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Abstract
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Introduction

Digital pathology imaging applications in research, education, 
and clinical diagnosis are fulfilled by a diversity of “whole 
slide” digital pathology scanners. In most cases, “whole 
slide” designation is a misnomer, as scanners typically capture 
high‑resolution images only in slide areas where tissue is 
detected using a vendor‑specific algorithm. This is by design, 
as the omission of uncaptured areas reduces scanning time 
and file size, at a cost of unintended exclusion of some tissues 
known as “dropouts.” Key parameters to be considered include 
capture conditions  (lighting, focus, color space), image file 
characteristics, throughput, cost of file storage, and ability to 
integrate with a preexisting or future ecosystem of networked 
hardware and software from scanner to end viewer.

Electronic delivery of digital histology images is an enabling 
technology for remote diagnosis that has recently seen 
expanded use during the COVID‑19 pandemic.[1‑4] Prepandemic 

clinical use has been reported in some centralized hospital 
systems,[5,6] in subspecialty practices,[7] and decentralized 
health‑care systems lacking pathologists at all delivery sites.[8] 
Regulatory guidance for these activities in the United States 
is in its infancy, for many years having focused on Food 
and Drug Administration‑mandated engineering controls of 
medical devices (scanners), and vendor designed and executed 
diagnostic impact studies embedded within regulatory, rather 
than public peer‑reviewed documents. Pathologist end users 
have directly evaluated endpoints with which they are most 
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vested and familiar; interobserver concordance of subjective 
diagnoses is rendered by a human pathologist.[9‑12] The results 
comparing subjective interpretation of one platform  (glass) 
with another (digital) are an important but imprecise endpoint, 
as the baseline extent of diagnostic variation using glass alone 
can be quite high.[13‑17] Key aspects of digital file production, 
especially the manner in which tissue characteristics interact 
with scanner type and settings to determine image quality, are 
practice‑contextual elements in the digital pathology pipeline. 
Vendor estimates of operational throughput (scan time), digital 
storage costs (file size), and diagnostic errors (over or under 
diagnosis) may not extrapolate to a particular user’s specific 
case‑mix or diagnostic goals.

Scanner dropouts are defined as areas of tissue on the 
glass slide that are omitted in the digital image and are 
often replaced with background‑matched or white/gray 
space. These are perhaps the most challenging element 
of digital imaging to measure, as source data created for 
regulatory certification are often not in the public domain. 
Characterization of extent and character of dropouts is not 
part of most glass‑digital diagnostic concordance studies, and 
when performed is usually compromised by the limitations of 
a subjective human observer.  For example, the replacement 
of skipped areas with background‑matched space can lead 
the pathologist observer to underestimate the amount of 
omitted slide. Our department has begun to address some of 
these practical issues like due diligence preparation for a new 
digital pathology effort. We created representative test slide 
sets from actual patient material and benchmarked scanner 
operations and image quality using objective metrics such 
as image analysis. Pointedly, our effort was directed at those 
digital operations that take place before the pathologist ever 
looks at an image.

We here examine elements of digital pathology operations in 
a specialized clinical practice that have the potential to impact 
throughput efficiency, storage costs, and fidelity of the resultant 
digital image. We passed a representative randomly selected 
212 slide test set of gynecologic and perinatal pathology 
slides through different whole‑slide scanners and differing 
scan profile configurations to generate digital whole‑slide 
images. Use of a single slide set across all conditions permitted 
controlled comparison between scanners. Scanning time 
and digital file size were collected as measures of scanning 
throughput and storage requirement (costs), respectively. We 
then used image analysis to overlay reference glass slides 
with their respective scanned file images. This allowed 
high‑sensitivity identification of “dropouts,” areas of tissue 
present in the source glass slide that were overlooked in the 
scanning process and thus absent in the scanned whole‑slide 
images. Stratification of scanned slides by tissue type and 
scale (small biopsies, large resection specimens) allowed us 
to determine that file characteristics and dropout rates are 
co‑dependent on scanner type, scanning software settings, and 
tissue characteristics.

