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Abstract: Most studies in the field of ecological restoration have only focused on repairing damaged
land and have made no attempt to account for the impact of high-intensity land use on future
landscape patterns. The purpose of this study was to propose a framework for evaluating the
expected effects of ecological restoration based on land-use change and the ecological security
pattern. Therefore, we integrated the PLUS model with the ecological security pattern and used
Hefei City as a case study to conduct research. The results showed that from 2020 to 2030, land-use
changes would occur primarily in the main urban area of Hefei and along the eastern shore of the
Chaohu Lake watershed. Under the ecological protection scenario, arable land would be converted
to construction land and woodland. Additionally, there would be an increase in ecological sources
and pinch points in the area, and the number and area of the barriers would show a certain degree of
reduction. The ecosystem quality, ecological integrity, and landscape connectivity of Hefei would
be improved. This study offers a novel perspective for evaluating the expected effects of regional
ecological restoration and provides an important reference for the dynamic formulation of multilevel
ecological restoration policies.

Keywords: ecological restoration; ecological security pattern; PLUS; MSPA; circuit theory; Hefei City

1. Introduction

Rapid urbanization has become one of the defining characteristics of human social
progress, and the country’s ecological environment is threatened by high-intensity land
use and rapid land-use alterations. As a result, ensuring the structural and functional
integrity of natural ecosystems for sustainable urban development is a global concern [1,2].
All countries must put forth effort into improving the structure and function of the global
ecosystem [3]. Countries throughout the world have established technical schemes or
planning methods to protect the ecological environment, including the urban growth
boundary (UGB) [4], environmental network (EN) [5], and green infrastructure (GI) [6]. The
ecological security pattern initiative, begun more recently in China, has steadily evolved
into an essential planning and management tool for combining economic development
with ecological protection and restoration [7]. However, few studies explore the correlation
between land use and land cover (LULC), ecological security, and ecological restoration.

Land provides the material foundation for human survival and development. LULC
elucidate the interplay between human society and the natural environment, which has
emerged as a critical area of research on global environmental change. The research ranges
from the implications of global climate change [8] to land change processes and their under-
lying mechanisms at various geographical scales, as well as ecological and environmental
consequences. The study areas are predominantly concentrated in places with significant
human–land conflicts, fragile biological conditions, and rapid population growth and ur-
banization [9]. Rapid urbanization is encroaching on land adjacent to dense human activity
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zones, such as arable land and woodland [10], resulting in a shift in land-use patterns. Con-
tinuous human activity rapidly accelerates the evolution of landscape structures, posing
serious threats to landscape functions and ecosystems. This will disrupt the structure and
function of the ecosystem [11], jeopardizing the landscape pattern and sustainability of
the region [12]. Understanding and quantifying the spatiotemporal dynamics of LULC
and their socio-ecological repercussions is critical for grasping the links between social and
natural phenomena, particularly in urban regions. Consequently, assessing the evolution
of land-use patterns is a prerequisite and foundation for analyzing local urban growth
and ecological environmental conservation [13]. Simulating changes in land-use patterns
scientifically and realistically through systematic land-use pattern simulation studies can
help reveal the intrinsic connection between humans and the natural world [14].

To better comprehend, evaluate, and simulate land-use change, researchers have devel-
oped numerous LULC models, including the Cellular Automaton (CA) model, the CLUE-S
model, the FLUS model, and the PLUS model. The CA model was the first and most pop-
ular model applied to predict future land-use spatial distribution [15]. Barredo et al. [16]
integrated land-use factors with the CA model to simulate urban land use in Dublin City
for the next 30 years. Xu et al. [17] coupled the random forest (RF) algorithm with the
CA model to simulate the urban land allocation in Changzhou City in 2020. However,
the traditional CA model is insufficient in terms of illuminating the underlying drivers of
land-use change [18] and simulation accuracy [19]. Scholars have enhanced the traditional
CA model from different perspectives. For instance, Verburg et al. [20] proposed a CLUE-S
model based on system theory which was developed specifically for the regional-scale anal-
ysis of land use. The FLUS model introduced by Liu [21] improved the original CA model
by incorporating self-adaptive inertia and a competition mechanism to process the complex
competitions and interactions between the various land-use categories. Liang et al. [22]
presented a patch-generating land-use simulation (PLUS) model. The PLUS model has
been demonstrated to be a superior model that yields more accurate simulation results
than the FLUS model, and it is more applicable for exploring the effects of climate change
and human activities on future land-use dynamics [22,23].

