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Abstract
Background Cardiovascular health (CVH) is closely associated with ageing. This study aimed to investigate the 
association between cardiometabolic index (CMI), a novel indicator of cardiometabolic status, and biological ageing.

Methods Cross-sectional data were obtained from participants with comprehensive CMI and biological age data in 
the National Health and Nutrition Examination Survey from 2011 to 2018. Biological age acceleration (BioAgeAccel) is 
calculated as the differences between biological age and chronological age, and that biological age is derived from a 
model incorporating eight biomarkers. Weighted multivariable regression, sensitivity analysis, and smoothing curve 
fitting were performed to explore the independent association between CMI and the acceleration of biological age. 
Subgroup and interaction analyses were performed to investigate whether this association was consistent across 
populations.

Results In 4282 subjects ≥ 20 years of age, there was a positive relationship between CMI and biological age. The 
BioAgeAccel increased 1.16 years for each unit CMI increase [1.16 (1.02, 1.31)], and increased 0.99 years for per SD 
increase in CMI [0.99 (0.87, 1.11)]. Participants in the highest CMI quartile had a BioAgeAccel that was 2.49 years higher 
than participants in the lowest CMI quartile [2.49 (2.15, 2.83)]. In stratified studies, the positive correlation between 
CMI and biological age acceleration was not consistent across strata. This positive correlation was stronger in female, 
diabetes, and non-hypertension populations.

Conclusions CMI is positively correlated with biological ageing in adults in the United States. Prospective studies 
with larger sample sizes are required to validate our findings.
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Background
Ageing is characterised by a progressive decline in physi-
ological function [1]. A UN report estimated that the 
world’s population is ageing at an accelerating rate; over 
65 years old contribute to 9% of the population, and this 
number is expected to rise to 16% by 2050 [2]. There 
is significant heterogeneity in the ageing process and 
health outcomes of older individuals [3]. Determining 
an individual’s biological age (BA) is necessary to better 
understand and prevent ageing. Much progress has been 
achieved in developing biological ageing clocks using 
biomedical data, such as DNA methylation [4], tran-
scriptomics [5], proteomics [6], and organ-level charac-
teristics [7], over the last two decades. Previous studies 
have established many composite BA predictors [8–10], 
demonstrating the potential of predicting BA using blood 
biochemical markers. Among the various recognised 
approaches for estimating BA, the Klemera and Doubal 
(KD) method [11] has been reported to outperform tradi-
tional methods in predicting mortality outcomes. In the 
current study, the ageing process was represented by bio-
logical age and biological age acceleration (BioAgeAccel).

As the body ages, the metabolic function of the systems 
decreases. Elevated cardiometabolic risk factors, such as 
obesity and hypertension, can lead to increased oxidative 
stress and inflammation, which are known to accelerate 
biological aging processes [12, 13].The cardiometabolic 
index (CMI) is a novel metabolic index introduced in 
2015 by Ichiro Wakabayashi [12] that combines clinical 
measures of triglycerides, high-density lipoprotein cho-
lesterol, and waist-height ratio and accurately reflects 
both blood the lipid levels and degree of obesity. CMI 
has been related to several metabolic disorders, includ-
ing diabetes mellitus, atherosclerosis, ischemic stroke, 
and hypertension, according to some research. Sev-
eral studies have investigated the clinical significance of 
CMI in metabolic disorders, such as atherosclerosis [14], 
ischaemic stroke [15], hypertension [16], and metabolic-
associated fatty liver disease [17], and more significant 
increases in CMI over time were significantly associated 
with a greater risk for subsequent cardiovascular events 
[18]. Ageing and metabolism are inextricably related and 
dysregulated metabolism is a hallmark of ageing hall-
marks [19]. However, the association between CMI and 
biological ageing has yet to be extensively explored.

We hypothesize a positive relationship between the 
cardiometabolic index and biological aging. In addi-
tion, this relationship is assumed to be nonlinear, as it 
is expected that the effect may vary at different levels 
of cardiometabolic risk. This hypothesis is grounded in 
the premise that at lower levels of cardiometabolic risk, 
the impact on biological aging may be relatively mod-
est. However, as CMI increases, the cumulative effects of 
chronic inflammation and oxidative stress—key drivers 

of aging—are likely to intensify, leading to a more pro-
nounced acceleration of aging processes.

This study aimed to investigate the association between 
CMI and biological ageing, providing a clinical basis for 
preventing ageing.

