
����������
�������

Citation: Deabes, W.; Abdel-Hakim,

A.E.; Bouazza, K.E.; Althobaiti, H.

Adversarial Resolution Enhancement

for Electrical Capacitance

Tomography Image Reconstruction.

Sensors 2022, 22, 3142.

https://doi.org/10.3390/s22093142

Academic Editor: Yitzhak Yitzhaky

Received: 8 March 2022

Accepted: 17 April 2022

Published: 20 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Adversarial Resolution Enhancement for Electrical Capacitance
Tomography Image Reconstruction
Wael Deabes 1,2,* , Alaa E. Abdel-Hakim 1,3 , Kheir Eddine Bouazza 1,4 and Hassan Althobaiti 1

1 Department of Computer Science in Jamoum, Umm Al-Qura University, Makkah 25371, Saudi Arabia;
adali@uqu.edu.sa (A.E.A.-H.); khbouazza@uqu.edu.sa (K.E.B.); hmthobaiti@uqu.edu.sa (H.A.)

2 Computers and Systems Engineering Department, Mansoura University, Mansoura 35516, Egypt
3 Electrical Engineering Department, Assiut University, Assiut 71516, Egypt
4 Laboratoire d’Informatique et des Technologies de l’Information d’Oran (LITIO), University of Oran,

Oran 31000, Algeria
* Correspondence: wadeabes@uqu.edu.sa

Abstract: High-quality image reconstruction is essential for many electrical capacitance tomography
(CT) applications. Raw capacitance measurements are used in the literature to generate low-resolution
images. However, such low-resolution images are not sufficient for proper functionality of most
systems. In this paper, we propose a novel adversarial resolution enhancement (ARE-ECT) model
to reconstruct high-resolution images of inner distributions based on low-quality initial images,
which are generated from the capacitance measurements. The proposed model uses a UNet as the
generator of a conditional generative adversarial network (CGAN). The generator’s input is set to
the low-resolution image rather than the typical random input signal. Additionally, the CGAN is
conditioned by the input low-resolution image itself. For evaluation purposes, a massive ECT dataset
of 320 K synthetic image–measurement pairs was created. This dataset is used for training, validating,
and testing the proposed model. New flow patterns, which are not exposed to the model during the
training phase, are used to evaluate the feasibility and generalization ability of the ARE-ECT model.
The superiority of ARE-ECT, in the efficient generation of more accurate ECT images than traditional
and other deep learning-based image reconstruction algorithms, is proved by the evaluation results.
The ARE-ECT model achieved an average image correlation coefficient of more than 98.8% and an
average relative image error about 0.1%.

Keywords: ECT; image reconstruction; deep learning; CGAN; ARE-ECT

1. Introduction

During the 1980s, based on the computed tomography (CT) technique of medical
images, researchers proposed electrical capacitance tomography (ECT) [1]. Because of
its low cost and accuracy, ECT has been widely used in industrial process monitoring
in reactors, pipelines, and containers, and wherever non-conductive components of a
dielectric nature can be used. Knowing the internal distribution of materials inside an
industrial process container or pipe is essential in many applications. Tomography plays
a very important role in several industrial fields. Typical examples of the use of this
technology include the food industry, industrial tomography, biomedical processes [2], gas–
fluid flow [3], chemical and pharmaceutical processes [4,5], and non-destructive evaluations
of invisible objects in dams and flood embankments [6].

The electrical capacitance tomography (ECT) can be defined as the use of electrodes to
measure capacitance changes that are transformed into two-dimensional images as visual
outputs using image reconstruction algorithms [7]. Typically, the electrode numbers in the
ECT sensor controls the number of independent capacitance measurements (usually 28 to
496) and the acquisition rate varies from a few up to several thousand images per second [8].
Then, one or more high-performance PCs collaborating together, using mathematical
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models, can process the collected data and implement dedicated image reconstruction
algorithms to make the appropriate diagnostic decision to effectively process control and
automation [7].