The notion of ecological security pattern originates in landscape planning and is simi-
lar to the concepts of ecological networks and green infrastructure, all of which are aimed at
protecting natural ecosystems within defined secure borders [24]. Regarded as an efficient
tool to guarantee regional ecosystem security, the ecological security pattern is a spatial
pattern that consists of certain critical locations and spatial linkages. Regional ecological
processes can be effectively regulated by using the reciprocal feedback between ecological
patterns and ecological processes. Effective regulatory instruments can ensure that ecologi-
cal functions are carried out fully and that regional natural resources are allocated rationally,
thereby contributing to the fulfilment of ecological security [25]. Establishing an ecological
security pattern is one of the most essential strategies to alleviate the conflict between
environmental conservation and economic development [24,26]. It is an inevitable choice
to shift from ecological remediation after the destruction to ecological protection before
the environment is destroyed. In the framework of a new era of ecological civilization,
the formation of an ecological security pattern provides great support for China’s efforts
to find ecological conservation measures that are more adapted to regional development
demands. Territorial spatial planning under the concept of ecological civilization in China
proposes a planning approach that emphasizes the priority of protecting the ecological
environment called “reverse planning” or “anti-planning” [27]. Anti-planning is different
from traditional planning, which places a high priority on economic growth and building
grey infrastructure. Its planning procedure prioritizes the construction of an ecological
security pattern and uses it to guide and restrict the development of the city. Anti-planning
is a type of bottom-line thinking that prioritizes the protection of landscape components
that provide important ecosystem functions.

The purpose of identifying crucial areas for ecological restoration based on the ecolog-
ical security pattern is to maintain the ecosystem’s security and to ensure the long-term
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sustainable growth of the region. However, contemporary research on ecological restora-
tion is focused on specialized viewpoints such as water ecology management [28], wetlands
restoration [29], and erosion control [30]. These project-specific studies can produce positive
outcomes for ecological restoration in specific areas, but the overall improvement in ecolog-
ical function is still somewhat restricted. Additionally, current studies focus exclusively
on restoring ecological space that has been destroyed [31] without considering the impact
of future landscape pattern changes caused by high-intensity human activity. Our inter-
ventions rarely result in complete restoration, and uncertainty is to be expected in dealing
with ecological restoration processes [32]. As a result, making dynamic adjustments in the
implementation of the existing ecological restoration strategy is difficult. In this paper, we
used the PLUS model to simulate land-use patterns in 2030 under the ecological restoration
scenario with Hefei City as the study area. On this basis, we established ecological security
patterns for 2020 and 2030 to identify crucial areas for ecological restoration, respectively.
To figure out how well ecological restoration will work in this decade, we conducted a
detailed comparative analysis of the crucial areas of restoration in 2020 and 2030. This
would assist us in further defining the direction and scope of ecological restoration in
the future.

The aim of this research was to present a framework for assessing the expected effects
of ecological restoration. This framework incorporates a land-use simulation model and the
ecological security pattern. It was designed as an analysis tool to further clarify the direction
of the ecological restoration effort as well as the issues that require special attention. This
study provided a new perspective for assessing the effectiveness of ecological restoration
and for the formulation of multilevel ecological security policies. Dynamic assessment of
future ecological concerns is more pertinent for regional sustainable development.

2. Study Area and Data Sources
2.1. Study Area

The study region for this article is Hefei City, Anhui Province (Figure 1). Hefei
(116◦41′–117◦53′ E, 31◦30′–32◦28′ N), in central Anhui, is a natural hub of communications,
being situated to the north of Chao Lake and standing on a low saddle crossing the
northeastern extension of the Dabie Mountains, which form the divide between the Huai
and Yangtze rivers. It has been the provincial capital since 1952, comprising four urban
districts (Shushan, Luyang, Yaohai, and Baohe), one county-level city (Chaohu), and
four counties (Changfeng, Feidong, Feixi, and Lujiang). Hefei has a northern subtropical
monsoon climate with an average yearly temperature of 15.7 ◦C. Its precipitation averages
1000 mm/year, most of which occurs during May and August. The average altitude in
Hefei is between 20 and 40 m above sea level. The total area of Hefei is 11,465 km2, with a
municipal area of 1310 km2 and a main urban area of 2661 km2. According to the results of
Hefei’s 7th National Census, the city had a resident population of 9,369,900 as of November
2020, putting it in the category of megacities.
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Figure 1. The spatial location of the study area.

2.2. Data Sources

The LULC data are derived from a dataset created by two Wuhan University professors.
It contains data for 2000, 2010, and 2020, with a resolution of 30 m [33]. It is the most accurate
land-use dataset currently available to the general public. Study area boundary data, annual
average temperature data, soil type data, and GDP data are obtained from the Resource
and Environment Science and Data Center (https://www.resdc.cn, accessed on 20 January
2022). Digital elevation model data were obtained from SRTMV4, with a resolution of
90 m (https://srtm.csi.cgiar.org, accessed on 1 February 2022). Population data were
obtained from WorldPop; the resolution is 100 m (https://www.worldpop.org, accessed
on 20 January 2022). The distance variables were extracted from the OpenStreetMap
database (https://www.openstreetmap.org, accessed on 1 February 2022). Average annual
precipitation data were obtained from the Institute of Mountain Hazards and Environment
(http://www.imde.ac.cn/old, accessed on 5 February 2022), with a resolution of 30 m.