Methods
Survey description
Data were obtained from the NHANES, a national popu-
lation-oriented survey by the National Centre for Health 
Statistics (NCHS) designed to evaluate potential health 
risk factors and the nutrition status of non-institution-
alised citizens across the United States [20]. A compli-
cated, stratified, multistage probability cluster sampling 
design was devised to select a representative sample of 
the US population.

All NHANES research protocols were authorized by 
the NCHS Research Ethics Review Board, and all sur-
vey participants or, in the case of participants under 16 
years of age, a parent or legal guardian provided written 
informed consent. The public can access all comprehen-
sive NHANES survey designs and data from www.cdc.
gov/nchs/nhanes/.

Study population
Four NHANES cycles from 2011 to 2018 were chosen to 
investigate the relationship between CMI and biological 
age acceleration because only these four cycles had com-
prehensive variables to compute both CMI and biological 
age.

This study included participants who provided com-
plete CMI and biological age data. A total of 39,156 
individuals were initially enrolled, and individuals were 
excluded if [1] they had missing data on biological age 
(n = 27,522) [2], had missing values for CMI (n = 6,510), or 
[3] were under the age of 20 years (n = 842). Ultimately, 
4,282 individuals were included in the analysis (Fig. 1).

Measurement of CMI
CMI was used to measure the diabetes risk and athero-
sclerosis progression to indicate visceral adipose tis-
sue distribution and function. The CMI score comprises 
four health factors (triglyceride, high-density lipopro-
tein, waist circumference, and body height). Height and 
weight circumferences were measured via physical exam-
ination. Triglyceride and high-density lipoprotein levels 
were assessed in the blood samples. The entire algorithm 
for calculating the CMI has been published [21].

CMI = (triglycerides (mmol/L)/high-density lipopro-
teins (mmol/L)) × (waist circumference (cm)/body height 
(cm)).

http://www.cdc.gov/nchs/nhanes/
http://www.cdc.gov/nchs/nhanes/
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Measurement of biological age
Biological age is a measurement of biological ageing [22]. 
Klemera proposed an algorithm to determine the biologi-
cal age on the basis of eight biomarkers (serum albumin, 
serum creatinine, serum glycated haemoglobin, serum 
alkaline phosphatase, serum total cholesterol, serum urea 
nitrogen, C-reactive protein, and systolic blood pressure) 
[11].
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In the above equation, CA represents the chronological 
age; x represents the value of biomarker j; q, k, and s rep-
resent parameters when biomarker j is regressed on CA; 
and sBA represents a scaling factor equal to the square 
root of the variance in chronological age explained by the 
biomarker set.

Furthermore, we calculated the BioAgeAccel [20] by 
estimating the differences in the biological and chrono-
logical age [23]. A negative BioAgeAccel value indicated a 
lower biological age.

Covariates
Covariates that may affect the relationship between CMI 
and biological age were also included in our study, includ-
ing gender (male, female), age (years), race (non-Hispanic 
White, non-Hispanic Black, Mexican American, or other 
races), education level (less than high school, high school, 
or above high school), family poverty-to-income ratio 
(PIR), alcohol consumption per day, hypertension, and 
diabetes mellitus (DM), where hypertension and DM 
were defined according to self-reported information sup-
plied by the individuals. All detailed measurement pro-
tocols for these variables are available at www.cdc.gov/
nchs/nhanes/.

Statistical analysis
The sample analysis utilised appropriate weights consid-
ering the complexity of the NHANES sampling approach. 
For continuous data, weighted means (standard errors) 
were utilized, whereas sample sizes (weighted percent-
ages) were employed for categorical variables. The demo-
graphics of the participants were assessed according to 
the CMI quartile using variance analysis. Weighted mul-
tivariate linear regression analysis was applied to explore 
the linear correlations of CMI and BioAgeAccel. Prior 
to conducting the weighted multivariate linear regres-
sion analysis, we rigorously assessed the key assumptions 
underlying linear regression models. These included nor-
mality, constant variance (homoscedasticity), and the 
absence of influential outliers. To improve the normality 
of the CMI distribution, a natural log transformation was 
applied.