Methods

Series compilation and slide preparation
Histological sections of 212 surgical pathology specimens 
were randomly selected from the Women’s and Perinatal 
Pathology service at Brigham and Women’s Hospital (Boston, 
MA, USA) as follows. Pathology reports were retrieved for 
4077 specimens (“case”) received as wet tissue (excluding 
extramural slide consults) during a 3‑month interval from 
February to April 2018. Each specimen was assigned a 
random number, and the number of component blocks was 
recorded. The case list was then sorted by a random number, 
and the first 212 specimens in the random‑sorted list with 
available blocks were selected for the study. For each case, 
a different random number assignment was used to select 
one component block for the series. These 212 blocks 
were retrieved, sectioned at 4 µm, routinely stained with 
hematoxylin and eosin, and mounted with glass coverslips in 
an automated coverslipping machine. All histology processes 
were performed using routine procedures in our clinical 
histology laboratory before finished slides were labeled 
with an anonymized barcode identifier. Table 1  shows the 
distribution of specimens by anatomic site of origin (tissue 
type) and specimen size (big = trimmed resection specimen, 
bx = small biopsy, or fragments).

Macroscopic camera photography, “Reference”
Stained glass slides were photographed at high resolution (21MP, 
5616 × 3744 px) on a backlit light box using a Canon EOS 5D 
Mark II camera outfitted with a macro lens (Canon EF100 mm 
f/2.8L Macro IS USM). Image postprocessing in Adobe 
Lightroom Classic v 9.1 included lens aberration correction, 
adjustment of contrast and brightness, and conversion to gray 
scale.

Whole‑slide scanning: “wsi”
All slides were batch imaged in whole‑slide scanners using 
supplied autoloader racks under three conditions  [Details 
in Supplemental Data]:  (1) Hamamatsu S210 using default 
brightfield  (“default”) profile settings;  (2) Hamamatsu 
S210 using profile settings empirically optimized  (“opt”) 
to minimize tissue dropouts; and (3) Leica GT450 standard 
settings. Scan time was estimated from file timestamps (S210) 
or scanner log (GT450) and the resulting file size was read 
from the destination computer operating system (Windows 10). 
Measurements of file size were captured as actual bytes per file, 
and scaling of units was performed on a decimal scale (e.g., 1 
byte = 10000 bytes; 1 KB = 10001 bytes, 1 MB = 10002 bytes; 
1 GB = 10003 bytes).

Full‑frame tiff images of the entire field captured by the 
scanner were generated by opening each whole‑slide image 
file  (ndpi  =  S210 file type, svs  =  GT450 file type) in a 
multiformat viewer  (NDP.View Plus v2.7.43 + Hamamatsu 
Photonics K.K., 2019), and exporting the screen contents as 
recompiled from the source wsi to a tiff file that was cropped to 
the margins of the captured field. TIFF files were imported into 
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Adobe Lightroom for adjustment of contrast and brightness, 
and conversion to gray scale.

Preparation of color‑coded overlays
Paired grayscale reference and wsi images were rescaled, 
aligned, and prepared as translucent overlays using StereoPhoto 
Maker Pro (64 bit) v6.02 (2020, by Masuji Suto and David 
Sykes, available online at http://stereo.jpn.org/eng/index.
html) [Figure 1]. This produced a red (reference)–cyan (wsi 
scanner image) overlay in which tissue dropped out in the 
scanner image was visible as a red profile contributed by the 
reference image. Fragment edges were highlighted in Adobe 
Photoshop Creative Cloud (release 21.2.0, 64 bit), using the 
“Find Edges” filter. The resultant overlay is shown in Figure 1c, 
along with examples of types of tissue dropped out. A rectangle 
corresponding to the computer screen boundaries and aspect 
ratio used at the time of scanner wsi screen export is seen in 
the overlays as a pale cyan rectangle. This is an artifact of the 
workflow, which was ignored during visual interpretation.

