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Abstract

Microarray data from cell lines of Non-Small Cell Lung Carcinoma (NSCLC) can be used to look for differences in gene
expression between the cell lines derived from different tumour samples, and to investigate if these differences can be used
to cluster the cell lines into distinct groups. Dividing the cell lines into classes can help to improve diagnosis and the
development of screens for new drug candidates. The micro-array data is first subjected to quality control analysis and then
subsequently normalised using three alternate methods to reduce the chances of differences being artefacts resulting from
the normalisation process. The final clustering into sub-classes was carried out in a conservative manner such that sub-
classes were consistent across all three normalisation methods. If there is structure in the cell line population it was
expected that this would agree with histological classifications, but this was not found to be the case. To check the
biological consistency of the sub-classes the set of most strongly differentially expressed genes was be identified for each
pair of clusters to check if the genes that most strongly define sub-classes have biological functions consistent with NSCLC.
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Introduction

The use of cell lines in biology as a replacement for whole animal

studies plays a significant role in reducing the number of animal

experiments that have to be carried out in bio-medical research. An

important assumption is that gene expression in the cell lines reflects

the expression patterns of the tissue from which it was isolated.

Recently there has been growing criticism of the use of cell lines in

cancer research because of problems with stability, misidentification

and contamination [1,2]. With newly developed cell-lines there is an

increasing need to show how these relate to the corresponding tissues

to demonstrate that these will be an effective model for studying

cancer and developing new therapies [3].

The problems with using cell-lines for cancer research are

further exacerbated by the diversity within a supposedly single

type of cancer. Two recent studies of breast cancer have shown

that there is considerable heterogeneity in transcriptomes of

tumour cells. A study of the expression profiles from 2000 patients

with breast cancer has shown that the data can be used to first

discover and then validate subgroups [4]. In that case because of

the large number amount of data it was possible to use

independent datasets for discovery (997 cases) and validation

(995 cases). In the second smaller study 105 samples could be

divided into two robust clusters based on an analysis of a 31-gene

subset [5]. This smaller study is important because they

characterised circulating tumour cells, at the single cell level. It

is these circulating cells which have distinct expression profiles

from the breast cancer cell lines that are responsible for secondary

tumours and metastasis.

Gene expression data can provide a starting point for the

identification of biomarkers although there are considerable

challenges to finding a signal amongst noisy data. Existing

methods have used microarray data and while these methods

are giving way to next generation sequencing technologies, they

currently still provide a cheap, accessible and relatively easy to use

alternative for gene profiling at the whole organism level [6].

A survey of median survival rates for cancer by Macmillan

Cancer Support showed that whilst the median cancer survival

times had increased for many types of cancers there has been little

improvement in the last 40 years in lung cancer survival rates [7].

This is despite lung cancer being one of the most wide-spread

cancers and also the focus of considerable research. This suggests

that lung cancer may exhibit the same or an even greater degree of

diversity than breast cancer. A large amount of variability would

help to explain why progression to metastasis occurs so often and

so quickly and why existing treatments such as radio or

chemotherapy have only very limited effects.

The size of the gene expression studies available for lung cancer

is much smaller than that available for breast cancer. Lung cancers

can be divided into two major groups, Small Cell Lung

Carcinomas and Non-Small Cell Lung Carcinoma (NSCLC).

NSCLC can be further classified into three subtypes: Squamous

cell carcinoma, Adenocarcinoma, and large cell carcinoma [8].

The largest current publicly available dataset contains expression
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data for only 54 NSCLC cell lines. This data was collected by Sos

and coworkers as part of a study to show that the cell lines are

representative of tumour samples and to validate their use for drug

discovery [9].

In this paper the transcriptomic datasets from that study are

used to look for heterogeneity in gene expression that can then be

used to cluster the cell-lines. In the work of Sos and co-workers

they combined phenotype screening data to distinguish cell lines

that used the PI3K and MAPK pathways to suggest that a broad

target therapy that targets both pathways may be an effective

treatment across all NSCLC variants [10]. In this case we are

taking the opposite approach. By using the gene expression

variation we show how an appropriate screen can be designed that

will cover the full diversity of NSCLC cell lines and provide a

larger number of more specific therapeutic targets. By identifying

the key genes that are differentially expressed between the clusters,

new genetic markers and novel therapeutic targets can be then be

identified.

Results and Discussion

The Dataset
The data consists of single arrays collected for each of the cell

lines. There are no biological or technical replicates. From a

statistical perspective the lack of replicates is a concern as without

replicates there is no measure of the variability because of either

the experimental conditions or because of biological variation.

Improvements in the production of oligonucleotide arrays have

suggested that they are now highly reproducible and that there

might no longer be a need for technical replicates except in the

case of quality control studies [11]. The downside of carrying out

more replicates is that variability can actually increase without

careful design, because of the need for more sample preparations,

more experimental runs that might be carried out over several

days and by different experimentalists. This increases the number

of variables that need to be controlled for [12]. Whether this is in

fact the case or not by using strict quality control to look for

anomalous effects the need for costly technical replication can be

avoided or at least reduced. Quality control can be either through

the design of the arrays, as in the case of adding in controls such as

house-keeping genes, or through statistical methods [13].

