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Abstract

Introduction: The registration of histological whole slide images is an important 
prerequisite for modern histological image analysis. A partial reconstruction of the 
original volume allows e.g. colocalization analysis of tissue parameters or high-detail 
reconstructions of anatomical structures in 3D. Methods: In this paper, we present 
an automatic staining-invariant registration method, and as part of that, introduce 
a novel vessel-based rigid registration algorithm using a custom similarity measure. 
The method is based on an iterative best‑fit matching of prominent vessel structures. 
Results: We evaluated our method on a sophisticated synthetic dataset as well as on 
real histological whole slide images. Based on labeled vessel structures we compared 
the relative differences for corresponding structures. The average positional error was 
close to 0, the median for the size change factor was 1, and the median overlap was 
0.77. Conclusion: The results show that our approach is very robust and creates high 
quality reconstructions. The key element for the resulting quality is our novel rigid 
registration algorithm.
Key words: Elastic registration, histology, rigid registration, vessel structure, whole 
slide images
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INTRODUCTION

The introduction of histological whole slide scanners was 
a significant step forward in histology and histopathology, 
since they enable a digitized workflow and a broader 
application of software tools for analysis. With this, new 
opportunities as well as new challenges arise for digital 
processing, one of which is the registration of histological 
slides, which always undergo deformations during the 
acquisition process. A partial reconstruction of the original 
volume is an essential step for example in the colocalization 
analysis of tissue parameters. Furthermore, a reconstructed 
histological 3‑Dimensional (3D) volume allows insights into 

anatomical and tissue structures at scales that modern 3D 
acquisition methods such as microtomoraphy (MicroCT) 
are not able to deliver. Difficulties for registration 
algorithms, besides the deformations, are different stainings 
applied to the slides to exhibit various tissue parameters, 
leading to virtually unpredictable visual appearances.

In this paper, we present a robust staining‑invariant 
method for the registration of consecutive histological 
slides, by combining rigid and elastic approaches. 
We especially focus on the rigid registration, since its 
robustness is essential for a successful subsequent elastic 
registration. We introduce a novel vessel‑based rigid 
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registration algorithm that employs a new similarity 
measure. The example cases employed in this paper are 
tissue sections of rat liver, but the algorithm is designed 
to be generally applicable to any tissue that exhibits 
vessel structures.

Several works have been published on the registration 
of histological slides. However, they usually give little 
consideration to the rigid deformations. Sharma, et al.,[1] 
and Wirtz et al.,[2] perform a principal component analysis 
for pre‑alignment, which is prone to errors especially if 
the tissue sample is of rather circular shape. Feuerstein, 
et al.,[3] and Dauguet, et al.,[4] use block face images as 
external reference. However, such images are, in most 
cases, not available since they require additional effort and 
hardware during the slide acquisition. Ourselin, et al.,[5] 
and Cifor, et al.,[6] utilize a block matching algorithm, 
but their method relies on an intensity‑based similarity 
matching, a constraint also shared by the methods of 
Tan, et al.,[7] as well as Bağci and Bai.[8] Schmitt, et al.,[9] 
published a detailed description on an intensity‑based 
method for reconstructing a whole rat brain.

METHODS

During the acquisition of histological whole slide 
images two types of deformations occur: Non‑linear 
deformations are introduced by the cutting process with 
the microtome and while mounting the tissue section 
on the microscope slide. At best, only small non‑linear 
deformations occur, but in the worst case the tissue can 
have jags and disruptions. Mounting the tissue on the 
slide also introduces larger linear deformations composed 
by rotation and translation.

Our method addresses the two types of deformations in 
independent steps. First, a rigid pre‑registration, which is 
the main focus of this paper, aims to align consecutive 
slides to roughly match their alignment in the original 
tissue sample block. Afterwards, non‑linear registration 
is applied, which is based on established registration 
techniques and is, therefore, addressed only briefly in this 
paper.

When registering histological slides, intensity‑based 
methods are vulnerable to consecutive slides being stained 
differently. Therefore, in both steps of our method we rely 
on vessel structures as features to guide the registration, 
since they are detectable despite different staining.