Identification and classification of tissue dropouts in 
whole‑slide scanner images
Color‑coded overlays of reference and wsi images were 
screened for red signal indicating object areas present in the 
reference but missing in the wsi images  [Figure  1, c1-3]. 
These were compared with the original high‑resolution color 
reference images, and source glass slides viewed under a 
standard optical microscope to classify the nature of the 
putative dropout. The screening overlays were very sensitive 
and capable of detecting contaminating dust and floating 
cellular contaminants  [Figure  2]. These artifacts were not 
interpreted as dropouts for purposes of this study. Enumeration 
as a dropout was reserved for regions of native tissue, or 
sectioned mucus/blood/cell aggregates.

We scored each wsi as a dropout whenever visual inspection 
revealed one or more wsi dropped fragment(s) relative to the 

reference image. For each slide with dropouts, the predominant 
category was recorded as pale fat (translucent), small shattered 
fragments (shards), or peripheral or edge location [Table 2].

For those whole‑slide images with dropouts, the extent of 
dropout was estimated visually as an approximate percentage 
of tissue missing in the wsi compared to all tissue present in 
the reference image.

Estimation of “Unique” dropout frequency [Figure 7]
We scored fragments missing from the digital image according 
to histologic similarity to those retained. Guided by color‑coded 
overlay dropout maps for each scan, digital slide tissue dropouts 
were photographed from the original glass slide using a standard 
optical photomicroscope. The reference (glass original) static 
image of each dropout was opened on one computer monitor, 
and the corresponding zoomable digital scan image opened 
on the second of a dual monitor display. A  subspecialty 
gynecologic pathologist  (GLM) then searched the digital 
whole‑slide image for diagnostically equivalent tissues 
matching those documented in the dropout photomicrograph. 
The scanned slide was then summarily scored once: either (1) 
unique dropout, if no equivalent of one or more dropout tissue 
area(s) was represented in the scan, or (2) nonunique dropouts, 
when tissues comparable to all noted dropouts (“surrogates”) 
were present within the digital whole‑slide scan. Thus, each 
slide containing a dropout received one overall score as unique 
or nonunique.

Statistical analysis
All statistical analyses and graphical data display were performed 
using SYSTAT (v13.1, Systat Software, Inc., San Jose, CA).

Table 1: Case series, by tissue type and specimen size

Tissue type Big Bx Total
Bowel 1 0 1
Cervix 9 23 32
Endometrium 0 58 58
Fetus 3 0 3
Lymph node 4 0 4
Omentum 2 0 2
Ovary 11 0 11
Peritoneum 0 6 6
Placenta 58 0 58
Conceptus 0 18 18
Skin 1 0 1
Fallopian tube 3 0 3
Uterus 6 0 6
Vagina 1 2 3
Vulva 1 5 6
Total 100 112 212
Big: Trimmed resection specimen, Bx: Small biopsy, or fragments

Figure 1: Overlay of aligned reference (camera) and scanner images 
to detect dropouts. High‑contrast grayscale images from a lossless 
camera (A, reference) and “wsi” digital scanner whole‑slide image (B, 
Hamamatsu S210, default brightfield settings) were rescaled, aligned, and 
color coded (C, overlay) so that superimposed overlapping areas are blue, 
and dropouts are red. Details of three dropout regions include translucent 
fat (c1, c3) and tissue present on the margins of the slide (c2, “edge”). 
Case BD2019‑2222, tissue from aortic lymph node dissection

C
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Results

Complete scan failures
Complete scan failure, or inability of the scanner to 
generate a digital file, is distinct from tissue dropout 
in which a created digital file is lacking some tissue 
fragments present on the glass slide. Of the 212 slides 
scanned, scan failure frequency and tissue characteristics 
varied by scanner and scanning profile. Four (4/212, 1.9%) 
S210def scan failures were attributed to shattered tissues 
composed entirely of minute fragments without a focus 
point for the scanner. An additional (1/212, 0.5%) GT450 
scan failure was attributed to a large blood clot where 
red cells scattered transmitted light, thereby denying the 
scanner a stable focus point.