Turning to the problem of a lack of biological replicates, it is

very important in microarray studies to have biological replicates

in order to account for the natural variation in growth and cell

populations [14]. These variations can depend on a multitude of

factors such as variations in the growth medium, temperature and

sample handling. Unfortunately in this case there are no biological

replicates the assumption was that the gene expression data comes

cell lines that are assumed to be stable and biologically

reproducible.

A lack of biological replicates is far from ideal and without them

we do not have a reliable measure of gene expression variance at

the gene level for a single cell line. There may be biological

variation between individual cells because of the stages in their life

cycle this variation will be lost in the experimental samples which

pool expression from a population of cells. Pooling of cell line

samples has been shown to reduce the number of differentially

observed genes between treated and untreated cancer cell lines

[15]. This might also be the case here where differences in gene

expression between cell lines will be expected to be small. The

result will be fewer differentially expressed genes are observed than

actually occur and a significant number of false negatives. The

study will be less sensitive than it would have been had biological

replicates been available but for identifying subclasses this loss of

sensitivity is a less serious an issue as a large number of false

positives (Type I errors).

After clustering members of the same sub-class are assumed to

have very similar gene expression profiles and so they then provide

pseudo-biological replicates for any subsequent analysis of

differential gene expression. In this study this last step is carried

out to check for the biological consistency of the results and not in

order to identify markers for classification as the study size is too

small to allow reliable prediction of markers.

Quality Control and Normalisation
An important step in quality control of the raw array data that is

often ignored is the visual inspection of the raw array images. If

there is contamination this can either result in dark areas where

probes are obscured or bright areas where there is excessive signal.

Both of these factors will affect the results and also impair

normalisation. In this case visual inspection showed that dust

contamination was present on one of the arrays,

GSM372797.CEL (supplementary figure 1). This creates unreli-

able readings over a number of probes and so the array has to be

excluded.

In this case normalisation has to be carried out very carefully as

the comparison of differences in gene expression is made between

similar cell lines which should share very similar expression

profiles. It is important to make sure that differences are genuine

and not just the result of the normalisation process. Previous

studies have shown that normalisation can have an effect on false

discovery rate and so three normalisation methods were chosen for

normalisation in this case, based on the results of the Affycomp

study where normalisation methods are compared in samples

where data has been spiked in [16,17].

After normalisation it is important to look at the boxplots for the

distributions of expression to see if any of the arrays have outlying

expression values which will affect the results of further analysis.

These are likely to result from technical problems with some of the

probes, this was confirmed by looking at the data for spiked in

house keeping genes such as GAPDH. The unusual behaviour of

the spiked in probes indicates problems with how the sample has

been prepared and applied to the array. There is further evidence

for this conclusion as normalisation which takes into account the

probe composition (gcrma) eliminated the outlying expression

values for these arrays [18]. This shows that there is a GC/AT bias

in the sample preparation and binding. This could be a result of

the amplification process or mRNA degradation. These three

arrays (GSM372770.CEL, GSM372776.CEL and

GSM372794.CEL) were also identified as outliers in the relative

log expression for the un-normalised data and based on the

consistency of these two measures they were removed from further

study. It would be possible in studies where gcrma was the chosen

method of normalisation to have included the data but there has

been a study that has shown that gcrma has not performed as

well as other methods [16].

In this study three normalisation methods are used to reduce the

chance of normalisation affecting the probesets filtered out for

clustering and so these three arrays had to be excluded from

further analysis. All of the normalisation methods output the

expression levels on a logarithmic scale (log2) as this reduces bias

from highly expressed genes. The final boxplots for the log2

expression values of the normalised data are shown in figure 1.

Filtering
Filtering of the gene sets is necessary to deal with the statistical

challenges of dealing with so many different variables and the

curse of dimensionality [19]. Filtering has been shown to increase
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Figure 1. Boxplots of the log2 transformed data normalised using A) rma, B) gcrma, and C) farms.
doi:10.1371/journal.pone.0050253.g001
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Table 1. Values for the Filtering of the Microarray Probeset Level Data.