3. Methods
3.1. Simulation of Land Use
3.1.1. The PLUS Model

The PLUS model is a patch-generating land-use simulation model that combines the
advantages of both the transition analysis strategy (TAS) and the pattern analysis strategy
(PAS). Additionally, multi-type random patch seeding is applied to model multiple land-
use categories at fine resolution. The PLUS model can provide a better understanding of
the relationships underlying land-use change. Compared with previous land-use models

https://www.resdc.cn
https://srtm.csi.cgiar.org
https://www.worldpop.org
https://www.openstreetmap.org
http://www.imde.ac.cn/old
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that are inadequate for determining the underlying drivers of land-use changes and cannot
identify the temporal and spatial evolution of multiple land-use patches, the PLUS model
can achieve better simulation accuracy and a more similar landscape layout [22].

As land-use change is complicated and non-linear, the selection of driving factors
should be guided by the fundamental principles of comprehensiveness, data availability,
and quantifiability. Besides natural forces, land-use change is also affected by economic and
social variables, geography, and other things. With reference to existing research [23,34–38],
we chose 15 factors that affect land-use expansion data to calculate the growth probability
of each land-use type. These factors included 5 natural (elevation, aspect, temperature,
precipitation, and slope), 3 socioeconomic (GDP density, night-time lighting, and pop-
ulation density), and 7 accessibility (distance to motorways, primary roads, secondary
roads, tertiary roads, trunks, rails, and water). Neighborhood weights, as the important
indicator in land-use simulation, represent the expansion intensity of land-use types. The
neighborhood weight parameter ranges from 0 to 1, with a bigger value indicating a better
expansion ability of the land type and a lower possibility of other land types occupying it.
According to the actual land-use change of the study area from 2010 to 2020, the neighbor-
hood weights were constantly adjusted. The simulation accuracy was assessed for different
parameters, and the factor parameters with the best accuracy were picked. Therefore, the
neighborhood weights were set as follows: arable land, 0.35; woodland, 0.16; grassland,
0.01; water, 0.05; wasteland, 0; construction land, 0.55.

The following process was used to simulate the land-use pattern in Hefei City: (1) We
extracted regions that changed between 2010 and 2020 and then calculated the probability
of development for each land type using a random forest algorithm; (2) we simulated
the spatial pattern of future land use using the atlas of development probability; (3) we
compared 2010 LULC data from the study area and development probabilities based on
relevant parameters with simulation results for 2020 and real LULC data in the same year.
Then we calculated the overall accuracy, Kappa coefficient, and figure of merit (FoM) to
verify the accuracy of the model.

Hefei, as a representative of the new first-tier cities, still has much impetus and room
for development in the short term. We first needed to determine the quantity of future
land use in the future simulation. The Markov Chain model in this study is implemented
to simulate the land-use demand from 2020 to 2030 based on the analysis of the land-use
change during the 2010–2020 period. To highlight the critical significance of ecological
restoration in ensuring regional ecological security, this study only considered the planning
of territorial ecological restoration to project future scenario [39].

3.1.2. Model Validation

To validate the model’s accuracy, we extracted land-use expansion data from 2000
to 2010, integrated it with the Markov Chain model to forecast land-use demand in 2020,
simulated the land-use type map using the PLUS model, and compared it to the actual data.
The overall accuracy, Kappa, and FoM coefficients were used to test the simulation accuracy
of the PLUS model. We calculated the overall accuracy and Kappa coefficient by creating a
confusion matrix of simulated and actual results for the raster cells. The values of Kappa
are usually divided into 5 groups: 0~0.20 (slight), 0.21~0.40 (fair), 0.41~0.60 (moderate),
0.61~0.80 (substantial), and 0.81~1 (almost perfect) [40]. The Kappa coefficient is not very
informative when the area undergoing change comprises a small proportion of the study
area. Therefore, the FoM coefficient is constructed to assist in determining the accuracy of
the simulation. FoM is superior to Kappa in assessing the accuracy of the simulation [41].
The calculation formula is as follows:

FoM =
B

A + B + C + D
(1)

where A is the error area where land use actually changes but is simulated as constant; B
is the common area changing in both the actual map and simulations; C is the area that
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changed in both the actual and simulated maps, but the land-use types are different; D is
the area that does not change in the actual map, while it changes during simulations.

3.2. Construstion of the Ecological Security Pattern

The ecological security pattern is a critical indicator for assessing the health and
integrity of an ecosystem. The establishment of an ecological security pattern enables
effective regional ecological preservation, a balance of ecological protection and economic
development, and the maintenance of ecosystem services. It is an ecological network
consisting of ecological sources, an ecological resistance surface, ecological corridors, and
ecological crucial nodes. In this study, an ecological security pattern was constructed in the
following steps: (1) identifying ecological sources; (2) constructing ecological resistance
surface; (3) extracting ecological corridors; (4) identifying the ecological strategic nodes of
ecological restoration based on circuit theory, including pinch points and barriers.