The ECT can be implemented both in real-time [9] and offline mode [10]. The choice
of the image reconstruction algorithm has a crucial role in the ECT process since it has
a direct impact on the image quality [11]. The ECT image reconstruction process can be
implemented through iterative algorithms, e.g., iterative Landweber method (ILM) [12],
Newton Raphson [13], and Tikhonov regularization [14], as it can also be implemented
through non-iterative methods, such as linear back projection (LBP) [15]. The speed and
the simplicity of the non-iterative methods was not an argument for wide use because,
in the same time, they suffer from deformations in the reconstructed images [16]. In
comparison, iterative methods can generate higher quality images. They are, however,
computationally very expensive, thus, more useful for offline processing. The need for
tools that can compromise the trade-off between high quality reconstructed images and
computational efficiency, is currently the main interest of machine learning (ML) [17,18],
more specifically, deep neural network (DNN) methods [19]. DNN methods have been
utilized in many fields due to their ability to map complex nonlinear functions [20,21].
DNN algorithms have been transferred and adapted such as in image reconstruction
methods based on the convolutional neural network (CNN) [22], multi-scale CNNs [23],
long short-term memory (LSTM) [24], and autoencoder [25]. To solve the forward problem
and to estimate the capacity measures, Deabes et al. used a capacitance artificial neural
network (CANN) system [26,27]. Thanks to its ability to effectively use specific geometric
relationships hidden in commonly used unstructured grid models, the authors in [28]
proposed to use the graph convolutional network(s) (GCN), to increase the quality of
the ECT image. Moreover, a long short-term memory image reconstruction (LSTM-IR)
algorithm was implemented to map the capacitance measurements to accurate material
distribution images [24].

Generative adversarial networks (GANs) are very interesting techniques that have
been recently developed in ML [29,30]. These networks allowed obtaining new results
that were previously thought to be difficult to achieve: text to image generation [31],
text generation in different styles [32], generation and defense against fake news [33],
conversion of sketches to images [34], generation of photo-realistic images [35], and even
game designs learned by watching videos [36]. The conditional generative adversarial
network (CGAN) [37], which is a particular version of the standard GAN, allowed better
control over the output of generative adversarial models. Subsequently, this kind of GAN
was applied in medicine to the CT of soft tissues [38] as well as to tomography of the
structure of materials with synchrotron radiation [39,40].

A novel post-processing adversarial resolution enhancement (ARE-ECT) model for
ECT reconstructed image quality improvement is proposed in this paper. The proposed
model is inspired by the deep learning networks for image super-resolution [41,42]. Princi-
pally, we assumed that a CGAN can be trained to enhance the reconstructed low-resolution
ECT images from few capacitance measurements. Particularly, a CGAN is trained in gener-
ator and discriminator networks to produce high-resolution images from lower resolution
reconstructions. As a result, when trained with pairs of ECT image reconstructions of a
simulated phantom and a phantom itself, the CGAN model learns how to enhance the
resolution of the inputs. Accordingly, the proposed adversarial model achieves better
results than the recent complex, time-consuming non-linear ECT image reconstruction
methods, and brings the reconstructed images closer to the phantom reference quality.

The contributions of this paper can thus be summarized as follows:

• The adversarial resolution enhancement (ARE-ECT) model was developed in the
problem of the ECT image reconstruction quality improvement.

• The proposed model aimed to predict enhanced ECT image reconstructions from the
lower quality ones.
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• Our CGAN-based approach produces qualitative and quantitative improved results
in ECT image resolution better than current complex and time-consuming non-linear
reconstruction algorithms.

The remainder of this paper is organized as follows: Section 2 covers the ECT im-
age construction problems. Section 3 describes the DNN models, including GAN and
CGAN. Section 4 introduces a new ARE-ECT model to enhance the ECT image construc-
tion. Section 5 describes the dataset used to train, test, and evaluate the proposed model.
Section 6 discusses the experimental results and the validity of the proposed model. Finally,
Section 7 presents our conclusions.

2. Problem Statement

The ECT problem is a typical image reconstruction problem. Particularly, given
input data measurements, a higher resolution image is to be reconstructed. The input
measurements could be any input data that are correlated to the reconstructed image. The
modalities of the input data do not necessarily have to be the same of the output data.
In the ECT problem, the input data are a few sensor reading numbers that are fed into
the reconstruction algorithm as the input signal. The ECT sensor generates readings via
a number of electrodes (n = 12), which are evenly mounted around the imaging area.
Figure 1 illustrates the sensor setup. To capture the variations in the permittivity of the
inner distribution, the mutual capacitance of each pair of these electrodes are measured
independently [43]. This pairwise measurement process results in a total number of
capacitance measurements of M = n(n− 1)/2. To keep the uniformity in the electric field,
decrease the external coupling, and eliminate any interference, the electrodes are separated
by insulating guards [44].
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Figure 1. ECT system with 12 electrodes.