Target number or
probes Normalisation Method Ratio (r) Difference (d) Actual Number of Probes

300 rma 6.2 64 290

gcrma 27 64 282

farms 2.5 64 282

1000 rma 4.2 64 932

gcrma 20 64 921

farms 2.0 32 957

1A

Target number of
probes

Normalisation Method Lower Threshold on
Log2 Expression

Multiple of
Interquar
tile Range

Median Expression Actual Number of
Probes

300 rma 25% above 9 1.08 .9.3 308

gcrma 25% above 9 1.4 .9.3 326

farms 25% above 9 0.8 .9.3 328

1000 rma 25% above 9 0.65 .9.3 1025

gcrma 25% above 9 0.85 .9.3 1064

farms 25% above 9 0.5 .9.3 914

1B

Table 1A are the parameters for the Golub filtering and Table 1B are the parameters for the median based fitting. Where r is the ratio between the highest and lowest
level of expression for a particular probe across all the arrays and d is the difference between the maximum and minimum expression levels. IQR is the interquartile
range and the lower threshold must be passed by at least 25% of the arrays.
doi:10.1371/journal.pone.0050253.t001

Figure 2. Cluster dendrogram from hierarchical agglomerative clustering of the gcrma normalised data, filtered with interquartile
range filtering to give 282 probesets.
doi:10.1371/journal.pone.0050253.g002
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Table 2. Cluster Assignments and the Consensus From Analysis of the Dendrograms Produced by Agglomerative Hierarchical
Clustersing of the Normalised and Filtered Datasets.

Filtering Method Golub Interquartile Range

Normalisation Farms RMA GCRMA Farms RMA GCRMA

No. of Probesets L S L S L S L S L S L S

Array Consensus

GSM372745 0 2 2 2 3 3 3 3

GSM372746 0 2 2 1 2 1 1

GSM372747 0 2 1 3 3 3 3

GSM372748 2 2 2 2 2 2 2 1 1 1 1 1 1

GSM372749 2 2 2 2 2 2 2 1 1 1 1 1 1

GSM372750 0 2 2 2 2 2 2 2 2

GSM372751 0 3 2 2 2 2 2 2

GSM372752 3 3 3 3 3 3 3 2 2 2 2 2

GSM372753 2 2 2 2 2 2 2 1 3

GSM372754 1 1 3 1 3 1 3 3 3

GSM372755 1 1 1 1 1 1 1 1 1 1

GSM372756 3 1 3 3 3 3 1 3 3

GSM372757 0 2 2 2 2 2 2 2 3 3 3 3

GSM372758 0 2

GSM372759 2 2 2 2 2 2 2 2 2 2

GSM372760 0 1 3 1 1 1 3 3 3 3 3

GSM372761 1 1 1 1 1 1 1 2 2 2 2 2 2

GSM372762 3 3 3 3 3 3 3 2 2 2 2 2 2

GSM372763 1 1 1 1 1 1 1 1 1 1 1 1

GSM372764 2 2 2 2 2 2

GSM372765 3 1 1 1 3 3 3 3 3 3

GSM372766 3 3 3 3 3 3 3 3 3 3 3

GSM372767 3 3 3 3 3 3 3 1 1 1 1 1 1

GSM372768 2 2 2 2 2 2 2 1 1

GSM372769 1 1 1 1 1 1 1 3 3 3 3 3 3

GSM372771 2 2 2 2 2 2 2 1 1 1 1

GSM372772 0 2 2 2 2 2 2 2 2 2 2

GSM372773 1 1 1 1 1 1 1 2 2 2 2 2 2

GSM372774 1 1 1 1 1 1 1 1

GSM372775 1 1 1 1 1 1 1 1 1 1 1 1 1

GSM372777 1 1 1 1 1 1 1 2 2 2 2 2 2

GSM372778 0 2 2 1 3 1 1 1 1

GSM372779 0 2 1 3 3 3 3

GSM372780 1 1 1 1 1 1 1 2

GSM372781 1 1 1 1 1 1 1 1 3

GSM372782 1 1 1 1 1 1 1 1 1 1 1

GSM372783 2 2 2 2 2 2 1 1 1 1 1 1

GSM372784 2 2 2 2 2 2 2

GSM372785 0 1 2

GSM372786 1 1 1 1 1 1

GSM372787 0 2 1

GSM372788 0 2 2 2 2 2

GSM372789 1 1 1 1 1 1 1 1 1 1 1 3

GSM372790 1 1 1 1 1 1 2 2 2 2 2

GSM372791 2 2 2 2 2 2 2 1 1 1 1 1 1
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the power of subsequent statistical tests, because many fewer tests

are needed [20]. With many variables it is very easy to over-fit the

data to the model and even after filtering to 1000 and 300

probesets the data is still under-powered as there are only around

50 experimental data-points and ideally we need more data-points

than variables for an effective model where there will not be over-

fitting. Many of the genes will show negligible variation between

the different cell lines and others will be strongly correlated to one

another so that there will be redundancy in the data. Unfortu-

nately without a prior knowledge of the relationships between

genes we cannot do anything to reduce this redundancy as it is not

clear which genes are causing the effect and which are responding

to the variation in expression of this gene. In fact in a gene network

cause and effect can be particularly unclear. Ideally with more

data from more cell lines an iterative approach could be taken

where more genes are added to the model as correlated genes are

removed. In this case there is insufficient data for such a

comprehensive approach. It is therefore necessary to apply a

cut-off to select the most variable probesets for clustering. This is

somewhat arbitrary and so filtering was carried out at two different

levels to see if this affected clustering. Filtering was carried out to

produce subsets of around 1000 and 300 probesets.

