen catabolism, while in MUSH, non-S288c

carbon metabolism genes were most abundant compared

with other strains. Both CRB- and LEP-specific regions include

portions of a five gene, 14-kb region potentially horizontally

acquired from Zygosaccharomyces bailii and found in many

wine strains (fig. 4B; [Galeote et al. 2011; Novo et al. 2009]).

CRB also includes a nine gene, 23-kb region present in the

biofuels strain JAY291 and other industrial fermentation

strains (fig. 4C; [Argueso et al. 2009; Babrzadeh et al.

2012]). We also detected sequences similar to several genes

that have been pseudogenized or are not present in S288c but

are present in other wild strains, including BIO1, BIO3/6, KHS1,

RTM1, AWA1, and MPR1 (Goto et al. 1991; Ness and Aigle

1995; Takagi et al. 2000; Shimoi et al. 2002; Hall and Dietrich

2007). Other genes known to vary in copy number, including

MAL activator genes for maltose fermentation and SUC genes

for sucrose hydrolysis, were also found in our strains.

In addition to these genes, we identified between 103

and148 transcripts depending on strain that did not

match the S288c transcriptome (supplementary table S12,

Supplementary Material online). Roughly half of these tran-

scripts matched noncoding regions in the S288c genome,

indicating differential transcription potential across strains, in

some cases at S288c pseudogenes. Many of the non-S288c

transcripts that did not match the genes described above were

related to carbon or nitrogen metabolism and transport, fur-

ther highlighting the prevalence of these functional groups

in the variable gene content of the species.

Significant Transcriptomic Variation in Response to Stress

To investigate the mechanisms of stress tolerance, we profiled

transcriptome changes in the three natural isolates, along with

the diploid S288c-derived strain DBY8268, responding in

biological duplicate to two stresses related to biofuels produc-

tion: A 25–37 �C heat shock or treatment with 5% v/v etha-

nol. We applied a multifactorial linear model to identify genes

differentially expressed in each strain, in response to each

environment, and in a manner influenced by strain and envi-

ronment (so-called “Gene by Environment” interactions).

In all, we identified 3,404 and 3,256 genes whose expression

was significantly altered in response to heat and/or ethanol

treatment, respectively (false discovery rate, FDR<1%),

regardless of strain background (fig. 5A). Most of the

genes responded to both stresses and included the common

environmental stress response that is activated by a wide array

of diverse stresses (Gasch et al. 2000). In contrast, 691 and

543 genes responded specifically to heat or ethanol,

respectively.

FIG. 3.—Population structure of 66 S. cerevisiae strains. Population structure was inferred using 11,795 evenly distributed SNPs and six ancestral

populations, identified as European/wine (green), North American/oak (orange), West African (blue), Sake (purple), and Malaysian (yellow) lineages, as well

as various human-associated (red) strains. For each strain indicated on the x axis, the height of each colored block represents the proportion of each

population assigned to that strain. Labels indicate the source from which each strain was isolated.

FIG. 4.—Unique genes in CRB, LEP, and MUSH. A. Functional

distribution of 25 non-S288c genes in CRB, 15 non-S288c genes in LEP,

and 12 non-S288c genes in MUSH, classified according to predicted GO

biological process or molecular function. CW, cell wall; other, unknown or

other. (B and C). Genomic architecture of non-S288c genes in CRB and

LEP (B) or in CRB and biofuel strain JAY291 (C). Black bars are spaced

2 kb apart.
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Of the gene expression changes provoked by one or both

stresses, we found over 1,962 expression changes that were

significantly influenced by genetic background in one or more

strains (FDR< 1%), including 478 genes differentially

expressed in DBY, 194 in MUSH, 125 in LEP, and 114 in

CRB (fig. 5D). That the DBY lab strain showed the most

strain-specific effects is consistent with prior studies that

show this strain is an outlier compared with wild isolates

(Kvitek et al. 2008; Lewis et al. 2010; Lewis and Gasch

2012; Hodgins-Davis et al. 2012). The genes with strain-

specific effects strongly overlap the genes responsive to heat

and ethanol independent of strain background, indicating

that much of the genotype-by-environment effects produce

quantitative differences in the response. Nonetheless, we also

found 243 and 333 genes that showed a heat or ethanol

response, respectively, only in specific strains (fig. 5B and C).