The distribution of the permittivity of the inner material within the area of interest
affects the distribution of the electric field, which is defined according to the Poisson linear
partial differential equation, as shown in Equation (1).

5 ·(ε(x, y)5 φ(x, y)) = −ρ(x, y), (1)

where ε(x, y) is the distribution of permittivity, φ(x, y) is the potential distribution, and
ρ(x, y) denotes the charge distribution.

The mutual capacitance between electrode pairs is given by Equation (2).

Cuv =
Qv

5Vuv
= − 1

Vuv

∮
Γv

ε(x, y)5 φ(x, y) · k̂ dl (2)

where Cuv identifies the mutual capacitance between two electrodes u and v, Qv denotes
the charge on the sensing electrode, which is defined according to the Gaussian law,5Vuv
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denotes the potential difference, Γv represents a closed path embracing a detection electrode,
and k̂ stands for a unit vector normal to Γv.

The ECT image reconstruction involves solving two types of problems: the forward
and inverse. The forward problem refers to the numerical computation of the capacitance
measurements from the sensor reading, according to Equation (3):

CM×1 = SM×N(ε0) · GN×1 (3)

where C is the calculated capacitance, S is the sensitivity matrix, N = 16,384 is the number
of image pixels, and G is the permittivity distribution. The sensitivity matrix is the Jacobian
of the capacitance with respect to pixels evaluated at ε0.

The ECT inverse problem refers to estimating the permittivity distribution, G, given
the capacitance measurement, C, and the sensitivity matrix, S. A non-iterative solution can
be obtained directly from Equation (3) using non-iterative algorithms, e.g., LBP, as shown
in Equation (4).

G = STC (4)

However, the obtained images using such a paradigm suffer from poor quality. This
shortcoming could be dealt with using iterative algorithms, e.g., the Landweber algorithm
(LW), as shown in Equation (5).

Gk+1 = Gk − λST(SGk − C) (5)

where λ is the relaxation parameter, SGk is the forward problem solution, and k is the itera-
tion number. However, despite the significant improvement achieved in the reconstructed
images quality, it comes with high computational costs.

3. Deep Neural Network Models

The ECT reverse problem can be looked at as a data generation problem, which is
controlled by certain constraints. Specifically, a low-resolution input image is the control
input that governs the creation of the higher resolution permittivity solution. Over the
years, many models have been developed based on DNNs. One of the most popular models
that is extensively researched and applied in image processing and computer vision is the
generative adversarial network (GAN). In addition, a conditioned version called CGAN
was developed to control the reconstructed image and guarantee high quality outputs [45].
Therefore, we propose using a CGAN model for this purpose. In the following subsections,
we provide a brief overview of GANs and CGANs. Then, we describe the proposed ECT
image reconstruction model using CGAN.

3.1. GAN

GAN [29] was introduced to force two competing learning agents to enter a perfor-
mance race during data generation. The first agent, which is the generative model G, is
responsible for capturing the data distribution. It learns how to generate from scratch data
patterns that follow the same distributions of input data. The second agent, which is the
discriminative model D, learns how to discriminate between real data samples drawn from
the input data and the fake data samples that are generated by G. During the training
process, each agent optimizes for its own objective function simultaneously in a competi-
tive manner. This leads to a state, in which the generated data by the generator is hardly
identified as fake.

In the training process, G learns a distribution pg over the input data. This is accom-
plished by building a mapping function from a noise distribution to a generative data space
G(z, θg). The discriminator D learns how to generate a Boolean decision indicating whether
its input data come from training data or generated by G. The purpose of the training
process is to adjust parameters for the generator to deceive the discriminator by minimizing
log(1− D(G(z))). At the same time, the parameters of the discriminator are adjusted to
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optimally detect the real data by maximizing log(D(x)). These two competing objectives
are aggregated in a combined objective value function V(G, D), as show in Equation (6).