Golub et al. suggested a filtering method that depends on the

ratio (r) and the difference (d) between the maximum and

minimum values for the expression of a gene across all the arrays

[21]. In this case it was expected that the cell lines should be very

similar, especially those with the same classifications and that only

a very few probesets would show any changes. The minimum

difference in expression between the maximum and minimum was

set to 64 which agrees with the array intensity distributions. This

method was applied to the data before log transformation and so

as the output of normalisation are log2 transformed measures of

expression it is necessary to transform the maximum and

minimum values back into the original scale to use this filtering

method. There is considerable variation in the values needed to

select around 1000 and 300 probes between the different

normalisation methods (see table one). It is interesting that farms
normalised data exhibits a much lower degree of variation to the

other normalisations, but that gcrma has much lower values. The

values of r and d are given in table one, along with the actual

number of filtered probesets.

A more robust measure of variability is the interquartile range,

as this is less sensitive to outliers with either higher or lower

expression values than usual. Filtering was also carried out using

this method which uses a three component filtering. The first is

that over 25% of the arrays should be above the third quartile of

the expression for the normalised arrays (it was set to 512 is

absolute terms or 9 in log2 transformed values as the 3rd quartile

for the arrays was between 8 and 9), second the interquartile range

should be about a threshold, third the median of the gene

expression should be also be about the third quartile of the

expression for the normalised arrays (in this case a cut-off of 600 in

absolute units or 9.3 in log2 transformed data). The values of the

interquartile ranges for this alternative filtering method and the

number of probesets are also given in table one.

Clustering
In the large-scale study for breast cancer where the researchers

had 2000 cases they were able to split the data into a subset for

training and a subset for validation of the clusters (subsets). In this

case there are only 50 cases after normalisation, with this data the

aim is to show that there are identifiable subsets within the data

that have a biological explanation. As NSCLC can be divided into

different sub-groups it is expected that the sub-groups should

correspond to these classifications from histology. The main

concern in clustering is making sure that clusters are not artefacts

that arise from the normalisation process, the filtering of the genes

or the clustering process itself. The simplest clustering method is

agglomerative hierarchical clustering with average cluster distanc-

es. By using this method on the data from all three normalisations

and the four different sets of gene filters we get twelve trees from

which a consensus clustering can be calculated. By looking for

clusters that are conserved in all twelve trees we can produce

conservative clusters that contain a group of core members, which

have very close gene expression profiles. These core clusters of cell

lines can then be used to investigate which differences in gene

expression distinguish the clusters. An example clustering dendro-

gram is given in figure 2 and a summary of the consensus

clustering is given in table two. All of the cluster dendrograms are

available in the supplementary material.

After consensus analysis three clusters were identified. The

largest of which contains 16 cell lines, the second largest 11 cell

lines and the smallest 7 cell lines. In total 35 out of 50 cell lines can

be clustered into these groups. Cell-lines that could not be

consistently assigned to a single group were not assigned to any

cluster. For example array GSM372762 could be in either cluster

2 or 3 and so because of this ambiguity no cluster can be firmly

assigned. By using twelve different normalisation and filtering

combinations to generate the data for clustering and only assigning

arrays that are consistently in the same cluster, this conservative

Table 2. Cont.

Filtering Method Golub Interquartile Range

Normalisation Farms RMA GCRMA Farms RMA GCRMA

No. of Probesets L S L S L S L S L S L S

GSM372792 1 1 1 1 1 1 1 1

GSM372793 2 2 2 2 2 2 2 1 1 1 1

GSM372795 3 3 3 3 3 3 3

GSM372796 1 1 1 1 2 2

GSM372798 0 1 1 1 1 1 1

The two filtering methods are that according to Golub or using the Interquartile Range [21]. The normalisation methods are farms, rma or gcrma. The probeset sizes are
approximately 1000 (L) or approximately 300 (S). The arrays are assigned to clusters 1,2,3 or 0 means there is no consensus and gaps indicate not cluster was assigned
from that dendrogram.
doi:10.1371/journal.pone.0050253.t002
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approach reduces the likelihood of discovering meaningless

clusters. Ideally the data should be divided into two groups, one

for cluster discovery and the second for cluster validation, but in

this case there is insufficient data to take this approach. Using

alternative methods to test the robustness of the clusters and their

sensitivity to changes in the normalisation and filtering is as much

as can be done with such a small dataset.

Of the remaining cell lines that could not be clustered three are

clear outliers to the rest. These are consistently at the base of the

tree in all of the alternative clusterings and so are at some distance

from the other cell lines. They are arrays GSM372758.CEL,

GSM372779.CEL, GSM372788.CEL. These three arrays are

annotated as Neuroendocrine IV, Large Cell Carcinoma, and

Unknown respectively. This result suggests that these cell lines are

single examples of distinctive expression types that are quite

distant from the main grouping of NSCLC cell lines. These lines

have been shown to be important in contributing to the gene

expression signature used to distinguish lung cancer progression

but as only single cell-lines for each type are currently available

they are atypical of the existing NSCLC data, and so they are not

ideal candidates at this time for testing novel chemical entities that

are targeted across a broad spectrum of cases [22]. In the future as

more examples become available these may form other distinct

clusters.