File size and scan time
The file size was proportional to scan time for all scanner 
conditions, but the quantitative relationship differed 
systematically by scanner [Figure 3]. The fastest scan time and 
smallest file size were seen with the GT450 [Figure 3, red circles], 
and the longest scan time and biggest file sizes were seen with 
the S210 operated under a setting profile [opt, Figure 3, green 
crosses] designed to minimize dropouts. The S210 default 
profile settings were intermediate for both of these parameters. 
The linear relationships between file size  (x, GB) and scan 
time (y, seconds) can also be summarized as a least‑squares 
linear regression formula by scanner type as follows:  (1) 
GT450 (r = 0.828), y seconds = 32.3 + 37 (file size in GB); (2) 
S210def (r = 0.887), y seconds = 122 + 102 (file size in GB); 
and (3) S210opt (r = 0.930), y seconds = 158 + 164 (file size 
in GB).

For all scanners, greater amount of tissue on the slide [Table 3, 
bigs vs. bx] significantly prolonged scan time and increased 
file size  (Kruskal–Wallis P  ≤  0.001 for all comparisons). 
This matches expectations, as the scanning algorithms for all 
scanners involve high‑resolution capture only of those areas 
of a slide in which tissue is detected. This trend held across 
tissue sites (e.g., cervix, placenta, etc.) included in the study.

Dropout type, by a scanner
Table 2 tallies each slide once by a scanner. When a dropout is 
present, it is noted by dropout type best representing the whole 
slide. Excluding the five failed scans that did not produce any 
wsi file to evaluate, there were a total of 631 scans performed 
with 70.5% (445/631) dropout‑free scans. The most frequent 
dropout type is “shards,” seen in 22.2% (140/631) of slides, 
followed by 6.2%  (39/631) edge misses. The frequency of 
dropout types varied greatly across scanners  (Chi‑square 
P  <  0.001). The S210Opt had the lowest dropout rate at 
13.7% (29/212), followed by the GT450 at 34.6% (73/211) 
and S210Def at 40.4%  (84/208). All were prone to the 
dropout of small shards, and the GT450 had a tendency to 
miss edge domains. Typical examples of dropouts are shown 
in Figures 4‑6.

Estimated percentage of tissue dropped out
The majority of detected dropouts were very small in 
comparison to the total tissue present on the slide. This is 
illustrated in representative images [Figures 4‑6] and tabulated 
as an estimated percentage of tissue lost by scanner [Table 4]. 
Notably, 78.5% (146/186) of dropouts involved 2% or less 
of all tissue on the slide. Larger percentage of loss were 

Figure 3: File size and scan time, by scanner (Leica GT450, Hamamatsu 
S210 default settings, Hamamatsu S210 optimized settings). File size 
(x-axis, x0.5) was proportional to scan time (yaxis, y0.5) on all conditions. 
The GT450 had shortest scan times and smallest file size, whereas the 
S210 using settings optimized to minimize dropouts was longest in 
scan time and produced the largest files. All 212 slides were scanned 
successfully with the S210 optimum, with one failure with the GT450 
(211 scanned), and four failures with the S210 default (208 scanned)

Figure 2: Artifacts excluded from tissue “dropout” tally. The dropout 
detection process  [Figure  01] was capable of detecting very small, 
refractile, and folded contaminating structures that were artifacts not 
representative of the tissue section present on the slide. These included 
dust and fibers (a), compression boundaries caught by the microtome 
knife along the side edge of the paraffin block (b), individual disaggregated 
cells (c), and floating contaminants (d, clump of squamous cells in a 
placental section)

dc
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most common in the S210Def where fully 35.7% (30/84) of 
dropouts involved 3% or more of the tissue, and 3.6% (3/84) 
were missing more than a quarter of the tissue. Figure 4a is a 
large area of translucent fat that failed to scan on the S210BF 
but was successfully captured on the S210Opt and GT450.