VESSEL EXTRACTION

Our method is designed to work on images that 
exhibit vessel structures, which are washed out during 
preparation of the tissue, and thus, appear significantly 
brighter on the image. Therefore, the required extraction 
method is rather simple, especially since the rigid 

registration is robustly designed to be able to deal with a 
coarse segmentation, which may even miss several vessel 
structures.

Thus, to roughly extract the vessel structures of a slide [see 
Figure 2a for an example slide], we first convert the red, 
green, blue (RGB) colors to gray values, using the lightness 
method: Grayvalue = 0.5 ∙ (max (R,G,B) + min (R,G,B)). 
We then invert the gray values and apply Otsu’s 
thresholding. From the resulting mask image we select 
the largest connected component and apply a closing 
operation to remove small noise. The closing kernel was 
set to 3 × 3 for our input images on which we selected a 
magnification level with a pixel spacing of around 30  mm. 
We reach our final vessel mask image by inverting the 
image values, keeping only those individual components 
of the mask image which are not connected to the image 
border.

It has to be noted that what we call “vessel mask” does 
most likely not contain exclusively vessel structures. 
This is due to the fact that tissue artifacts like discrete 
holes and disruptions also appear bright on the image 
and are thus included in the vessel mask. However, the 
rigid registration method, as described in the following 
section, is especially designed to deal not only with the 
fact that in the mask image some vessel structures might 
be missing but also that artifacts might be present.

RIGID PRE‑REGISTRATION

Our rigid registration method considers the individual 
connected components of two consecutive vessel mask 
image slides as feature objects ai ∈A and bk ∈B. A classic 
approach to match those two sets of objects would be 
the iterative closest point (ICP) algorithm.[10] However, 
the difficulty in our case is that several of the objects 
ai ∈ A might not have a corresponding object bk ∈ B (and 
vice versa). Reasons for this can be that the object is an 
artifact or that the vessel‑extraction step (see section 
Vessel Extraction) missed the vessel in the other slide. In 
any case, this makes the ICP approach inapplicable.

The basic idea of our method is to take subsets A0 ⊂ A 
and B0 ⊂ B containing some prominent structures that 
are most likely vessels, then from the subsets take a pair 
(ai,aj) and a pair (bk,bl) and compute a transformation 
that aligns the two pairs. Now we evaluate how well 
that transformation matches the whole set A0 with B0, 
and in the evaluation measure, we consider the fact 
that some objects from one set are allowed to have no 
corresponding objects in the other set. This process is 
repeated for all possible pair combinations of A0 and B0 to 
find the transformation that produces the best match. In 
detail the procedure works as follows:

To select the subsets of A and B, we require the following 
features for each object o ∈ A ∪ B:
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with mpq(0) being the central moments of the image mask 
region that corresponds to o, l1≤l2 being the eigenvalues 
of the two principal components of that mask region, 
size(o) being the area and perimeter(o) the perimeter of 
the mask region. Further, let o.x and o.y be the x and y 
coordinates of the center of gravity of the corresponding 
mask region.

In the subsets A0 ⊂ A and B0 ⊂ B we 
include objects with size(o) ≥ 600 mm2 and 
ellipticity − (1 − (ellipticity − eccentricity)) > 0. The 
size constraint rules out small objects, since on the one 
hand it is difficult to decide if they are actual vessels or 
artifacts, and on the other hand, even if they are vessels, 
the small objects are the ones most likely to be missed 
by the vessel extraction, thus not having corresponding 
objects in the other set. The purpose of the second term 
is to select only objects that have an elliptic shape while 
not allowing the ellipse to be stretched too much. The 
ellipticity measure alone is already a good indicator if 
an object is a vessel or not; including the eccentricity 
constraint rules out tears in the tissue as well as vessels 
that run rather in‑plane with the tissue slide. This is 
important because we are looking for vessels that run 
rather perpendicular to the tissue slide and thus are 
supposed to have a good continuation and overlap on the 
next slide. Furthermore, the objects are sorted by their 
size and only the 15 biggest are taken into each subset, 
thus considering the more prominent structures.