V(G, D) = arg min
G

max
D

( E
x∼pdata(x)

[log(D(x))] + E
z∼pdata(z)

[log(1− D(G(z)))]) (6)

3.2. CGAN

GAN has been modified and developed into many variants over the last few years.
CGAN is one of these models [37]. The new thing about this model is labeling the data
during the training process. Table 1 shows the differences between these two models. It may
look similar, yet the major difference between them involves adding additional information
to control the output [46,47]. So, the CGAN is an extension of the generative adversarial
networks, which include a condition to both the generator (G) and discriminator (D) by
feeding some extra information, y, into the input layer as an additional constraint. This
extra information helps guide both G and D by incorporating auxiliary data from the same
or other modalities. For the objective function of Equation (6), this turns out to condition G
and D, as shown in Equation (7).

V(G, D) = arg min
G

max
D

( E
x∼pdata(x)

[log(D(x|y))] + E
z∼pdata(z|y)

[log(1− D(G(z)))]) (7)

Table 1. GAN vs. CGAN.

GAN CGAN

Input Latent vector Random and auxiliary data
Output Classify as real or generated Classify labeled data as real or generated
Type Unsupervised Supervised
Data No control over data Conditional data

4. ARE-ECT Model

As explained in Section 2, the main objective of the ECT image reconstruction problem
is to generate a high quality permittivity distribution image, given a lower resolution
distribution input image. Therefore, the first step of the proposed ARE-ECT model is to
prepare the input image for the generator operation. This preparation is performed in a
preprocessing phase, as shown in Figure 2. The input to this preprocessing phase is the
capacitance reading set. The ECT capacitance sensor produces a 1× 66 raw vector data,
i.e., M = 66. Afterwords, the input image is generated using traditional LW of Equation (5)
with k = 0. The initial image of the permittivity distribution is provided by some fast matrix
multiplication. The input image resulted from the preprocessing phase is fed to a generator.
This generator could be a traditional autoencoder. However, although autoencoders are
capable of reconstructing such patterns, the spatial information of the input signals are
not modeled with sufficient accuracy. Given that the spatial information of the inner
distributions is essential for the reconstruction of the flow pattern image, another generator
that can preserve such spatial representation is mandatory. UNet is a good candidate to
satisfy this requirement [48]. Therefore, we adopted UNet to construct the flow pattern in
the generator module. Figure 3 illustrates the details of the used UNet in ARE-ECT. Four
blocks were used on the encoder side, and similarly, four blocks were placed on the decoder
side. The latent vector size was eight. The input layer’s low resolution image, generated
by the preprocessing phase, was concatenated with the generated image by the final layer.
Similarly, each input of the hidden layers on the decoder side was concatenated with the
output of the corresponding layer from the encoder side.

The UNet generator module produces a flow pattern, which is considered a fake
sample for the discriminator training. A synthetic data generator was developed to generate
real samples, FPr, for the purposes of discriminator training. As shown in Figure 2, the
architecture of our UNet generator was designed with two sections: down- and upsampling.
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The main idea of UNet is to map a low resolution input image at a size of 128× 128 to
a 1-D vector and then reconstruct it back to a high quality image. The contraction of the
downsampling (encoder) applies a 3× 3 convolutional layer, batch normalization, and Relu
activation followed by a 2× 2 max pooling in each step. This stage generates a downsized
image of a size equal to 64× 64 with 128 features, and it continues to the latent vector size
of 8× 8 with 1024 features. The layers at the decoder (upsampling) section employ a 2× 2
upsampling layer after convolution. During the upsampling process, the corresponding
feature maps from the downsampling part are reused to reduce the distortion of images.
They are appended directly after the upsample layer. The proposed model is designed for
a 12-electrode ECT sensor setup. If any change in this setup, in terms of the number of
sensors occurs, a new dataset must be generated. Therefore, every generated dataset is
valid only for its underlying hardware configuration. This is because the resolution of the
initially generated low-resolution images varies with the number of installed sensors.
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Figure 2. Architecture of ARE-ECT model.
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5. ECT Dataset