Trend analysis was used to explore the linear relation-
ship between CMI and BioAgeAccel after converting 
CMI from a continuous to categorical variable (quartile). 
Subgroup analysis was performed to examine the rela-
tionship between CMI and BioAgeAccel in individuals of 
different ages, sexes, education levels, and diabetes sta-
tus, and interaction tests were conducted to determine 
whether the associations were constant across subgroups. 
The interaction tests were adjusted for the following 
covariates: age, gender, ethnicity, family PIR, education 
level, hypertension, diabetes, smoking status, alcohol 
consumption. The nonlinear relationship between CMI 
and BioAgeAccel was explored using restricted cubic 
spline. All analyses were conducted using R (version 4.2) 
and EmpowerStat (version 5.0) software. Statistical sig-
nificance was determined as a two-sided P < 0.05.

Results
Baseline characteristics
A total of 4,282 participants were enrolled, of whom 
48.65% were male, with an average chronological age of 
50.01 ± 17.32 years and biological age of 51.28 ± 17.36 
years. Among the four CMI quartiles, statistically 

Fig. 1 Flowchart of the sample selection from NHANES 2011–2018

 

http://www.cdc.gov/nchs/nhanes/
http://www.cdc.gov/nchs/nhanes/


Page 4 of 8Liu et al. BMC Public Health          (2025) 25:879 

significant differences were found in age, sex, race, edu-
cation levels, PIR, smoking status, alcohol consumption, 
diabetes, hypertension, family PIR, BMI, waist circum-
ference, triglycerides, HDL-C, biological age, and BioAg-
eAccel scores (all P < 0.05). Individuals with elevated CMI 
levels were male, smokers, and had higher BMI, waist 
circumference, triglycerides, diabetes, hypertension, bio-
logical age, BioAgeAccel, and decreased family PIR and 
HDL-C levels (all P < 0 0.05). The baseline characteristics 
of the participants based on the CMI quartiles are shown 
in Table  1. Baseline information for the included and 
excluded populations is presented in Table S1.

Association between CMI and bioageaccel
Table 2 shows the association between the CMI and Bio-
AgeAccel. The results demonstrated a significant positive 
association between the CMI and BioAgeAccel in both 
the crude model [1.25 (1.10, 1.40)] and model 2 [1.43 
(1.29, 1.58)]. Moreover, this association remained signifi-
cant in model 3 [1.16 (1.02, 1.31)]. After adjusting for all 
related covariates, the BioAgeAccel increased 1.16 years 
for each unit lnCMI increase. Furthermore, the BioAg-
eAccel increased 0.99 years for per standard deviation 
(SD) increase in lnCMI [0.99 (0.87, 1.11)].

This relationship remained statistically significant after 
CMI was grouped into quartiles (P < 0.01). Participants 
in the highest CMI quartile had a BioAgeAccel that was 
2.49 years higher than participants in the lowest CMI 

Table 1 Baseline characteristics of participants by cardiometabolic index quartiles among U.S. Adults
Cardiometabolic index P-value

Characteristics Overall
(N = 4282)

Q1
(N = 1071)

Q2
(N = 1070)

Q3
(N = 1070)

Q4
(N = 1071)

 Age, year 50.01 ± 17.32 44.75 ± 17.63 49.21 ± 17.17 50.41 ± 16.76 49.94 ± 15.07 < 0.001
Gender, n (%) < 0.001
 Male 2083 (48.65) 420 (39.23) 507 (47.34) 536 (50.06) 656 (61.25)
 Female 2199 (51.35) 651 (60.77) 563 (52.66) 534 (49.94) 415 (38.75)
Race/ethnicity, n (%) < 0.001
Non-Hispanic White 1454 (33.96) 688 (64.22) 689 (64.41) 639 (59.76) 732 (68.35)
Non-Hispanic Black 917 (21.42) 163 (15.18) 135 (12.60) 105 (9.77) 47 (4.43)
Mexican American 664 (15.51) 58 (5.46) 91 (8.49) 106 (9.92) 125 (11.65)
 Other races 1247 (29.12) 162 (15.14) 155 (14.50) 220 (20.55) 167 (15.57)
Education level, n (%) < 0.001
 < High school 910 (21.25) 104 (9.58) 124 (11.58) 149 (13.93) 171 (15.97)
 High school 983 (22.96) 224 (20.92) 256 (23.90) 297 (27.75) 287 (26.84)
 > High school 2389 (55.79) 744 (69.50) 690 (64.51) 624 (58.33) 612 (57.18)
Alcohol drinks/day
Smoking status, n (%)
 Yes
 No
Hypertension, n (%)
 Yes
 No

2.38 ± 1.82
1873 (43.48)
2405 (56.22)
1598 (37.32)
2684 (62.68)

2.22 ± 1.52
418 (39.02)
653 (60.98)
214 (19.95)
857 (80.05)