The three final clusters are shown in table three along with their

annotations. The largest of these contains 16 arrays. The closest of

the other subsets to this group is cluster 3, while cluster 2 is a more

distant group. Subset one correspond to adenocarcinoma as an

annotation. This is the largest annotated group of cell lines but this

has been broken down into subtypes that are not seen in the

clustering. There are also a large number of adenocarcinoma cell

lines that do not fall clearly into this group. The second subset has

a mixture of annotations but Squamous Cell Carcinoma is the

most frequent. The final cluster is too small to draw any clear

conclusions about annotations but it seems to contain a mixture of

histological categories. This suggests that while there is some

agreement between the histological classification and the expres-

sion profile clustering, the agreement is not perfect and the

expression data gives a an additional measure for classification. If

we can develop a classifier based on genetic markers this will help

to improve NSCLC classification methods.

Expression Differences Between Clusters
While it is not the aim of this study to find the differentially

expressed genes between the clusters identification of the most

significant genes responsible for each of the clusters provides

further biological support for the sub-groups.

Statistical tests can be carried out to identify the genes that are

differentially expressed between the clusters. As there are a large

number of tests that are carried out there has to be a correction for

multiple testing and the most frequently used correction is that of

Benjamini and Hochberg, as Bonferroni correction is too

conservative and would mean rejecting all genes that are

potentially differentially expressed [23]. With the reduced datasets

of around 300 genes and 1000 genes, multiple testing is not as

serious a problem as with the unfiltered dataset. Data from all

three normalisations and both filtering choices were used to carry

out the tests using limma. Figure 3 shows a heatmap of the genes

responsible for distinguishing clusters one and two after gcrma
normalisation and IQR filtering for approximately 1000 probes.

Heatmaps were generated for differentially expressed genes

between all of the clusters for all of the filtering and normalisation

methods. While some genes are found in common between

methods there is considerable variation.

The filtering method had a dramatic effect on the number of

genes identified as differentially expressed between the sub-groups.

In the case of clusters 1 and 3 filtered using the IQR method no

genes were found to be differentially expressed at a significant level

(corrected p-value of 0.01). Cluster three is a sub-group or a

branching off from the main subgroup – cluster one but it was still

expected that would be some significant level of differences in gene

expression, but this was not the case when IQR is the filtering

method. However in the case of using the Golub method for

filtering, there are a number of significantly differentially expressed

genes. This suggests that either the IQR filtering is losing some of

Table 3. The three identified clusters and their annotations.

Array Cell Line Type

Cluster One GSM372754 H1648 Adenocarcinoma IIIA

GSM372755 H1650 Adenocarcinoma IIIB

GSM372761 H1975 Adenocarcinoma

GSM372763 H2009 Adenocarcinoma IV

GSM372769 H2347 Adenocarcinoma I

GSM372773 H3122 Adenocarcinoma IV

GSM372775 H3255 Adenocarcinoma IIIB

GSM372777 H441 Papillary Adenocarcinoma

GSM372780 H820 Papillary Adenocarcinoma

GSM372781 HCC1171 Adenocarcinoma I

GSM372782 HCC1195 Adenosquamous
carcinoma I

GSM372786 HCC193 Adenocarcinoma

GSM372789 HCC2450 Adenosquamous
carcinoma

GSM372790 HCC2935 Adenocarcinoma

GSM372792 HCC4006 Adenocarcinoma

GSM372796 HCC78 Adenocarcinoma

Cluster Two GSM372748 Calu6 NSCLC

GSM372749 H1299 Large cell carcinoma

GSM372753 H157 Squamous cell carcinoma

GSM372759 H1792 Adenocarcinoma IV

GSM372764 H2052 Mesothelioma IV

GSM372768 H23 Adenocarcinoma

GSM372771 H2882 Squamous cell carcinoma
IV

GSM372783 HCC1359 Spindle-giant cell
carcinoma

GSM372784 HCC15 Squamous cell carcinoma

GSM372791 HCC366 Adenosquamous
carcinoma

GSM372793 HCC44 Adenocarcinoma

Cluster
Three

GSM372752 H1437 Adenocarcinoma I

GSM372756 H1666 Adenocarcinoma III

GSM372762 H1993 Adenocarcinoma IIIA

GSM372765 H2087 Adenocarcinoma I

GSM372766 H2122 Adenocarcinoma IV

GSM372767 H2126 Adenocarcinoma

GSM372795 HCC515 Adenocarcinoma

doi:10.1371/journal.pone.0050253.t003
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the diversity in gene expression by being too stringent leading to

type II errors, or that the Golub filtering method is prone to type I

errors by finding signal amongst the noise. This was a consistently

identified sub-group and so some feature in the gene expression

variation must be responsible for distinguishing this cluster from its

neighbours even if this is below the threshold of statistical

significance.