Frequency of histologically unique tissue dropouts
Table 5 shows the scanning conditions under which unique 
tissue dropouts occurred, which were most frequent in the 
Hamamatsu S210 default profile. S210 scanning operations 
using the optimized profile had no unique dropouts, indicating 
some user control over their frequency in this versatile 
instrument. Of the four instances of scans with unique tissue 
dropout, one fragment was dropped by two scanners (S210 
default, GT450). All unique dropouts are illustrated in 
Figure 8, including the single fragment missed on two different 
scanners [Figure 8, Panel A].

Conclusions

Our analysis highlights the frequency of scanner dropouts that 
can be difficult to appreciate by casual visual comparison of 
glass with digital images. Transparent overlay of the reference 

glass and scanned images is a highly sensitive method capable 
of objectively detecting very small  (<0.5  mm), optically 
translucent  (mucus, fibrin entrapped cells, and fat), and 
peripheral (slide edge) tissue elements that fail detection and 
scanning across hardware platforms. In several respects, our 
findings challenge the definitional limits of what comprises 
a “tissue dropout,” including minimum size, composition of 
missed material, and acceptable slide edge boundaries. Only 
a small subset of dropouts, namely those comprised of large 
or polygonal empty image domains that interrupt the overall 
pattern of tissue capture within an image, would be suspected 
by an observer viewing the digital rendition.

When they occur, dropouts were overwhelmingly small 
shards or peripheral edges of tissue represented elsewhere 
on the slide. Some scanners permit remediation of dropout 
extent through optimization of user addressable scanner 
settings, such as the Hamamatsu S210 optimization 
that reduced default dropouts rates of 40.4%–13.7% 
postoptimization. The Leica GT450 scanner, which has 
few user addressable settings, had an intermediate dropout 
frequency of 34.6%. Nonuniqueness of most scanner 

Figure 5: Hamamatsu S210 (optimized profile) scan dropout examples 
(a-d). Each row shows one slide overlay (Left) and dropout detail (Right). 
In the overlay dropped tissues appear red and captured tissues cyan-blue 
(See figure 01). Dashed rectangles in the colored overlay indicate framing 
of the detail photomicrograph captured from original H&E glass slides. 
Dropouts were classified according to Table 2

d

c

b

a

Figure 4: Hamamatsu S210 (default profile) scan dropout examples (a-d). 
Each row shows one slide overlay (Left) and dropout detail (Right). In 
the overlay dropped tissues appear red and captured tissues cyan-blue 
(See figure 01). Dashed rectangles in the colored overlay indicate framing 
of the detail photomicrograph captured from original H&E glass slides. 
Dropouts were classified according to Table 2

d

c
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dropouts  (98%, 178/182) made them of low diagnostic 
impact. Highly fragmented specimens are most prone to 
distribute comparable diagnostic tissue in both scanned and 
unscanned regions of the slide [Figures 4c and 5b]. Dropouts 
of mucus and blood with or without dissociated cellular 
elements [Figures 5b‑c and 6b] are typically of insufficient 
physical integrity to be diagnostic. Preanalytical tissue 
processing steps can remediate edge dropouts, including 
trimming tissue blocks to permit a few millimeters clearance 
across the slide width and instructing histology technicians 
to maintain this clearance during embedding and sectioning. 
When they occur, the significance of slide edge overhangs 
of large tissue slabs [Figures 5a and 6a] may be informed 
by examination of visible portions of tissue. If the tissue 
context across the visible fragment is relatively uniform, and 
there are no concerns for critical spatial information (such as 
inked margins), the edge dropout is likely to be insignificant. 
Stray dropped intact tissue slices, such as the examples 
from cervical cone biopsies [Figures 4b and 6d], were also 
nonunique and could easily be questioned by the pathologist 
as floating contaminants. More concerning are failures of the 
scanner to occasionally recognize large areas of translucent 
tissue such as fat  [Figure  4a], raising the possibility that 

primary fatty lesions and fatty node dissections could be 
underrepresented.