Based on the two sets A0 and B0, we try different 
transformations to determine the one creating the best 
match between A0 and B0. For that we iterate over all 
possible combinations of double pairs {(ai,aj),(bk,bl)}, 
with ai,aj ∈ A0; bk,bl ∈ B0 and ai≠aj; bk≠bl.

In each iteration step, we compute the transformation 
matrix T

��
 that will translate bk onto ai and rotate the 

positions such that ai,aj,bk and bl are in line [see also 
Figure 1]:
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Then we change the positions of all bm∈B0 by applying 
the transformation T

→
. Those objects with the altered 

position we denote b Bm
T T
�� ��

∈ 0 .

To assess the matching quality between A0 and BT
0

��

Figure 1: Compute a transformation based on a double pair: 
(a) Original configuration. (b) Translate bk onto ai. (c) Pivot around   
ai to align aj  and bl.
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we use a custom similarity measure denoted sT. The 
similarity measure has to reflect that a good registration 
transformation needs to result in an overall good 
continuation between objects from A0 to objects from BT

0

��
.  

To be able to assess this in the computation of sT, we 
first define the matching cost δm,n between a b Bm

T T
�� ��

∈ 0 and 
an an ∈ A0:
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This matching cost considers two things: First, bm
T
��

and 
an are more likely to be a good match, the closer they 
are located to each other. The w in the denominator 
of equation 6 is a variable that might be adjusted by 
the user to adjust the distance range. However, in all 
our tests, we set w = 750 mm. The further term in the 
denominator allows more distance for bigger objects. The 
second consideration is that objects are more likely to be 
a match if their size difference is small, which is reflected 
in equation 7.

As mentioned before, our similarity measure also has 
to consider the possibility that some objects of one set 
might not have a corresponding object in the other set. 
To be able to include this in the similarity measure we 
also define a fixed cost, in case a b Bm

T T
�� ��

∈ 0  is not assigned 
to an an ∈ A0 or vice versa (symbolized by f):

δm,f = 1 (9)

δf,n = 1 (10)

Since we, obviously, do not know the correct assignments 
between objects from BT

0

��
 and A0, our similarity measure 

sT is calculated by finding the assignments that yield the 
lowest overall matching cost. This works as follows: Let 
f B AT: { } { }0 0

��
∪ → ∪φ φ  be a function of assignments 

between the objects from BT
0

��
 and A0, such that each 

b Bm
T T
�� ��

∈ 0 and each an ∈ A0 appear exactly once while f may 
appear arbitrarily often with the restriction that f → f is 
forbidden. Further, let Ƒ be the set {f1,..,fp} that represents 
all possible permutations of assignment functions. Note 
that we explicitly allow assignment functions where objects 
from BT

0

��
 are assigned to f while at the same time f is 

assigned to objects from A0. This accounts for the fact that 
several objects in BT

0

��

 actually might not have a matching 
object in A0 and vice versa. This consideration contributes 
significantly to the robustness of the registration strategy.

We compute the similarity value sT for the current 

transformation T
��

 by finding the assignment f ∈ F that 
yields the minimal sum of matching costs:

α δT f F b a
b a f

=
∈ → ∈

∑min ,  (11)

Since we are iterating over all plausible transformations 
T Tq1

���
…
���

,  the final transformation Tfinal

��
 for the rigid 

registration is selected such that σ σ αT T Tfinal q
min= ( ,.., ).