3.2.1. Identifying Ecological Sources Based on MSPA

Ecological sources are generally stable habitat patches in the ecosystem which play
an important role in promoting ecological processes, maintaining ecosystem integrity, and
providing ecosystem services [42]. They serve as the foundation for the establishment of
an ecological security pattern. To identify ecological sources, we employed morphological
spatial pattern analysis (MSPA), an image processing method based on mathematical
morphological principles [43]. It is capable of more precisely identifying the type and
structure of a landscape. In this paper, land cover elements of high ecosystem service
capacity, such as woodland, grassland, and water, were chosen as the foreground data for
MSPA analysis. Arable land, construction land, and wasteland were used as the background
data due to the lack of living environment for species to feed. Guidos Toolbox software
was used to MSPA and then 7 non-overlapping landscape types were obtained. The core
was extracted from the output result and then we used the Conefor software to evaluate
landscape connectivity [44,45]. When it comes to determining landscape connectivity,
the possible connectivity index (PC) and plaque importance index (dPCk) are frequently
selected as crucial indicators since they can accurately indicate the degree of regional
connectivity between core patches [46]. PC and dPCk were calculated as follows:

PC =

n
∑

i=1

n
∑

j=1
ai × aj × p∗ij

A2
L

=
PCnum

A2
L

(2)

dPCk = 100×
PC − PCremove,k

PC
= 100× ∆PCk

PC
(3)

where n is the total amount of patches in the landscape; ai and aj are the attributes of patches
i and j; p∗ij is the maximum product probability of all of the possible paths between patches
i and j; AL corresponds to the total landscape area. PCremove,k is the metric value after the
removal of k.

Considering patch radiation and landscape connectivity, we retained the patches with
an area larger than 5 km2 and a dPC at or above 0.5 as ecological sources in this paper.

3.2.2. Constructing Ecological Resistance Surfaces

The ecological resistance surface can be regarded as the degree of resistance of a
land surface to the geographical dispersal and flow of species and ecological elements.
Both natural conditions and anthropogenic disturbances have an effect on the ecological
resistance surface. The types of landscape have a direct effect on the feasibility of those
flows [47]. Topography can also have an impact on the dispersal of species, with the
difficulty of dispersal increasing with elevation and slope [48]. We followed the principles
of operability and data accessibility in selecting resistance factors. Considering the realities
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of the study, we set the resistance surface using representative indicators including land-use
types, elevation, and slope [49].

3.2.3. Extracting Ecological Corridors

Ecological corridors, as areas of low cumulative resistance between ecological source
regions, allow species to migrate between habitats. Ecological corridors are typically
composed of vegetation, water bodies, and other types of land cover element that provide
ecosystem services [50]. Extraction of ecological corridors is essential for ecological flow and
patch stability, as well as for the integrity of ecological functions and regional ecological
security. Given the stochastic nature of ecological flow, circuit theory can accurately
simulate ecological corridors between ecological sources, even in the absence of target
species [51,52]. In this paper, we used the Linkage Mapper toolbox to extract corridors. We
combined ecological sources and ecological resistance surfaces to build least-cost paths
(LCPs) that connect several ecological sources as ecological corridors.

3.2.4. Identifying Ecological Strategic Nodes

Ecological strategic nodes, colloquially referred to as “ecological stepping stones” are
crucial for ensuring the sustainability of regional ecological functions. The identification and
restoration of ecological strategic nodes can maintain the stability of ecological communities
and enhance the regional ecosystem service. In this paper, we used the GIS tool Linkage
Mapper to identify ecological strategic nodes based on circuit theory, including pinch points
and barriers. The landscape is treated as a conductive surface in circuit theory, and random
walks of electrons are used to simulate the ecological processes of species in the landscape.
A finite value is assigned to each grid on a conductive surface that represents the difficulty
of passing through that cell, and ecological sources are given the resistance value of 0.

Pinch points serve as crucial areas for species migration and energy transfers, which
are critical for the connectivity of ecological security patterns [53]. We used the Pinchpoint
Mapper to determine pinch points under the “all to one” mode. When 1 A current is
injected from one node (an ecological source) and flows out from another, each passing grid
is assigned a current value that represents the probability of the current passing through
this grid. Pinch points are locations of high current density within an ecological network,
indicating areas with a high probability of transit during migration. Since the corridor
width would not affect the location and connectivity of pinch points, we set 45,000 m as the
distance threshold [54].

Barriers are where species are impeded from migrating between ecological sources.
According to circuit theory, the greater the resistance, the greater the impediment to
species migration. Removing these areas with high resistance can significantly improve the
connectivity between ecological sources [55]. We used Barrier Mapper, a plug-in included
in the Linkage Mapper toolbox, to identify crucial barriers. The moving window approach
was first employed to search for barriers with the following parameters: a minimum search
radius of 100 m, a maximum search radius of 400 m, and a step size of 100 m [56,57].
Along with the ecological restoration of certain areas, the resistance of the places would be
reduced. As a result, the cumulative resistance of the least-cost path connecting ecological
sources through the recovered area could also be reduced. The restoring regions with the
greatest cumulative resistance reduction were chosen as barriers.