2.43 ± 1.94
443 (41.44)
627 (58.56)
329 (30.77)
741 (69.23)

2.35 ± 1.81
506 (47.32)
564 (52.68)
417 (38.95)
653 (61.05)

2.52 ± 2.08
581 (54.24)
490 (45.76)
463 (43.24)
608 (56.76)

< 0.001
< 0.001

Diabetes, n (%) < 0.001
 Yes 806 (18.82) 56 (5.19) 92 (8.58) 179 (16.72) 265 (24.74)
 No 3476 (81.32) 1015 (94.81) 978 (91.42) 891 (83.28) 805 (75.26)
Family PIR 2.93 ± 1.53 3.13 ± 1.56 3.03 ± 1.61 2.82 ± 1.58 2.85 ± 1.55 < 0.001
 BMI
 Height, cm

29.58 ± 7.02
166.53 ± 9.96

24.69 ± 4.77
167.68 ± 9.36

29.17 ± 6.21
168.40 ± 10.05

31.23 ± 6.82
167.83 ± 9.98

33.36 ± 6.96
169.59 ± 9.95

< 0.001
< 0.001

Waist circumference, cm 100.56 ± 16.76 87.48 ± 11.96 99.86 ± 14.59 105.40 ± 15.42 111.63 ± 15.54 < 0.001
Triglyceride, mg/dL 113.38 ± 89.62 51.45 ± 15.89 80.54 ± 20.49 114.31 ± 26.29 207.80 ± 107.52 < 0.001
 HDL-C, mg/dL 54.42 ± 16.67 71.12 ± 18.93 57.5 ± 12.19 49.87 ± 9.99 40.61 ± 8.33 < 0.001
 CMI 1.58 ± 2.02 0.39 ± 0.12 0.83 ± 0.14 1.44 ± 0.25 3.54 ± 2.58 < 0.001
 lnCMI
 lnCMI/SD

0.07 ± 0.85
0.09 ± 1.00

-1.00 ± 0.37
1.18 ± 0.43

-0.21 ± 0.17
-0.24 ± 0.20

0.35 ± 0.17
0.41 ± 0.20

1.15 ± 0.42
1.35 ± 0.50

< 0.001
< 0.001

Biological age, year 51.28 ± 17.36 43.90 ± 17.01 49.09 ± 16.45 50.93 ± 16.16 51.82 ± 14.67 < 0.001
 BioAgeAccel, year 0.72 ± 4.90 -0.86 ± 3.98 -0.12 ± 3.90 0.52 ± 4.35 1.88 ± 4.65 < 0.001
Continuous variables are expressed as mean ± SD. Categorical variables are expressed as frequency n (%). Q quartile, PIR the ratio of income to poverty, BMI body 
mass index, HDL-C high-density lipoprotein cholesterol, BioAgeAccel biological age acceleration
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quartile [2.49 (2.15, 2.83)]. Furthermore, the restricted 
cubic spline verified the nonlinear positive relationship 
between CMI and BioAgeAccel (P < 0.05)(Fig. 2).

Subgroup analysis
The subgroup analysis revealed that the correlations 
between CMI and higher BioAgeAccel scores were not 
consistent. The association between CMI and biologi-
cal age acceleration was significantly stronger in women 
compared to men. The association was more pronounced 
in individuals with diabetes compared to those without 
diabetes.

Conversely, the association was attenuated in indi-
viduals with hypertension compared to those without 
hypertension.

The interaction test revealed a significant difference in 
the relationship between CMI and BioAgeAccel across 
sex, hypertension status, and diabetes status (P < 0.05). 
There was no significant dependence of this positive 

Table 2 The association between cardiometabolic index and 
biological age acceleration
Biological age 
acceleration

Model 1
[ β (95% CI)]

Model 2
[ β (95% CI)]

Model 3
[ β (95% CI)]

Cardiometabolic index
Continuous
lnCMI 1.25 (1.10, 1.40) 1.43 (1.29, 1.58) 1.16 (1.02, 

1.31)
lnCMI/SD 1.06 (0.94, 1.19) 1.22 (1.10, 1.34) 0.99 (0.87, 

1.11)
Category
Quartile 1 Ref Ref Ref
Quartile 2 0.73 (0.38, 1.09) 1.00 (0.66, 1.34) 0.86 (0.53, 