We implemented a MATLAB GUI software package to build different configurations
of ECT sensors. Various flow patterns can be simulated and their forward problems can
be solved to generate the corresponding capacitance measurements. An extensive ECT
benchmark dataset was developed for training and testing of the proposed ARE-ECT.
A traditional image reconstruction algorithm was used to reconstruct the permittivity
distributions, which used the initial image x for the deep learning ARE-ECT model. In
this paper, we used the LW algorithm as the inversion algorithm to generate the initial
input image. The dataset consisted of 320 k samples, each one was a pair of an actual
permittivity distribution vector as a ground truth, and the reconstructed image of the LW
algorithm corresponding to each capacitance measurement vector. The sizes of the actual
distribution, and the LW reconstructed image were 128× 128 = 16,384. The ECT sensor
was composed of 12 electrodes as shown in Figure 1. The sensor pipe was made from
PVC material with a relative permittivity of 2. The diameter and the thickness of the pipe
was 100 and 2 mm, respectively. The electrodes were separated by gaps of 4 degrees, and
the span angle of each electrode was 26 degrees. The dataset contained five different flow
patterns, 10 k ring patterns, annular with 20 k patterns, 10 k stratified patterns, 1–3 circular
bars with 140 k patterns, and 140 k patterns of 1–3 square bars. Figure 4 shows some
samples of various flow patterns from the generated ECT dataset. The low phase was
air with a relative permittivity value equal to 1, and the relative permittivity of the high
phase glass was (4). Random variables were used in building the dataset. For instance,
a uniform random variable with a range of 10% to 95% of the imaging area’s radius was
applied to the ring’s width of the annular flow. The stratified flow height was assigned to
a uniform random variable in a range of 5–95% of the diameter of the sensing field. The
number of circular and square bars varied from 1 to 3. The generated data have some
discrepancies in the number of instances within each type to reflect varying degrees of
randomness. Additionally, every flow pattern had a different number of attributes that
determined its geometric specifications. For instance, the attributes that characterized a
ring flow pattern were just two—the inner and outer radii, while those of the square bar
patterns were the number of bars, their lengths, widths, and planner locations. This large
attribute dimensionality variation implies consequent large variations in the number of
generated instances that represented the input data space.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 4. Samples of different flow patterns. (a) Ring, (b) annular, (c) stratified, (d) 1 cir. bar, (e) 2 cir.
bars, (f) 3 cir. bars, (g) sq. bar, (h) 2 sq. bars, (i) 3 sq. bars.

6. Experimental Results and Analysis

The ARE-ECT model was trained and tested by using the developed ECT datasets.
The overall network’s performance of the proposed algorithm was verified based on the
reconstruction results of the testing dataset. Typically, the ARE-ECT model was validated
during the training phase to avoid overfitting; 10% of the training samples were randomly
chosen as a validation set. The more comprehensive the data simulation, the stronger the



Sensors 2022, 22, 3142 8 of 16

generalization performance of the model after training. Therefore, the generalization ability
of the proposed model was tested using a testing dataset, generated phantoms that were
not included in the training dataset, and practical experimental data.

6.1. Validation Metrics

Typically, the relative image error (IE) and correlation coefficient (CC) between ground
truths and reconstructed permittivity distributions were applied to evaluate the image
quality and the reconstruction algorithm’s performance [7]. The relative IE is defined as
Equation (8).

IE =
||G− G∗||2
||G||2

(8)

where G∗ represents the reconstructed image from the ARE-ECT model, and G represents
the original distribution.

The similarity between the reconstructed image and the ground truth image was
measured by CC, which is defined in Equation (9)

CC =
∑N

i=1(Gi − Ḡ)(G∗i − Ḡ∗)√
∑N

i=1(Gi − Ḡ)2 ∑N
i=1(G

∗
i − Ḡ∗)2

(9)

where Ḡ and Ḡ∗ are the mean values of G and G∗, respectively. N = 12,932 is the number of
pixels in the imaging area.

The ARE-ECT model was designed and trained using the Python TensorFlow machine
learning platform [49], and Keras deep learning API [50]. The testing process was carried
out using the reconstructed image from LW as input to the ARE-ECT model, while the
output was the reconstructed permittivity distribution. The testing set contained 96 k
samples; hence, the ARE-ECT performance was evaluated by the mean values of the IE
and CC. The smaller the relative IE and the bigger the CC, the better the performance.