1

ELASTIC REGISTRATION

Tissue deformations introduced during slide preparation 
are compensated using a non‑linear image registration 
scheme. As these changes are typically unpredictable, a 
generic deformable registration approach is employed, 
performing a pair‑wise consecutive alignment of 
two‑dimensional slice images. The method is implemented 
as part of a modular software framework, integrating 
a multi‑resolution strategy and efficient parallel 
computations.[11] It uses non‑parametric transformations 
with Dirichlet boundary conditions.[12] Regularization of 
the calculated displacement field is enforced by explicit 
a‑posteriori kernel‑filtering with the discrete linear‑elastic 
potential,[13] producing smooth and divergence‑free 
deformations. Successive iterates of the displacement are 
concatenated by composition of the deformations.[14]

Contrary to other approaches, the proposed registration is 
performed entirely on the distance‑weighted vessel mask 
images. As adjacent image slices are, therefore, invariant 
to local intensity distributions and particular variations in 
staining, the intensity‑based sum‑of‑squared‑differences 
measure can be used to guide the registration 
process.[12] Finally, computed displacements are applied 
to the original slice images.

EVALUATION

To evaluate our method against a human independent 
ground truth, we created a synthetic dataset resembling 
a rat liver.* For that we computed a vascular tree model 
by constrained constructive optimization. To simulate 
the effect of the staining, a checkerboard pattern of 
three different intensities was applied to the simulated 
liver tissue and Gaussian noise (s = 7.0) was added. 
To simulate the cutting and mounting process, an 
elastic deformation with a random field was applied to 
each simulated histological slide, followed by a rigid 
deformation with a random rotation and translation. 
Additional cuts were introduced at random positions. See 
Figure 2b for an example of a synthetic slide. The pixel 
spacing of our synthetic data is 30 mm, the resolution 
is 827 × 827 per slide. To be able to evaluate the 
registration automatically, for each simulated histological 

*The synthetic dataset is available, contact: michael.schwier@mevis.
fraunhofer.de.
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slide, we also generated a corresponding label image with 
individual labels for each single vessel structure on each 
slide. To those slides we applied the same deformations 
as to the corresponding synthetic histological slides. See 
Figure 2c for an example of such a label slide.

For evaluation, we selected 100 consecutive slides 
from the middle of the synthetic dataset. Starting with 
the first of those slides, each slide was automatically 
registered to its preceding slide. To be able to 
automatically compare the result to the ground truth we 
registered the first slide to its preceding non‑deformed 
slice. The resulting deformation fields were then used 
to apply the same registration to the corresponding 
deformed label slides.

First we will look at the quality of the rigid registration, 
since this step is crucial for the success of the subsequent 
elastic registration. We compared the rotation and 
translation resulting from the rigid registration with the 
transformation matrix that was originally applied. The 
top row of Figure 3 shows the observed rotation and 

transformation errors. The error accumulates with increasing 
slice number, but remains still moderate considering 
the max. rotation error being around 15° and the max. 
translation error around 150 mm (5 pixels). The average 
and max. inter‑slide error in rotation is 1.06° and 5.75°, 
respectively. Hence, the results indicate a very good and 
robust quality of the rigid registration method. Furthermore, 
these errors are mainly due to the elastic deformations and 
are thus impossible to be completely compensated by the 
rigid registration. This became apparent, when we evaluated 
the rigid registration on the same synthetic dataset, but only 
applied the rigid deformation without the additional elastic 
deformation during the construction. As the bottom row in 
Figure 3 shows, the rigid registration errors are significantly 
lower in this case.

The automatic evaluation of the overall 
registration (rigid + elastic) was done by comparing 
the original (non‑deformed) with the registered (and 
previously deformed) label slides (with overall more 
than 6,000 labels). The labels allowed us to follow the 

Figure 3: Rigid registration errors: (a) Rotation error on rigid + elastic (top) and only rigid (bottom) deformed synthetic data. (b) Translation 
error (Euclidean distance) on rigid + elastic (top) and only rigid (bottom) deformed synthetic data

Figure 2: (a) A real histological slide of a rat liver. (b) A synthetic histological slide. (c) Corresponding label slide for automatic evaluation. 
Each vessel label in each slide has a unique ID throughout the whole dataset

b ca

ba
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continuations of the vessels through the slides and to 
measure the differences in those continuations between 
the original and the registered dataset.