Of the 212 slides scanned on three platforms, there were 
only three instances of unique dropped tissue  [Table  5]. 
All omissions were generated by the default setting S210 
scanner, with one glass slide having an identical dropout 
on the GT450 [Figure 8a]. Of these, 67% (2/3) were likely 
“floaters” or contaminants from other cases  [Figure  8]. 
A  closer look at unique dropouts includes two determined 
by context to be probable “floater” contaminants from 
another case:  (1) placental villi in an endometrial sample 
from a 71‑year‑old patient [Figure 8a] and (2) folded simple 
epithelium fragment in a vulvectomy with reactive stratified 
squamous epithelium  [Figure  8c]. The third slide from a 
patient with an endocervical neoplasm had detached neoplastic 
epithelium in the digital image, but the single intact fragment 
of stroma + glands was excluded. It is unlikely the neoplasm 
would have been missed altogether in the digital image, but 
the lack of intact architecture compromises its classification. 
This dropout was only seen with the default S210. We conclude 
that unique dropouts were most common with default S210 
scans, and were reduced in frequency, and clinical relevance, 
by use of the GT450, or optimization of S210 scanner settings.

Our study suggests several approaches to the mitigation 
of digital dropouts. First, laboratories should avoid tissue 
placement on glass slide regions  (such as extreme edges) 
inaccessible to the scanner. Second, scanner settings for 
user‑configurable instruments such as the Hamamatsu S210 can 

Figure 7: Surrogate representation of non-unique dropout tissues within 
scanned area. Some tissues present in the original glass slide (reference 
camera image, top) were dropped during creation of the digital whole slide 
image (dropout, red frame). In this example the dropout tissue repertoire 
was non-unique, as histologically equivalent tissues were included within 
the final digital scan (green frame). Scanned image for endometrial biopsy 
case DB2019-2243 from Hamamatsu S210 (default profile). See Figure 4c 
for color overlay of reference image with digital scan.

Figure 6: Leica GT450 scan dropout examples (a-d). Each row shows 
one slide overlay (Left) and dropout detail (Right). In the overlay dropped 
tissues appear red and captured tissues cyanblue (See figure 01). 
Dashed rectangles in the colored overlay indicate framing of the detail 
photomicrograph captured from original H&E glass slides. Dropouts were 
classified according to Table 2
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be empirically adjusted to achieve the desired balance between 
scan completeness and throughput. We found that vendor 

default S210 settings prioritized speed and file size (average 
2.5GB files in 376 s) at the expense of completeness of tissue 
capture such that 40% of all scans had detectible dropouts. 
Empirical modification of S210 scan profile settings to increase 
tissue detection  (‘optimized”) resulted in high‑resolution 
scanning of nearly the entire slide, with a decrease in dropout 
frequency from 40% to 14% and a decline in the proportion of 
missed tissue [Table 4]. This came at a high cost to throughput, 
doubling the average scan time (to 721 s) and increasing file 
size by 37% (to 3.4 GB) relative to vendor defaults. Finally, 
for those more comprehensively automated scanners without 
user adjustment options, like the Leica GT450, performance 
benchmarking by objective measures allows intercomparison 
with alternative instruments. Leica GT450 throughput 
performance was excellent, with the fastest scan times (85 s) 
and smallest file sizes (1.4 GB). Overall dropout rates were 
intermediate for the GT450 (35%), but fully a third of these 
were on slide edges [Table 2] that could be avoided by changing 
tissue processing methods.