1.19)
Quartile 3 1.38 (1.02, 1.74) 1.74 (1.40, 2.09) 1.35 (1.01, 

1.69)
Quartile 4 2.74 (2.39,3.09) 3.14 (2.79, 3.48) 2.49 (2.15, 

2.83)
P for trend < 0.0001 < 0.0001 < 0.0001
Model 1: crude model

Model 2: adjusted for age, sex, and ethnicity

Model 3: further adjusted for family PIR, education level, hypertension, 
diabetes, smoking status and alcohol consumption

Table 3 Subgroup analysis of the association between CMI and 
biological age acceleration
Subgroup BIOAGEACCEL [ β (95%CI)] P for interaction
Sex 0.023
Male 1.01 (0.82, 1.21)
Female 1.33 (1.13, 1.53)
Age 0.067
< 60 years 1.14 (0.97, 1.30)
≥ 60 years 0.84 (0.55, 1.12)
Race 0.068
Non-Hispanic White 1.08 (0.90, 1.26)
Non-Hispanic Black 1.72 (1.28, 2.17)
Mexican American 1.22 (0.76, 1.68)
Other races 1.14 (0.80, 1.48)
Education 0.560
< High school 1.35 (0.97, 1.73)
High school 1.18 (0.88, 1.47)
> High school 1.12 (0.95, 1.30)
Smoking 0.614
Yes 1.13 (0.93, 1.33)

1.20 (1.00, 1.39)
No 1.20 (1.00, 1.39)
Hypertension < 0.001
Yes 0.80 (0.54, 1.05)
No 1.33 (1.16, 1.50)
Diabetes < 0.001
Yes 2.15 (1.73, 2.57)
No 1.06 (0.91, 1.21)

Fig. 2 The association between lnCMI and BioAgeAccel. (A) Each black point represents a sample. (B) Smooth curve fit between variables. The solid red 
line represents the smooth curve fit between variables. Grey bands represent the 95% of confidence interval from the fit. (C) Analysis of restricted cubic 
spline regression. (P = 0.028)
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association on age, race, educational level, or smoking 
status (all P for interaction > 0.05) (Table 3).

Discussion
In the cross-sectional study of 4,282 adults in the United 
States, we observed a positive association between CMI 
and biological age acceleration. Stratified analyses dem-
onstrated that this relationship is not stable across 
groups.

To the best of our knowledge, this is the first study to 
explore the relationship between CMI and the accelera-
tion of biological age. CMI, proposed by Japanese scien-
tist Ichiro Wakabayashi, serves as a cardiovascular health 
indicator and a novel obesity index reflecting visceral 
adipose tissue dysfunction and distribution. Previous 
studies have demonstrated the connection between age-
ing and cardiovascular health [24]. Several studies have 
demonstrated that changes in individual CVH-related 
factors significantly influence ageing. Improved cardio-
vascular health has been associated with lower epigenetic 
age acceleration [25]. Obesity and cardiovascular meta-
bolic disorders can significantly accelerate biological age-
ing, as evidenced by various obesity metrics (BMI, body 
fat percentage, waist circumference, hip circumference, 
and waist-to-hip ratio) in a cross-sectional investigation 
of 2,474 Taiwanese adults [26]. The AHA’s Life’s Simple 
7 approach, which promotes a matrix of seven healthy 
activities, has shown fascinating inverse relationships 
with ageing biomarkers, such as leukocyte DNA meth-
ylation clock and telomere length [27–29]. Adults with 
high levels of total or individual CVH measures in Life’s 
Essential 8 had a lower risk of all-cause and CVD-specific 
mortality, according to Sun et al. in another extensive 
nationally representative sample of US adults [29]. Con-
sistent with previous findings on the impact of cardiovas-
cular health and ageing, our findings indicated a positive 
relationship between CMI and biological age, suggesting 
a strong link between cardiovascular health and ageing.

The association between CMI and biological age accel-
eration was significantly stronger in women compared 
to men. Women undergo several important hormonal 
changes throughout their lives, such as the menstrual 
cycle, pregnancy, breastfeeding, and menopause, and 
these fluctuations in hormone levels can have an impact 
on cardiometabolism. For example, the decline in oestro-
gen levels in postmenopausal women can lead to changes 
in fat distribution, higher lipid levels and increased insu-
lin resistance, which can accelerate the onset of cardio-
metabolic problems and biological ageing [30]. On the 
other hand, women’s body fat distribution differs from 
men’s, typically storing more fat in areas such as the hips 
and thighs, whereas men tend to store fat in the abdo-
men. Although fat in the hips and thighs is relatively 
healthier, when a woman’s waist-to-hip ratio (WHR) is 

too high, an increase in abdominal fat can significantly 
increase cardiometabolic risk, which can accelerate bio-
logical age.