4. Results
4.1. Simulation of Land-Use Pattern

The expansion potential of various types of land in Hefei was completely evaluated
during the modelling process in this study. According to our hypothesis, the restoration
measures were responsible for the changes in land use under the ecological restoration
scenario. Therefore, we incorporated the requirements of territorial ecological restoration
planning into the model as a constraint of anti-planning to simulate the land use in 2030.
Based on the simulation results for 2030, we reconstructed the ecological security pattern
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and compared it with that of 2020. This paper provided a method to assess the expected
effects of ecological restoration by coupling the PLUS model with the ecological security
pattern. It can indicate the weaknesses and potential problems of the current ecological
restoration plan, allowing the government to make dynamic policy modifications.

4.1.1. Simulation Accuracy

The PLUS model was used in this study to forecast future land-use patterns in 2030 at
a ten-year interval. It was necessary to simulate land use in 2020 using land-use changes
between 2000 and 2010 and to evaluate the accuracy of the simulation against actual data.
The Kappa coefficient, overall accuracy, and FoM value were calculated to determine the
accuracy of simulation. The overall accuracy was 93.5%, with individual accuracy levels
of more than 85% for arable land, water, and construction land. The Kappa coefficient of
all land-use types was 0.85 (a value between 0.81 and 1, which means the result is almost
perfect), and the FoM value was 0.45. When compared to the actual land-use pattern in
2020, the simulated results demonstrated good spatial consistency. The results revealed
that the PLUS model was highly credible and that the model could be used to simulate the
land-use pattern in 2030.

4.1.2. Simulation Results

The classified LULC maps of Hefei were classified into six land-use types, namely
arable land, grassland, wasteland, woodland, water, and construction land. Table 1 illus-
trates the total area of various land-use types in 2020 and 2030 as well as their coverage
percentage. Arable land is the most common land-use type in Hefei. In terms of area,
the area of arable land experiences a rapid decline from 2020 to 2030, where it decreased
from 8725.04 km2 to 8170.89 km2 (73.485% to 71.269%). Correspondingly, the area of con-
struction land increased by 213.95 km2 from 1362.71 km2 to 1576.66 km2, and the area of
woodland increased by 38.34 km2 from 562.94 km2 to 601.29 km2. In contrast, the area of
water remained largely steady. From the perspective of the spatial distribution (Figure 2),
land-use changes are mainly distributed within the main urban areas of Hefei and in the
eastern part of Chaohu Lake, which are the core development zones in Hefei’s Territorial
Spatial Planning. Between 2020 and 2030, the various processes of land-use change would
be primarily concentrated near the built-up land border. When the simulation results in
2030 are compared with the actual land use in 2020, it is clear that the area of woodland in
the main urban areas of Hefei has obviously increased. In general, the ecological space in
Hefei would be expanded under the ecological restoration scenario.

Table 1. Land-use area and percentage in Hefei.

Area and
Proportion

Land-Use Type (km2/%)

Arable Land Woodland Grassland Water Wasteland Construction Land

2020
8425.04 562.94 0.48 1113.69 0.06 1362.71
(73.485) (4.910) (0.004) (9.714) (0.001) (11.886)

2030
8170.89 601.29 0.38 1115.67 0.03 1576.66
(71.269) (5.245) (0.003) (9.731) (0.001) (13.752)

Note: The percentages in parentheses are the proportions of total land area for each land-use type.
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Figure 2. LULC classification maps of Hefei for (a) 2020, (b) 2030.

4.2. Ecological Security Pattern
4.2.1. Ecological Sources Analysis

Under the criterion of patches with an area larger than 5 km2 and a dPC at or above
0.5, 19 and 16 ecological sources were identified in 2020 and 2030 in Hefei, and the corre-
sponding land-use types are shown in Table 2. In 2020, the area of identified ecological
sources was 1077.65 km2, accounting for 9.40% of the total land area of Hefei. In 2030, the
area of identified ecological sources was 1099.59 km2, accounting for 9.59% of the total land
area of Hefei. The land-use types of ecological sources in Hefei consisted of woodland,
grassland, and water, all of which had ecosystem services, with the water area accounting
for more than 70% of the total area of ecological sources. Chaohu Lake was the largest
ecological source, covering over half of the total area. In the period from 2020 to 2030, two
separate ecological sources in Feixi County were expanded and merged into one. From
the perspective of the spatial distribution (Figure 3), ecological sources were distributed in
blocks in the outer suburbs of the study area, particularly in the south and central-eastern
regions. The spatial distribution of ecological sources in Hefei was extremely imbalanced,
mainly concentrated in Chaohu City, while those in the remaining counties were small and
scattered. Due to urban expansion, ecological sources in the central area of Lujiang County
and on the eastern shore of Chaohu Lake would be encroached upon and removed from
ecological sources by 2030, as they cannot meet the screening criteria (shown in red frame).

Table 2. Land-use area and percentage of ecological sources in Hefei.