6.2. Qualitative Results on Simulation Test Dataset

A simulation testing dataset that had been unseen by the network during the training
process was used to validate the reconstruction ability of the proposed ARE-ECT model.
Typically, the developed ECT dataset containing 320 k pairs was divided into a 70% (224 k
pairs) training dataset and a 30% (96 k pairs) testing dataset. The training and testing
datasets are quite different since the dataset for each flow pattern was randomly generated.

The loss curve, shown Figure 5, declines over 250 epochs on the training and validation
sets. The minimum, maximum, and average values of relative IE and CC of the testing
dataset are stated for each flow type in Table 2. The results prove that the ARE-ECT model
can reconstruct images that are very close to the ground truth distributions. The average
values of the relative IE = 0.1019 and CC = 0.9884 show a significant overall performance of
the ARE-ECT model when applying the LW input images.

The IE and CC for all flow types are drawn as box plots, Figure 6a,b, respectively.
Figure 6a,b show the substantial performance of the ARE-ECT model since 95% of

the IE and CC are in reasonable intervals. From Table 2, the performance of the ARE-ECT
model on the ring flow type is the lowest compared with other flow types. A single square
bar flow type has the best results of relative IE, while for CC, annular, stratified, single
circular, and square bar are more than 99%.

Reconstructed image instants equivalent to the minimum and maximum CC of each
flow group in Table 2 are given in Figure 7. Visually, the reconstructed images with min-
imum CC, still very close to the ground truth permittivity distributions, and the recon-
structed images with the maximum CC, obviously have better visual effects. The recon-
structed images, shown in Figure 7 are almost the same as their ground truth distributions.
For multiple circular and square bars, the reconstructed positions of objects are consistent
with the true distributions. In general, our model performs well on the test dataset and has
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a strong ability to reconstruct images of all typical flow types with permittivity values of
objects predicted correctly.

Table 2. Minimum and maximum of relative IE and CC of testing results.

Flow Patterns Min. IE Max. IE Average IE Min. CC Max. CC Average CC

Annular 0.0219 0.2864 0.1160 0.9736 1.0000 0.9921
Ring 0.0562 0.3704 0.1781 0.9165 0.9980 0.9770
Stratified 0.0000 0.1395 0.0694 0.9907 1.0000 0.9970
Single Cir. Bar 0.0173 0.1276 0.0712 0.9819 1.0000 0.9923
Multiple Cir. Bars 0.0308 0.2178 0.1288 0.9639 0.9985 0.9845
Single Sq. Bar 0.0000 0.1329 0.0415 0.9868 1.0000 0.9965
Multiple Sq. Bars 0.0000 0.2512 0.1086 0.9390 1.0000 0.9803

Total Average IE 0.1019 CC 0.9884

Figure 5. Training and validation loss curves.
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Figure 6. Box plots of testing criterion. (a) Relative image errors (ie), (b) correlation coefficients (CC).

The performance and the reconstructed image qualities of the proposed ARE-ECT
algorithm and other state-of-the-arts ECT image reconstruction algorithms are compared.
An assortment of flow patterns have been set up to test the generalization ability of the
proposed model. Figure 8 shows the compassion results, where the real phantoms are
shown in the first column, and the reconstructed images from the LBP, iterative Tikhonov,
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ILM, CNN [22,23], LSTM-IR [24], and ARE-ECT algorithms are contained in the other
columns, respectively. The hyperparameters of the Tikhonov and ILM algorithms were
selected empirically. The optimal regularization parameter was selected, 0.01, while the
iteration numbers of the Tikhonov and the ILM were 200 and 1000 iterations, respectively.
The CNN algorithm is based on a multi-scale dual-channel convolution kernel composed
of a dual-channel frequency division model [23], where each channel has five convolution
layers. The CNN model is trained using the results of the LBP as inputs. The results of
the ARE-ECT model have high image quality and accuracy with sharp object boundaries
when compared to the reconstructed images from the LBP, iterative Tikhonov, ILM, and
CNN algorithms. Visually, in Figure 8, the ARE-ECT model can reconstruct objects in the
imaging area with sharp edges since there is no transition region between the reconstructed
objects compared with the other algorithms. The generated objects have blurred zones
around it, which increases the relative IE. Moreover, the results stated in Table 3, which are
the IE and CC of the reconstructed images from the ARE-ECT model compared with the
other algorithms, prove that the performance of the ARE-ECT model is better than other
reconstruction algorithms.
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Figure 7. Examples of maximum and minimum CC image reconstruction results.