Figure 3. Heatmap for the differentially expressed genes between clusters 1 and 2 for the rma normalised data filtered using the
IQR method to give 1025 probes.
doi:10.1371/journal.pone.0050253.g003

Table 4. Differentially Expressed Genes Between the Different Clusters.

Differentially Expressed Between Cluster 1 and 2 Function

SCNN1A Sodium channel and ion regulation – signal transduction

SCEL Sciellin – metal binding protein, epidermis development.

KRT19 Keratin 19– cytoskeletal protein.

RAB25 Member of the RAS oncogene family.

MAGE Family Melanoma Antigen Family.

Differentially Expressed between Cluster 1 and 3 Function

TFF1 Trefoil Factor One

CPE Carboxypeptidase E

FGG Fibrinogen Gamma Chain - Coagulation

CPS1 Carbamoyl-phosphate Synthase – amino acid metabolism

Differentially Expressed between Cluster 2 and 3 Function

TFF1 Trefoil Factor One

FGG Fibrinogen Gamma Chain - Coagulation

AQP3 Aquaporin 3– water reabsorption

CPE Carboxypeptidase E

FGB Fibrinogen Beta Chain - Coagulation

CPS1 Carbamoyl-phosphate Synthase I – amino acid metabolism

These genes are found to be differentially expressed in most of the normalisation methods and irrespective of the level of filtering.
doi:10.1371/journal.pone.0050253.t004
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Most often the 1000 gene sets gave a larger number of

statistically significant differentially expressed genes between the

clusters than the 300 gene sets. However the ordering of the

significance of the genes was different and there was poor

agreement between the gene sets identified by both the different

filtering methods using the same normalisation method as well as

between the normalisation methods (see supplementary data). A

small number of genes were conserved as differentially expressed

between the clusters in a significant number of the normalisation

and filtering variants. A selection of these conserved genes are

given in table four. Some are genes often labelled as oncogenes but

there are others that are not usually associated. A complete list of

the differentially expressed genes between the clusters for the

different normalisation methods and different filtering methods as

well as their annotations is given in the supplementary materials.

The final check on the validity of any microarray analysis is to

see if the results make biological sense. Is differential expression of

these genes between NSCLC sub-groups reasonable, and have the

genes been associated with cancer in other studies? In many cases

there is other prior evidence of a connection between the

commonly found genes responsible for distinguishing sub-groups

and other cancer studies. Of the genes in table four all but one of

them has an existing link to cancer in the literature. Trefoil factor

one deficiency has already been identified as causing increased

tumorigenicity in human breast cancer cells [24]. Fibrinogen has

been used as a factor associated with cancer mortality, but it had

been assumed that this was a direct response to factors such as

smoking by healthy cells, rather than any direct involvement in

tumour cells [25]. Two studies have shown that Aquaporins are

associated with lung cancers [26]. Carboxypeptidase E over-

expression has been associated with cancer metastasis [27]. The

Figure 4. A flowchart summarising the quality control and normalisation steps of the data analysis. The pink boxes indicate when
decisions are made to exclude arrays from the analysis because of quality control issues.
doi:10.1371/journal.pone.0050253.g004
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identification of SCEL as a potential gene involved in differential

expression is interesting as the gene has been associated with

esophagel squamous cell carcinoma, which lends further support

to cluster 2 being associated with squamous cell carcinoma [28].

Keratin 19 is already used as a biomarker for detecting circulating

lung cancer cells [29]. Finally there is also tentative evidence that

CPS1 might also be involved in cancer although its role is

currently unclear [30].

A cause for concern is the inconsistency in genes identified as

having significantly different expression levels between the three

clusters using the three different normalisation methods. These

discrepancies show that in this case normalisation plays a part in

determining which genes are identified as significantly differen-

tially expressed between clusters. This should not be true and

hampers the reliability of gene expression analysis as well as

casting doubt on genetic markers that have been identified using

these techniques. Here the differences in expression levels should

be small as the arrays are all for similar cell lines and it is possible

that this might be an artefact of the small differences being

amplified in different ways during the normalisation process, but it

does raise questions about objectivity of normalisation methods,

and suggests that the use of multiple normalisation methods might

improve the reproducibility of gene expression analysis [16].

Conclusion
This analysis has shown that there is heterogeneity in gene

expression between the NSCLC cell lines, and that this diversity

can be used to divide the cell lines into different groups that do not

completely agree with the histological annotations. Lung cancer

was chosen for this study because of the potential variability in its

genetic make-up, which may be responsible for its rapid

progression and the difficulty in developing a successful treatment.

The variability between sub-classes suggests that it might not be

possible to develop a broad ranging treatment, but this also

presents an opportunity to develop more specific treatments and

for improved molecular diagnostics. By screening new chemical

entities against cell-lines chosen from all three sub-classes we can

hope to generate a broad specificity drug, or alternatively the focus

can be moved to targeting patients who fall into one of the subsets

for a more specific treatment.