Area and
Proportion

Land-Use Type (km2/%)

Woodland Grassland Water Total

2020 270.41 (25.09) 0.0045 807.23 (74.91) 1077.65
2030 279.47 (25.42) 0.0009 820.12 (74.58) 1099.59

Note: The percentage in parentheses represents the proportion of the total area of ecological sources occupied by
each land-use category.
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Figure 3. Ecological sources of Hefei for (a) 2020 and (b) 2030. Note: The areas depicted by the red
frames are ecological sources in 2020, and the portions that would be removed in 2030 because they
failed to meet the ecological source screening criteria.

4.2.2. Integrated Ecological Resistance Surface

Both natural conditions and anthropogenic disturbance influence the ecological pro-
cesses of species migration and energy flow. Using the method described in Section 3.2.2,
the comprehensive ecological resistance surfaces for Hefei in 2020 and 2030 were established
based on land-use data from the respective years, slope, and topographic relief (Table 3).
As illustrated in Figure 4, high ecological resistance values are concentrated within the
main urban areas of Hefei and the eastern portion of the Chaohu Lake watershed, forming
a pattern of “centrally dense and distributed around”, and the resistance surface’s area of
high values has a propensity to expand. “Centrally dense” mainly represented the main
urban areas, which had high-density built-up and a large population and were susceptible
to anthropogenic disturbances. The ecological resistance of arable land is relatively higher.
Despite the fact that arable land has a high level of vegetation cover, single species patterns
in vegetation will inhibit the growth of other species. Watersheds and woodland were
identified as regions with low ecological resistance values, and there were few buffer
zones between high and low resistance ones. When compared to the spatial distribution of
ecological sources, the lack of effective links between areas of high ecological resistance and
ecological sources can be demonstrated, which would impede the migration of species and
the flow of energy. In summary, the expansion of construction land in Hefei will lead to a
parallel increase in the area of zones with high ecological resistance values, which would
be detrimental to the sustainable development of the regions.
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Table 3. Resistance value for each resistance factor.

Resistance Indicator Weight Resistance Factor Resistance Coefficient

Land-use type 0.7

Woodland 1
Water 10

Arable land 100
Grassland 100
Wasteland 300

Construction land 500

Slope (◦) 0.2

[0, 8) 1
[8, 15) 10

[15, 25) 50
[25, 35) 100
[35, 53) 200

Topographic relief (m) 0.1

[0, 25) 1
[25, 50) 10
[50, 100) 50

[100, 200) 100
[200, 471) 200

Figure 4. Ecological resistance surface of Hefei for (a) 2020 and (b) 2030.

4.2.3. Spatial Pattern of Ecological Corridors

In this study, the ecological sources and comprehensive ecological resistance surface
were used to extract ecological corridors (Figure 5), including primary and secondary ones.
In 2020, 29 primary corridors with a total length of 605.38 km and 15 secondary corridors
with a total length of 751.90 km were identified. In 2030, 21 primary corridors with a
cumulative length of 471.43 km and 16 secondary corridors with a total length of 824.98 km
were identified. The distribution of ecological corridors generally avoided built-up land and
followed areas with low ecological resistance, such as rivers and woodland. The cumulative
length of the corridors decreased between 2020 and 2030. In 2030, the location of primary
corridor No. 3 and secondary corridor No. 6 shifted, and the primary corridors No. 4 and
No. 5 disappeared. The reason for this phenomenon was that the expansion of built-up
land has weakened the ecological carrying capacity of these areas. The primary corridors
No. 1 and No. 2 would not change significantly, as they are the main rivers in Hefei.
Ecological corridors in Hefei could be characterized by spatial heterogeneity. To be specific,
ecological corridors are more densely dispersed in the study area’s central and eastern
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regions. These regions were abundant in natural resources with better ecosystem quality,
such as water and woodland, which provided the ideal conditions for species migration.

Figure 5. Ecological corridors of Hefei for (a) 2020, (b) 2030.

4.2.4. Ecological Strategic Nodes

In this paper, the application of Jenks Natural Breaks helped to identify ecological
strategic nodes, including pinch points and barriers. As shown in Figure 6, the maximum
cumulative current values are 0.862 and 0.971 in 2020 and 2030, respectively. By assigning a
grade to the cumulative current, 31 pinch points totaling 10.51 km2 in 2020 and 45 pinch
points totaling 18.13 km2 in 2030 were identified in the study area. In terms of land-use
types, the pinch points both in 2020 and 2030 were dominated by water and woodland,
which accounted for over 80% of the total. The remaining land-use types that made up
the pinch points were arable land and a small amount of construction land. Most of the
pinch points identified were natural water corridors, so they exhibited a narrow strip-like
distribution. The migration of species was confined to such small areas for the reason that
the natural aquatic corridors were surrounded by built-up and arable land that was heavily
influenced by anthropogenic activities. From 2020 to 2030, the number and area of pinch
points in the study area would increase, mainly distributed on the east shore of Chaohu
Lake, the central portions of Lujiang County, and the southeastern portions of Changfeng
County. The results showed that ecological connectivity would be significantly improved
and habitat quality would be enhanced.