Table 2: Dropout types, by dropout class and scanner

Dropout type S210Def, n (%) S210Opt, n (%) GT450, n (%) Total all scanners, n (%)
Edge miss 5 (6.0) 8 (27.6) 26 (35.6) 39 (21.0)
Small shard 73 (86.9) 21 (72.4) 47 (64.4) 141 (75.8)
Translucent 6 (7.1) 0 0 6 (3.2)
Total 84 (100) 29 (100) 73 (100) 186 (100)
29.5% of all successful scans had dropouts (186 dropouts/631 successful scans), which could be classified by their qualitative characteristics: scan window 
location (edge miss), tissue size (small shard), or optical density (translucent, such as fat). Each slide is listed only once, by predominant dropout type. 
Excluded are failed scans not resulting in a file (S210Def n=4, GT450 n=1)

Table 3: Scan time and size of files, by scanner and tissue type

Tissue Type Number of files Average file size (Gb) Average scan time (s)

S210Def S210Opt GT450 S210Def S210Opt GT450 S210Def S210Opt GT450
Bowel Big 1 1 1 2.2 3.2 1.6 363 727 91
Cervix Big 9 9 9 1.5 3.1 0.9 257 656 56
Cervix Bx 22 23 23 0.7 2.4 0.4 179 545 44
Endometrium Bx 57 58 58 2.2 3.3 1.3 370 717 89
Fetus Big 3 3 3 3.1 3.9 1.7 443 780 89
Lymph node Big 4 4 4 2.2 3.4 1.4 358 768 99
Omentum Big 2 2 2 1.3 2.8 1.1 287 669 101
Ovary Big 11 11 11 3.1 3.8 1.7 467 772 101
Peritoneum Bx 5 6 6 1.9 3.0 1.0 317 652 72
Placenta Big 58 58 58 3.3 3.9 1.9 433 772 95
Conceptus Bx 18 18 17 3.3 3.9 1.8 472 818 105
Skin Big 1 1 1 2.7 3.6 1.6 347 721 82
Fallopian tube Big 3 3 3 3.4 4.2 1.6 614 939 93
Uterus Big 6 6 6 3.9 4.5 2.4 490 824 109
Vagina Big 1 1 1 4.9 5.3 2.7 600 979 115
Vagina Bx 2 2 2 0.8 1.9 0.5 211 422 39
Vulva Big 1 1 1 2.2 3.0 1.2 396 639 68
Vulva Bx 4 5 5 0.2 2.3 0.2 75 502 26
All tissues Total 208 212 211 2.5 3.4 1.4 376 721 85
All tissues, by 
size

Bx 108 112 111 2.0 3.1 1.1 332 679 78
Bigs 100 100 100 3.0 3.8 1.8 424 768 93

Big: Trimmed resection specimen, Bx: Small biopsy, or fragments

Table 4: Estimated dropout extent  (tissue %), by scanner

Dropout, tissue % S210Def S210Opt GT450 Total, n (%)
0 124 183 138 445 (70.52)
<1 19 17 29 65 (10.30)
1‑5 49 12 39 100 (15.85)
6‑10 8 0 3 11 (1.74)
11‑15 2 0 1 3 (0.48)
16‑20 2 0 0 2 (0.32)
21‑25 1 0 1 2 (0.32)
26‑30 0 0 0 0
31‑35 2 0 0 2 (0.32)
36‑40 1 0 0 1 (0.16)
Total 208 212 211 631 (100.00)
Scanner dropout rates were S210 default 40.4% (84/208), S210 optimized 
13.7% (29/212), and GT450 34.6% (73/211). Excluded are failed scans 
not resulting in a file (S210Def n=4, GT450 n=1)
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The test set of 212 slides  (212 randomly selected surgical 
pathology cases, one random slide per case) represents a 
specific service stream (gynecologic and obstetrical pathology) 
at our institution and would require some extrapolation to other 
practice environments. There is a strong linear relationship 
between scan time and file size  [Table 3] on all platforms. 
These operational benchmarks, however, vary systematically 
with specimen mix, including tissue type (anatomic source) 
and specimen  (biopsy/resection) scale  [Table  3]. Sampling 
practices, especially the average number of total blocks per 