We clustered the strain-specific responses to discover

physiological differences in the natural isolates, based on

enrichment of GO categories in specific gene clusters. Unlike

the other strains, MUSH challenged with ethanol or heat did

not strongly induce genes involved hexose transport and

amino acid metabolism (Bonferroni-corrected P<0.01, hyper-

geometric test), perhaps due to reduced impact on these pro-

cesses. However, MUSH showed greater induction of many

stress-activated genes, including those involved in glycogen

metabolism. Remarkably, genes with MUSH-specific expres-

sion patterns were enriched (Bonferroni-corrected P< 0.05,

hypergeometric test) for known targets of transcription factors

with elevated rates of evolution in MUSH (including Mot3,

Hot1, and Msn2 targets, the latter of which strongly overlap

with Msn4-regulated genes; table 2; [Berry and Gasch 2008]).

CRB showed a unique response to ethanol compared with the

other strains, including stronger induction of many stress

responsive genes and unique induction of a group of genes

involved in aromatic amino acid biosynthesis. CRB-specific

expression effects were also enriched (Bonferroni-corrected

P<0.05, hypergeometric test) at targets of transcription

factors under selection (including Gcn4, Flo8, and Hot1

targets; table 2), indicating that the elevated rates of regulator

evolution have downstream consequences.

We were particularly interested to see if strain-specific

expression differences occurred at genes known to be impor-

tant for heat or ethanol tolerance in the lab strain. In all strains,

the genes with strain-specific responses were enriched for

genes identified in screens of the laboratory deletion library

as important for ethanol tolerance (P< 0.01, hypergeometric

test; supplementary table S13, Supplementary Material

FIG. 5.—Expression differences across environments and strains.

(A) Venn diagram representing the number of differentially expressed

genes responding to heat or ethanol stress, regardless of strain back-

ground. (B and C) The overlap in heat-responsive genes (independent of

strain background, B) or ethanol-responsive genes (independent of strain

background, C) and genes with a strain-by-stress interaction. (D) Two

hundred forty-eight genes differentially expressed in at least one wild

strain. Left: log2 expression differences in unstressed strains versus the

average of all strains; Middle: log2-fold changes in each strain responding

to heat (H) or ethanol (E) stress, compared with the strain’s starting ex-

pression before addition of stress; Right: Difference in stress-responsive

expression in each strain versus the average across all strains. Red/green

represents increased/decreased expression in response to each stress;

yellow/blue represent higher/lower expression in the denoted strain com-

pared with the average of all strains.

Table 2

Enrichment for Targets of TFs with Evidence for Selection in 217

CRB-Specifically Induced Genes, 311 LEP-Specifically Induced Genes,

or 301 MUSH-Specifically Induced Genes

TF Ka Ks Ka/Ks P valuea Number of

Targ. in

Cluster

Number of

Targ. in

Genome

CRB

Gcn4 0.0049 0.0043 1.137 6.33e-11 25 118

Flo8 0.0048 0.0037 1.268 1.92e-4 24 216

Hot1 0.0047 0.0044 1.072 0.0404 9 67

LEP

Flo8 0.0059 0.0018 3.288 4.25e-6 33 216

MUSH

Mot3 0.0037 0.0026 1.429 7.64e-4 11 47

Msn2/4 0.0087 0.0078 1.123 0.0457b 23 209

Hot1 0.0080 0.0044 1.804 0.0286 11 67

NOTE.—TFs, transcription factors; Targ., target.
aP value from Bonferroni-corrected hypergeometric test.
bEnrichment for Msn2 targets.
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online). Intriguingly, the affected genes in MUSH included

several protein-folding chaperones (including HSP26, FES1,

YDJ1), whereas genes common to MUSH and CRB included

proteins involved in tryptophan and aromatic amino acid bio-

synthesis (ARO1, ARO3, TRP2, and TRP3, in one or both

strains). These results hint at possible mechanisms of stress

tolerance in these strains (see Discussion).

Discussion

Wild isolates of S. cerevisiae represent untapped resources of

genetic diversity for genetic engineering and can provide in-

formation about the genetic basis of novel phenotypes. Here,

we focused on three strains with extreme stress tolerance,

which we sought to decipher through genome and transcrip-

tome sequencing. Our results contribute to our understanding

of the ecology, evolution, and genotype–phenotype relation-

ships of natural yeast strains.

Differences in the sequence and genome content of the

strains studied here suggest disparities in their life histories. All

three strains display mosaic genomes, reflecting recent admix-

ture with other distinct lineages through infrequent mating.

However, LEP is nearly entirely homozygous, suggesting a

clonal lifestyle with little outcrossing to maintain heterozygos-

ity. MUSH and CRB are both highly heterozygous strains, but

whereas the MUSH genome is punctuated by regions of LOH,

CRB displays little LOH. The latter is surprising, because exten-

sive LOH has been observed in most other sequenced diploid

strains of S. cerevisiae (Akao et al. 2011; Borneman et al.