As depicted in Figure 7, the maximum cumulative current recovery values are 419.416
and 404.894 in 2020 and 2030, respectively. The distribution characteristics displayed
that the areas with high cumulative current recovery values were clustered within the
main urban areas. Classifying the cumulative current recovery values using Jenks Natural
Breaks, 35 barriers with a total area of 59.34 km2 in 2020 and 21 barriers with a total area
of 33.12 km2 in 2030 were identified in the study area. The number and area of barriers
would be considerably reduced over the next decade, especially in the main urban areas
of the study area. The identified barriers were primarily comprised of arable land and
construction land, which together accounted for more than 90% of the total area of the
recognized ones, and the barriers exhibited a more regular morphological character than
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pinch points. The dispersion of barriers in 2030 tended to be more concentrated. In 2030,
there were 20 ecological barriers located in Hefei’s main urban areas and one outside.
However, there were nine barriers beyond the main urban zones of Hefei in 2020. A
comparison of land-use data between 2020 and 2030 revealed that the barriers identified
in 2020 would be well recovered, with considerable quantities of woodland and water
occurring within these areas.

Figure 6. Pinch points of Hefei for (a) 2020 and (b) 2030.

Figure 7. Barriers of Hefei for (a) 2020 and (b) 2030.
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5. Discussion
5.1. Comparison of Related Studies

The expansion of urban areas destroys ecological structures and components, posing
a severe threat to ecosystems. There has been research suggesting that changing urban
patterns and forms can have different effects on the environment [58]. Several studies have
been undertaken to mitigate the detrimental effects of urban expansion on ecosystems by
adopting the spatial distribution of ecological components and functions [59]. Selecting
relevant indicators of ecological constraint is a precondition for performing land use
simulation under ecological constraints. In accordance with the development planning and
ecological protection requirements of Hefei, this study employed natural, socioeconomic,
and accessibility as the constraining factors of land-use change to model the expansion
possibilities of land-use type. Then, using the CARS module, simulate the land-use pattern
in 2030 based on the ecological restoration scenario. Previous research has demonstrated
that the PLUS model can simulate multiple types of land-use change at the patch level with
more precision and a more realistic landscape pattern [22,60]. Thus, using the PLUS model
for land-use simulation in this study is highly suitable.

An analysis of the changes in land-use types in Hefei revealed a significant reduction
in the area of arable land, the majority of which had been converted to construction land
and woodland. Consistent with the findings of Janeczko et al., there is a greater chance that
the arable land surrounding the city will be converted into construction land [61]. Land
use changes were mainly concentrated in the main urban area of Hefei and on the eastern
shore of the Chaohu Lake watershed, which has greater development prospects in the
future. Under ecological restrictions, additional arable land would be absorbed by urban
expansion as an alternative to ecological land. The regularity of land-use patterns under
ecological limitations corroborated earlier research that found ecological constraints to be
beneficial in improving urban land compactness [62,63]. The most plausible explanation
for this situation is the abundance of arable land that surrounds urban areas. Although
ecological restrictions can help offset ecological degradation to a degree, they come at the
cost of less arable land [64]. Consequently, measures limiting the extent of urban land
should be promoted as well, for example, by establishing urban growth boundaries to
constrain urban expansion or by conducting land consolidation projects to capitalize on the
inherent development potential of cities.

The term “ecological security pattern” refers to a possible spatial pattern of ecological
systems within the landscape [25]. It is feasible to successfully regulate ecological processes
and eventually attain regional ecological security by establishing an ecological security
pattern. Existing research has concentrated on the establishment of ecological corridors [65],
the delineation of ecological redlines [66], and the identification of ecological threats [67].
However, the majority of studies are focused on the current pattern of geographical features,
omitting changes in land use caused by natural and human forces. In recent years, some
scholars have begun to focus on the application and optimization of ecological security
patterns from the perspective of land use changes. Zhang et al. [68] and Li et al. [69]
simulated the land use pattern of the study area in 2025 under different scenarios and
constructed the ecological security pattern. We should think more about whether or
not the ecological security pattern as currently established will be relevant in the future.
Consequently, we coupled the PLUS model with the ecological security pattern to analyze
the expected effects of regional ecological restoration. We take Hefei, a representative of the
new first-tier cities, as an example to conduct our study, which is applicable to the actual
situation of urban development in China.