This association was more pronounced in diabetics 
compared to non-diabetics. This may be due to a more 
pronounced chronic inflammatory response in diabet-
ics, with elevated levels of inflammatory factors such 
as C-reactive protein (CRP), which damage the endo-
thelial cells of the blood vessels and contribute to the 
development of atherosclerosis, which accelerates car-
diometabolic problems and biological age. In addi-
tion, hyperglycaemia and metabolic disorders lead to 
increased oxidative stress, which damages cellular DNA, 
proteins and lipids, affecting normal cellular function and 
lifespan, and thus accelerating biological age [31].

In contrast, this association was attenuated in people 
with hypertension compared to those without hyperten-
sion. This may be due to the fact that people with hyper-
tension are usually treated with medications that are 
effective in controlling blood pressure and reducing the 
risk of cardiovascular disease. For example, antihyper-
tensive medications such as ACE inhibitors and calcium 
channel blockers not only lower blood pressure but also 
improve cardiometabolic health, thereby attenuating the 
association between CMI and accelerated biological age 
[32, 33]. In addition, hypertensive patients tend to focus 
more on lifestyle modifications after diagnosis, such as 
increasing exercise, improving diet, quitting smoking and 
limiting alcohol. These lifestyle changes can significantly 
improve cardiometabolic health and reduce accelerated 
biological age.

The underlying mechanism through which CMI con-
tributes to the development of biological ageing remains 
unclear. Individuals with CMI may have an abnormal 
lipid metabolism, which may account for these findings. 
Plasma lipid metabolism influences several biochemi-
cal pathways and cell types linked to longevity and age-
ing in healthy adults [34, 35]. Restoring abnormal lipid 
metabolism is a newly emerging and promising anti-age-
ing approach [36]. Maintaining a normal BMI promotes 
healthy life expectancy, extends survival, enhances physi-
cal performance in elderly individuals, and alleviates age-
ing [37, 38].

This study has several advantages. It utilised NHANES 
data, and a countrywide, population-based sample data 
set was collected utilizing a standardized approach. All 
analyses were conducted using appropriate NHANES 
sampling weights, which enabled the collection of more 
representative research samples. To make the conclu-
sions more reliable, we adjusted for related confounders. 
However, the findings of this study should be consid-
ered with caution due to some limitations. First, we were 
unable to establish a causal association between the CMI 
and biological age due to the cross-sectional design of the 
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study. Therefore, prospective studies with more extensive 
sample sizes are required to determine the causality. Fur-
thermore, even after adjusting for relevant confounders, 
we could not exclude the possibility of other potential 
covariables, such as drug usage or other comorbidities. 
Because these details were not collected for NHANES, 
researchers may have been unable to draw firm conclu-
sions from the data. Finally, the study did not examine 
biological age on the molecular level and instead relied 
on clinical biochemical markers. Also, the exclusion of 
individuals with missing data might limit the generaliz-
ability of our findings or potentially introduce selection 
bias.

Our findings suggest a relationship where cardiometa-
bolic risk may influence biological aging, it is equally 
plausible that biological aging could contribute to 
increased cardiometabolic risk. With biological ageing, 
the elasticity of blood vessel walls decreases and lipid 
deposition increases, leading to the development of ath-
erosclerosis. This lesion increases the risk of cardiovas-
cular diseases such as coronary heart disease and stroke. 
The biological ageing process also increases the chronic 
inflammatory response in the body and increases the 
level of inflammatory factors, which damages the vas-
cular endothelial cells and promotes the development of 
atherosclerosis [39]. In addition, aging leads to a decrease 
in antioxidant capacity and an increase in the generation 
of reactive oxygen species (ROS), which damages cellu-
lar DNA, proteins and lipids, affecting cellular function 
and increasing the risk of cardiovascular disease. A study 
analysing 341,159 adults in a multi-stage UK biobank has 
found that accelerated biological ageing increases the risk 
of cardiometabolic multimorbidity and mortality [40]. 
The bidirectional nature of the association between car-
diovascular metabolic risk and biological ageing should 
be emphasised.

Conclusion
Elevated CMI levels are associated with accelerated bio-
logical ageing. Prospective studies with larger sample 
sizes are required to validate our findings.
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