Table 3. IE and CC values of different ECT image reconstruction algorithms.

Flow LBP Tikhonov ILM CNN LSTM-IR ARE-ECT

Relative Image Error (IE)

Annular 0.2412 0.1950 0.3351 0.1222 0.0561 0.0687
Ring 0.3776 0.1216 0.2984 0.2107 0.0989 0.0941

Stratified 0.2590 0.6953 0.3203 0.3365 0.2032 0.1994
Cir. Bar 0.3923 0.6562 0.6575 0.2224 0.1420 0.0821

2 Cir. Bars 0.4568 0.6638 0.4038 0.3274 0.1445 0.0990
3 Cir. Bars 0.6083 0.7492 0.4275 0.4765 0.2043 0.0940

Sq. Bar 0.3677 0.5841 0.6575 0.2490 0.2122 0.0991
2 Sq. Bars 0.4988 0.3449 0.3294 0.3176 0.2415 0.1653
3 Sq. Bars 0.5112 0.6070 0.6909 0.4999 0.2558 0.0528
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Table 3. Cont.

Flow LBP Tikhonov ILM CNN LSTM-IR ARE-ECT

Annular 0.8701 0.8885 0.9084 0.9590 0.9913 0.9864
Ring 0.8110 0.9792 0.9576 0.9396 0.9857 0.9870

Stratified 0.9126 0.4232 0.9100 0.8200 0.9401 0.9587

Correlation Coefficient (CC)
Cir. Bar 0.6964 0.7754 0.7974 0.8860 0.9541 0.9850

2 Cir. Bars 0.6681 0.8565 0.7963 0.8060 0.9640 0.9823
3 Cir. Bars 0.5498 0.5652 0.7625 0.7325 0.9363 0.9862

Sq. Bar 0.8442 0.8264 0.6575 0.8997 0.9277 0.9850
2 Sq. Bars 0.7041 0.8326 0.8663 0.8527 0.9161 0.9617
3 Sq. Bars 0.5099 0.6361 0.5688 0.6668 0.8707 0.9951
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Figure 8. Reconstructed images of well known image reconstruction algorithms.
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6.3. Testing Results of Non-Existing Phantoms in Training Dataset

New two-phase flow patterns, which are not included in the training dataset, were
created to measure the generalization ability of the proposed ARE-ECT model. Four
different flow distributions, from 1 to 4, shown in first column of Figure 9, were inputted
to the trained ARE-ECT model. Relative IE and CC are listed in Table 4. Although none
of these patterns exist in the training set, the ARE-ECT still can reconstruct them with
high quality results. Although the ECT suffers from the inhomogeneous sensitivity map
problem across its cross-sectional sensing domain, the reconstructed image of the five-bars
phantom proves the ability of the ARE-ECT model to reconstruct phantoms located in the
low and high sensitivity areas of the ECT sensor. The results are acceptable, although the
reconstructed result is not quite sharp. The angles of the square object in the first sample
and the L_Shape of the fourth sample are more rounded.

ID Phantom LW ARE-ECT

1

1

1.5

2

2.5

3

3.5

4

2
3

4

Figure 9. Image reconstruction results of phantoms not in training dataset.

Table 4. Results of phantoms not in training dataset.

Phantom IE CC

1 0.2601 0.9049
2 0.1847 0.9427
3 0.2761 0.8909
4 0.2816 0.8852

6.4. Evaluation Using Experimental Data

The generalization ability of the ARE-ECT model was also measured by applying
experimental data. Capacitance measurements from three two-phase flow types as the
training set were generated as real testing inputs. The experiments were carried out using
electrical capacitance volume tomography (ECVT) hardware system [51]. There were
36 channels in the ECVT to measure the capacitance among 12 electrodes ECT sensor with
an imaging rate of 120 images/s. Static phantoms were placed in an imaging area with a
radius of 140 mm surrounded by 12 electrodes. As shown in the first column of Figure 10,
the bubble flow type was experimented by placing two plastic rods of radius r = 20 mm
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inside the imaging area, while one-half of the imaging area filled with plastic particles
(ε = 4) simulated the stratified flow type. Filling a ring shape around the center of the ECT
sensor with the plastic particles represented the annular flow type.