The first measure investigated to assess the registration 
quality was the direction and distance of the 
continuations of all labeled vessel structures from one 
slide to the next. We compared the relative differences 
for corresponding structures in the original and registered 
image slides. Figure 4a shows that the two inner 
quartiles stay very close to the optimum (0). Also the 
1.5 interquartile ranges (IQRs) are still within a range of 
±120 mm. Thus for most vessel structures the inter‑slice 
continuation error is below 4 pixels.

As second and third measures, we assessed the changes in 
size that were introduced by the registration as well as the 
effect to the overlap of continuing structures [Figure 4b]. 
The factor of size change stays within a reasonable range: 
The median is 1, the two inner quartiles are 1.08 and 
0.9, and the 1.5 IQRs range from 0.65‑1.3. The general 
tendency of the overlap in the registered slides is to 
decrease (median is 0.77) due to the positional and size 
changes, but rarely loses continuation completely.

The average computation time for the rigid registration 
was 9.18 seconds per synthetic slide and for the elastic 
registration 80.81 seconds per slide, measured on a HP 
EliteBook 8540w, Intel Core i7 CPU Q820 @ 1.73GHz 
and 16GB RAM.

We also tested our method on three different 
histological whole slide stacks of rat livers with 144, 
108, and 30 slides. For each stack, we selected the 
magnification which was closest to 30 mm pixel 

spacing (29.1 mm, 29.1 mm  and 29.7 mm). Only the 
second example stack caused problems in 12 of the 108 
slices. Those 12 slides were then sorted out, because they 
showed severe disruptions [see Figure 5 for some examples 
of those slides], hence, they could not be used for further 
analysis anyway. The visual inspection confirmed the 
quality and robustness of our registration method as 
indicated by the results on the synthetic dataset. See 
Figure 6 for examples of some successfully registered slides 
of one dataset. Figures 7a and 7b show cross sections of 
the according unregistered and registered stacks of slides. 
The rigid registration aligns the slides already very well, 
but we can also clearly see the improvement in detail the 
elastic registration is able to gain.

CONCLUSION

In this paper, we presented an automatic registration 
method to create 3D reconstructions of stacks of 
histological whole slide images for samples that exhibit 
vessel structures. We introduced a novel vessel‑based 
rigid registration algorithm that uses a new similarity 
measure and is invariant to different stainings. Our 

Figure 5: Some example slides that failed to be correctly registered 
due to severe disruptions

dc

bba

Figure 4: Boxplots of overall registration errors (red line = median, 
left/right end of box = lower/upper quartile, whiskers = 1.5 
interquartile range  (IQR)):  (a) Relative  inter‑slice position error. 
(b) Size changes and inter‑slice overlap changes

b

a
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approach focuses on the rigid registration while for the 
elastic registration, we employed established and reliable 
components. This is due to the fact that the non‑linear 
deformations are expected to be moderate, since the 
tissue is very fragile and severe deformations would render 
the tissue useless for analysis and diagnosis anyway.

We performed a thorough evaluation of our method 
on a synthetic dataset as well as a visual evaluation on 
histological images, demonstrating the robustness and 
quality of our registration. For now, our method was only 
tested on rat liver examples. However, it was designed to 

work also for other organ types (e.g. kidney) and species ‑ 
as long as the samples exhibit vessel structures ‑ by merely 
adapting size parameters. The evaluation on that remains 
future work.

Further future work is to be done on the refinement of 
the elastic registration. Our current approach performs 
the registration only on a low magnification level (around 
30 mm pixel spacing), which means that it does not 
make use of the higher details available on higher 
magnifications. While our registration already delivers 
good results, we expect to be able to even improve 
the registration quality in the future by introducing a 
multi‑resolution registration strategy.

The rigid registration as main contribution of this paper, 
however, already proved to be robust and precise to 
serve as a fully automatic pre‑registration step for any 
subsequent elastic registration. Our method can be used 
to enable colocalization analysis for differently stained 
consecutive tissue slides in clinical practice. Furthermore 
it is an important step towards full reconstructions of 3D 
histological volumes.
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