2011; Magwene et al. 2011; Babrzadeh et al. 2012). One

possibility is that CRB maintains heterozygosity to mask reces-

sive lethal alleles (which may contribute to the low spore

viability of this strain) or that the strain may represent a very

recent hybrid with some other barrier to spore viability. How

mosaicism has influenced the ecological relationships of these

strains is unclear. It is notable that the strains sequenced here

are generally outliers in terms of stress tolerance, indicating

that the phenotypes are not merely due to inheritance of

single genes with standing variation. Instead, the reassortment

of alleles may have uncovered extreme-stress resistance phe-

notypes by providing new allelic combinations of relevant

gene sets. It is also possible that new mutations specific to

these strains contributed to the phenotypes.

Our results expand the known genomic landscape of

S. cerevisiae as a species. At least 10% of SNPs we identified

were previously unknown; their nonrandom genomic distribu-

tion suggests that they emerged as new mutations or repre-

sent previously unseen minor alleles. A lower bound estimate

of 0.4–2% of genome content varies across these strains,

corresponding to variation in the presence of 0.2–0.4% of

all yeast genes. An interesting theme among these variable

genes, as well as transcripts not encoded by the lab-strain

genome, is that many are related to carbon and nitrogen

metabolism as well as transport. Differences in carbon

utilization, nitrogen/amino acid metabolism, and transporter

functions have been previously found to vary within and

across yeast species, in a variety of studies (Townsend 2003;

Kvitek et al. 2008; Hittinger et al. 2010; Wenger et al. 2010;

Will et al. 2010; Chang and Leu 2011; Gutierrez et al. 2013;

Opulente et al. 2013), raising the possibility that these pro-

cesses are highly variable in nature.

We also uncovered a striking level of nonsynonymous

coding differences, in some cases reflecting nonsense alleles

and in others revealing elevated rates of change that can be a

signature of selection. The significant differences across this

relatively small set of strains underscore the level of genetic

diversity in the species. Although many of these differences

may be (nearly) neutral, others may contribute to phenotypic

differences across strains. Along these lines, it is especially

notable that half of the environment-responsive transcript

changes we observed showed strain-specific effects.

Furthermore, the transcripts expressed in a strain-specific

manner were enriched for targets of transcription factors

putatively under positive selection in individual strains

(Ka/Ks> 1). Thus, genotype-by-environment interactions are

prevalent and likely affect many different yeast phenotypes.

The genomic differences uncovered here provide

clues to the potential mechanisms of stress tolerance.

The ethanol-tolerant LEP strain carries a preponderance of

non-S288c genes related to the cell wall (fig. 4) and displays

elevated rates of coding-sequence changes in genes in the

PKC cell wall-integrity signaling pathway. Together, these

data raise the possibility that cell wall differences have been

positively selected in the LEP background. Given that the cell

surface is a prime target of ethanol stress (van Voorst et al.

2006; Teixeira et al. 2009), and cell wall differences could

contribute to the LEP ethanol resistance trait.

The heat-resistant MUSH strain displays several unique

features related to carbon metabolism—previously shown to

impact thermotolerance (Gibney et al. 2013)—including an

enrichment of non-S288c genes linked to carbon response

and differences in expression of carbon metabolism

genes. MUSH also shows elevated sequence changes in

stress-activated transcription factors, including the multistress

activated Msn4, and hyper-activation of Msn2/Msn4 targets

including protein-folding chaperones required for heat

survival.

Finally, the multistress resistant CRB strain displays unique

induction of genes involved in aromatic amino acid metabo-

lism, which were previously shown important for ethanol

tolerance, perhaps due to alterations in membrane fluidity

(Hirasawa et al. 2007; Yoshikawa et al. 2009). Notably,

lab strains lacking these genes emerge as sensitive to ACSH

in several high-throughput screens (manuscript in prepara-

tion), suggesting that the unique expression response in CRB

may also contribute to ACSH resistance.

The level of phenotypic variation in natural and industrial

S. cerevisiae strains is only beginning to emerge, thanks to
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high-throughput screening efforts. An important area of

ongoing work is to determine the causal genetic differences

that underlie those traits and their evolutionary histories.

Nonetheless, natural variation in wild strains provides an excel-

lent starting point for future dissection of stress-resistance

mechanisms as well as engineering for bioproduct formation.

Supplementary Material

Supplementary figures S1–S6, tables S1–S13, notes S1 and

S2, data set S1–S7, methods, and references are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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