This paper has only used a small of samples where gene

expression profiles were available and so it can only provide initial

evidence for the existence of at least three sub-groups of NSCLC,

although it is likely that with larger datasets more subgroups will

be discovered. Considerable effort is required to confirm, and

develop these findings in order to advance our understanding of

NSCLC, to the same level as breast cancer. As larger studies

containing more cell lines and gene expression data from biopsy or

single cell samples become available this diversity is likely to

increase further. With more biological replicates it will also be

possible to identify biological markers for the sub-classes and

classification methods in a robust manner. Questions have been

raised about the influence of normalisation on the results of gene

expression analysis but these could also be addressed by improved

experimental designs that include more biological replicates and

improvements in normalisation methods.

Materials and Methods

Raw data was downloaded from ArrayExpress with accession

‘EGEOD-14925’ [31]. Quality assessment was carried out using

package arrayQualityMetrics within Bioconductor to assess

the quality of 54 CEL files included in this study [32,33]. Two runs

of quality control were carried out: before and after pre-

processing. Spatial artefacts were checked for visually and array

GSM372797 was found to contain contamination from dust.

Therefore this array was excluded from further analysis.

Normalisation methods for Affymetrics arrays have been tested

as part of Affycomp where spiked in controls are used to evaluate

performance [17]. Three of the best normalisation methods are

rma, gcrma and farms [18,34]. The remaining arrays were

normalised using the three methods within Bioconductor [32].

The resulting normalised data was again subjected to quality

control analysis to look for arrays that had expression outliers in

the boxplots. This showed that there were problems with three

more arrays which were excluded from the rest of the study. These

were arrays GSM372770, GSM372776 and GSM372794. After

these arrays had been removed the data was again renormalized

using the three methods. The procedure for quality control and

normalisation is summarised in the flowchart in figure 4. Data

from quality control metrics is combined with other measures at

the decision points (shown as boxes in pink) to identify arrays

where quality control indicates there are problems. These arrays

are then excluded from subsequent analysis.

The data were then filtered to obtain datasets containing

around 1000 and 300 genes which can then be used for cluster

analysis and to determine differential gene expression. The cut-offs

for filtering were different for the three normalisation methods as

the normalised data has a different scale and spread from the

different normalisation methods. This is why filtering cut-offs

select around a target number of genes rather than an exact

number. The values used for filtering using either the method from

Golub et al. which uses differences between the maximum and

minimum expression level of a gene as well as a second filtering

method based on the interquartile range are given in table one.

Filtering was carried out using the genefilter module within

Bioconductor [35].

Clustering was carried out using agglomerative hierarchical

clustering for both the 1000 gene and 300 gene datasets. This is

perhaps the simplest possible method of clustering. There was a

good degree of consistency in the clustering between the three

different normalisation methods and the different filtering

strategies. One cluster was particularly clearly identified in all

cases. This resulted in the identification of 3 main subgroups

within the arrays, that were found consistently across all three

normalisation methods and the filtered datasets. Arrays that were

consistently found in the same cluster regardless of normalisation

method make up the core of the cluster. This resulted in 3

conservative groupings containing at least six members and

containing 34 out of total of 50 arrays. These clusters were then

used for differential gene expression analysis using limma within

Bioconductor to carry out multiple testing [36]. Benjamini and

Hochberg’s method was used to assign a corrected p-value of 0.01

[23].

Supporting Information

Figure S1 An image of the raw Affymetrix array
showing bright lines from dust contamination that span
multiple probes.

(TIFF)

Figure S2 Dendrogram for FARMS normalised data
using Golub filtering for 300 probes.

(TIFF)

Figure S3 Dendrogram for FARMS normalised data
using Golub filtering for 1000 probes.

(TIFF)
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Figure S4 Dendrogram for FARMS normalised data
using IQR filtering for 300 probes.
(TIFF)

Figure S5 Dendrogram for FARMS normalised data
using IQR filtering for 1000 probes.
(TIFF)

Figure S6 Dendrogram for GCRMA normalised data
using Golub filtering for 300 probes.
(TIFF)

Figure S7 Dendrogram for GCRMA normalised data
using Golub filtering for 1000 probes.
(TIFF)

Figure S8 Dendrogram for GCRMA normalised data
using IQR filtering for 300 probes.
(TIFF)

Figure S9 Dendrogram for GCRMA normalised data
using IQR filtering for 1000 probes.
(TIFF)

Figure S10 Dendrogram for RMA normalised data
using Golub filtering for 300 probes.
(TIFF)

Figure S11 Dendrogram for RMA normalised data
using Golub filtering for 1000 probes.
(TIFF)

Figure S12 Dendrogram for RMA normalised data
using IQR filtering for 300 probes.
(TIFF)

Figure S13 Dendrogram for RMA normalised data
using IQR filtering for 1000 probes.
(TIFF)

Figure S14 Heatmap for the differentially expressed
genes between clusters 1 and 2 after Normalisation with
FARMS and IQR filtering for 300 probes.
(TIFF)

Figure S15 Heatmap for the differentially expressed
genes between clusters 1 and 2 after Normalisation with
FARMS and IQR filtering for 1000 probes.
(TIFF)