case, vary greatly. In our hospital, for example, a cervical 
biopsy averages 2.3 blocks/case, whereas a full cervical profile 
sliced from a larger specimen averages 9.9 blocks/case. All of 
these factors must be taken into consideration to accurately 
estimate the number of scanners and amount of file storage 
required to support a pathology practice.

This is a study of scanning operations and tissue capture fidelity 
in digital pathology, with the goal of establishing benchmark 
metrics for prepathologist digital scan production. There are 
already many excellent studies documenting glass‑digital 
equivalence of the human pathologist diagnostic endpoint. 
This is evidence that digital pathology implementation under 
a variety of infrastructure types and across diverse practice 
settings can succeed. For those groups contemplating such a 
transition, we have shown that scanning speed and resultant 
file size vary greatly by scanner type, scanner operation 
settings, and specimen mix – parameters of high relevance to 
throughput and overhead cost of a digital pathology operation. 
Correspondingly, digital image fidelity as measured by tissue 
dropout frequency and dropout type also varies according to 
the same tissue and scanning parameters.
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Description of additional data files

Supplemental Data
Contents:
1.	 Scanner Settings
2.	 Average Block Numbers In Selected Cases, By Case Type

Supplement 1: Scanners and Profile Settings Used

Hamamatsu S210 scanner profile settings: Default and optimized

Category Setting S210 default S210 optimized
Scanner Multiple scan area Enable multiple scan areas Enable multiple scan areas

Z‑stack layers Single Single
Resolution 40× 40×

Scan profile Scan area Auto: 51 mm × 25 mm Auto: 51 mm × 25 mm
Focus 9 point auto 1 point auto
Dynamic focus Not available Not available
Threshold, auto tissue recognition 20‑95 20‑97.1
Cover glass filter Enabled Enabled
Minimum size 4.0 mm 0.0 mm
Split tissue Disabled Enabled, 4 mm
Focus pieces Each fragment Each fragment
Excluded area Include unfocused regions Include unfocused regions

Output File format ndpi (native) ndpi (native)
jpeg quality 80 80
Pyramid level ratio 2 2
Include macro image Yes Yes
jpeg subsampling None None
Write simultaneously Yes Yes

Leica GT450 Scanner Settings

•	 File format:	 SVS/JPEG‑Ycc 4 (native Aperio/Leica SVS)
•	 Magnification:	 40x (native setting)
•	 Compression:	 JPEG2000 using libjpeg (quality = 91)



Supplement 2: Average Block Numbers in Selected Cases, by Case Type

The 212 slides in the test slide set represented different tissue types and specimen sizes (Big/bx) as designated in Table 1. Each 
of these was in turn randomly selected as one slide from a “case” that often contained more than one block. The Table below 
shows the average number of paraffin blocks sampled in the full case from which the test slide was selected for scanning.

Mean number of blocks per case, by tissue type present 
and specimen size

Tissue Specimen size

Big Bx
Bowel 68.000 ‑
Cervix 9.889 2.304
Endometrium ‑ 1.207
Fetus 7.333 ‑
Lymph node 22.250 ‑
Omentum 8.500 ‑
Ovary 15.091 ‑
Peritoneum ‑ 1.833
Placenta 4.810 ‑
Products of conception ‑ 3.111
Skin 13.000 ‑
Fallopian tube 9.667 ‑
Uterus 15.333 ‑
Vagina 29.000 1.000
Vulva 11.000 1.200
Big: Trimmed resection specimen, Bx: Small biopsy, or fragments

Mean number of blocks per case, by specimen size

Big Bx
9.040 1.768