Figure 10 demonstrates the real distributions and the generated images from LBP,
iterative Tikhonov, ILM, local ensemble transform Kalman filter (LETKF) [18], CNN, LSTM-
IR, and ARE-ECT algorithms. The reconstructed images by the ARE-ECT model have high
accuracy and sharp edges separate the two phases compared with the other reconstruction
algorithms. Moreover, the ARE-ECT reconstructed images have fewer artifacts, much
better visual quality, and are faster than that of the LBP. ARE-ECT is more efficient than
traditional iteration algorithms, such as the iterative Tikhonov, ILM, and the LETKF, which
can obtain good imaging quality but are still slow. Comparing the reconstructed images
from the proposed ARE-ECT model with the other deep learning (DL) models, such as
CNN and LSTM-IR, proves the potential of the proposed method in generating significant
high quality images with accurate permittivity values and sharp boundaries. The core
component of our method is CGAN, which exhibits stronger enhancement and resolution,
increasing capabilities, compared to conventional DL methodologies. As the target problem
model in this work is image enhancement, it is natural for our method to obtain benefits
of the inherited capabilities of CGAN in this aspect. Moreover, since the UNet conditions
the output side by input data, this further strengthens the enhancement capabilities of the
proposed method.

Phantom LBP Tikhonov ILM LETKF CNN LSTM-IR ARE-ECT

1

1.5

2

2.5

3

3.5

4

Figure 10. Experimental Setup and Reconstructed Frames.

6.5. Computational Time Measure

Typically, the performances of image reconstruction algorithms are evaluated by the
imaging speed. For the experimental ECT data, Table 5 contains the imaging costs of
different reconstruction algorithms. The algorithms were run on a PC with an i9 CPU
(3.6 GHz) and 32 GB memory. The reconstruction time of the proposed model was 0.046 s,
which was >135x, >115x, and >28x faster than ILM, iterative Tikhonov method, and
LETKF, respectively. The ARE-ECT model was also faster than other DL models, and it
constructed more accurate images compared to all other methods. The LBP was faster than
our proposed method, but the image qualities were worse than our model. The imaging
speed of the ARE-ECT model can also satisfy online application, as the LBP algorithm.

Table 5. Reconstruction time in sec.

LBP Tikhonov ILM LETKF CNN LSTM-IR ARE-ECT

0.026 5.326 6.245 1.310 0.085 0.052 0.046
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7. Conclusions

In this paper, a new ARE-ECT model based on the CGAN deep neural network was
proposed to enhance the resolution of the ECT reconstructed images. The generator was
built using UNet. For evaluation purposes, a big dataset was developed. It contained simu-
lation data of 320 k capacitance measurements–flow image pairs for training, validating,
and testing. For generalization and feasibility of ARE-ECT, data instances, to which the
model was not exposed during the training phase, were included in the evaluation dataset.
The experimental results proved the superiority of the proposed ARE-ECT over the state-
of-the-art, both quantitatively and qualitatively. Efficiency evaluation results showed that
ARE-ECT succeeded in beating existing high-quality methods in terms of execution speed
by ’several tens of times’, particularly from 28x to135x. Briefly, ARE-ECT achieved better
performance than the computationally-expensive methods, yet with the same execution
time order of the low-resolution reconstruction method, e.g., the well-known LBP. In terms
of the overall generalization, the ARE-ECT exhibited good capabilities. Hopefully, the
work presented herein will inspire researchers in the ECT field to further investigate other
deep learning-based approaches to reconstruct the flow patterns in the sensing field of the
multi-phase flow.
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List of nomenclature and abbreviations

CT Computed Tomography
ECT Electrical Capacitance Tomography
ARE-ECT Adversarial Resolution Enhancement
ILM Iterative Landweber Method
LBP Linear Back Projection
ML Machine Learning
DNN Deep Neural Networks
DL Deep Learning
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
CANN Capacitance Artificial Neural Network
GCN Graph Convolutional Networks
GAN Generative Adversarial Network
CGAN Conditional Generative Adversarial Network
LW Landweber Algorithm

IE Image Error
CC Correlation Coefficient
LSTM-IR Long Short-Term Memory Image Reconstruction
LETKF Local Ensemble Transform Kalman Filter
ECVT Electrical Capacitance Volume Tomography
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