Figure S16 Heatmap for the differentially expressed
genes between clusters 1 and 2 after Normalisation with
FARMS and Golub filtering for 300 probes.
(TIFF)

Figure S17 Heatmap for the differentially expressed
genes between clusters 1 and 2 after Normalisation with
FARMS and Golub filtering for 1000 probes.
(TIFF)

Figure S18 Heatmap for the differentially expressed
genes between clusters 1 and 2 after Normalisation with
GCRMA and IQR filtering for 300 probes.
(TIFF)

Figure S19 Heatmap for the differentially expressed
genes between clusters 1 and 2 after Normalisation with
GCRMA and IQR filtering for 1000 probes.
(TIFF)

Figure S20 Heatmap for the differentially expressed
genes between clusters 1 and 2 after Normalisation with
GCRMA and Golub filtering for 300 probes.

(TIFF)

Figure S21 Heatmap for the differentially expressed
genes between clusters 1 and 2 after Normalisation with
GCRMA and Golub filtering for 1000 probes.

(TIFF)

Figure S22 Heatmap for the differentially expressed
genes between clusters 1 and 2 after Normalisation with
RMA and IQR filtering for 300 probes.

(TIFF)

Figure S23 Heatmap for the differentially expressed
genes between clusters 1 and 2 after Normalisation with
RMA and IQR filtering for 1000 probes.

(TIFF)

Figure S24 Heatmap for the differentially expressed
genes between clusters 1 and 2 after Normalisation with
RMA and Golub filtering for 300 probes.

(TIFF)

Figure S25 Heatmap for the differentially expressed
genes between clusters 1 and 2 after Normalisation with
RMA and Golub filtering for 1000 probes.

(TIFF)

Figure S26 Heatmap for the differentially expressed
genes between clusters 1 and 3 after Normalisation with
FARMS and Golub filtering for 300 probes

(TIFF)

Figure S27 Heatmap for the differentially expressed
genes between clusters 1 and 3 after Normalisation with
FARMS and Golub filtering for 1000 probes

(TIFF)

Figure S28 Heatmap for the differentially expressed
genes between clusters 1 and 3 after Normalisation with
GCRMA and Golub filtering for 300 probes

(TIFF)

Figure S29 Heatmap for the differentially expressed
genes between clusters 1 and 3 after Normalisation with
GCRMA and Golub filtering for 1000 probes

(TIFF)

Figure S30 Heatmap for the differentially expressed
genes between clusters 1 and 3 after Normalisation with
RMA and Golub filtering for 300 probes

(TIFF)

Figure S31 Heatmap for the differentially expressed
genes between clusters 1 and 3 after Normalisation with
RMA and Golub filtering for 1000 probes

(TIFF)

Figure S32 Heatmap for the differentially expressed
genes between clusters 2 and 3 after Normalisation with
FARMS and IQR filtering for 300 probes.

(TIFF)

Figure S33 Heatmap for the differentially expressed
genes between clusters 2 and 3 after Normalisation with
FARMS and IQR filtering for 1000 probes.

(TIFF)

Figure S34 Heatmap for the differentially expressed
genes between clusters 2 and 3 after Normalisation with
FARMS and Golub filtering for 300 probes.

(TIFF)
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Figure S35 Heatmap for the differentially expressed
genes between clusters 2 and 3 after Normalisation with
FARMS and Golub filtering for 1000 probes.
(TIFF)

Figure S36 Heatmap for the differentially expressed
genes between clusters 2 and 3 after Normalisation with
GCRMA and IQR filtering for 300 probes.
(TIFF)

Figure S37 Heatmap for the differentially expressed
genes between clusters 2 and 3 after Normalisation with
GCRMA and IQR filtering for 1000 probes.
(TIFF)

Figure S38 Heatmap for the differentially expressed
genes between clusters 2 and 3 after Normalisation with
GCRMA and Golub filtering for 300 probes.
(TIFF)

Figure S39 Heatmap for the differentially expressed
genes between clusters 2 and 3 after Normalisation with
GCRMA and Golub filtering for 1000 probes.
(TIFF)

Figure S40 Heatmap for the differentially expressed
genes between clusters 2 and 3 after Normalisation with
RMA and IQR filtering for 300 probes.
(TIFF)

Figure S41 Heatmap for the differentially expressed
genes between clusters 2 and 3 after Normalisation with
RMA and IQR filtering for 1000 probes.

(TIFF)

Figure S42 Heatmap for the differentially expressed
genes between clusters 2 and 3 after Normalisation with
RMA and Golub filtering for 300 probes.

(TIFF)

Figure S43 Heatmap for the differentially expressed
genes between clusters 2 and 3 after Normalisation with
RMA and Golub filtering for 1000 probes.

(TIFF)

Table S1 This contains the annotations that were added
to the normalised data in Bioconductor including the
clusters.

(TXT)

Table S2 This contains the full list of differentially
expressed genes between all of the clusters.

(TXT)
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