The main goal of the current study was to establish and thoroughly analyze the
ecological security patterns for 2020 and 2030. Hefei would continue to face significant
urban development pressure over the following decade, while the area of ecological sources
would expand somewhat, from 1077.65 km2 to 1099.59 km2. Ecological corridors in Hefei
were mainly composed of water bodies and woodlands with ecosystem services, providing
ideal conditions for species migration, and they exhibited great spatial heterogeneity. The
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area and number of pinch points would increase, and they would be distributed in a
narrow stripe-like pattern. The pinch points would be extremely vulnerable to the threat
of anthropogenic activities due to their distinctive spatial distribution. Additionally, there
would be a significant reduction in barriers, and their distribution would tend to be more
concentrated in the main urban areas. They were the most prominent impediments to
landscape connectivity, and removing them would help to improve ecological connectivity.
However, it would be difficult to implement ecological restoration projects in these areas
that are the economic support of Hefei. By identifying the expected effects of ecological
restoration in the Hefei area and actively addressing potential challenges, the interference
of human activities in the ecological restoration process could be reduced. Identifying
potential ecological hazards in advance and consciously enhancing ecological protection
would be meaningful to improving the regional ecosystem quality. The establishment of
a regional ecological security pattern can substantially alleviate tension caused by fast
urbanization, thereby ensuring regional sustainability.

5.2. Proposals for Further Strengthening Ecological Restoration in the Next Decade

In this study, the ecological security pattern of Hefei in 2030 was constructed and com-
pared with that of 2020 using the simulated land-use pattern under the ecological protection
scenario. It could be found that ecological restoration effectively improved ecosystem qual-
ity, but some aspects needed to be enhanced. Based on the current assessment, we made
some recommendations.

Pinch points should be treated as ecological priority protection zones. They are
recommended for conservation employing natural restoration, supplemented by human
restoration. Harnessing the power of nature itself to improve ecosystem services and
ecological security. The conservation of pinch points should focus on maintaining the
stability of the quantity, structure, and function of the ecological space. It is essential to
provide a good ecological space for the migration, habitat, and reproduction of species.
Given that the pinch points are mainly woodland and water, more resilient land policies
should be implemented to prevent the degradation of watersheds and woodlands.

The barriers are primarily composed of construction and arable land, and they typically
exhibit a high level of ecological resistance. Elimination or reduction of existing barriers
has the potential to significantly enhance landscape connectivity and ecological function.
Consequently, they should be treated as the key area for ecological restoration and can
be gradually improved through nature-based solutions [70]. The limitation of ecological
barriers should be linked to spatial policy and planning in the urban landscape in an
attempt to achieve a land-use configuration that will balance urban development needs and
environmental requirements. Concerning ecological patches within urban construction, the
ecological functions of urban green space, forest parks, and other areas should be utilized to
their full potential to improve the regional ecological environment. To promote ecological
connectivity, it is essential to build protective forest belts along the margins of arable land.
The process of barriers’ reduction should not be restricted to the immediate needs of the
situation, but should also address the elimination of ecological damage that future urban
development may cause.

5.3. Uncertainties and Prospects

In this study, we present a framework for assessing the expected effects of ecological
restoration, which is verified using the case study of Hefei. This study is exploratory in
nature, but it also has some limitations. Land use patterns are influenced by different
natural and socioeconomic factors at varying temporal and spatial scales. Considering the
data availability, we only take some driving factors into account that are closely relevant
to the purpose of our study to simulate land use patterns. Therefore, future research
should be undertaken to explore how to refine the indicator hierarchy. The most difficult
aspect of modeling a resistance surface is determining resistance factors and assigning
resistance values to distinct indicators because the actual effects of diversity gradients
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on migration, survival, and reproduction are generally unpredictable [71]. Due to the
simulation, it is difficult to support the selection of specific factors like fractional vegetation
cover. Existing studies do not have uniform selection criteria, so we use land-use type, slope,
and topographic relief as resistance indicators to construct ecological resistance surfaces.

6. Conclusions

The spatial ecological security pattern of the territory depicts an optimized ecological
network, which can scientifically define the spatial relationship between high-intensity
human activities and ecological restoration. The goal of restoration is to establish self-
sustaining and resilient systems; therefore, they must be compatible with their surrounding
environmental context and landscape pattern. To compensate for the lack of consideration
of future landscape change in existing ecological restoration studies. Therefore, in this study,
the PLUS model, as a more suitable model for simulating the dynamics of human activities
on land use, has been innovatively coupled with the ecological security pattern. Hefei, a
representative of the new first-tier cities with strong growth momentum, was chosen as
the subject of our work, which is consistent with the actual urban development in China.
Our research could provide a reference for balancing urban development and ecological
restoration in other new first-tier cities, including Hangzhou, Changsha, and Wuhan.

In this study, the ecological strategic nodes that need to be restored in Hefei were
first identified based on the land use pattern in 2020. According to the development
and environmental protection requirements, the restoration of identified areas was then
incorporated into the PLUS model as the planning constraint condition to simulate the
land-use pattern of Hefei in 2030. Finally, the ecological strategic nodes were identified
based on the simulation results in 2030, and they were compared with those in 2020. We
further clarified the direction of the ecological restoration effort, as well as the issues that
required special attention. The results showed that:

(1) From 2020 to 2030, land-use changes would occur primarily in the main urban area of
Hefei and along the eastern shore of the Chaohu Lake watershed. Under the ecological
protection scenario, large amounts of arable land would be converted to construction
land and woodland.

(2) There was an increase in the area of ecological sources and pinch points from 2020 to
2030, and a notable reduction in the number and area of barriers. Overall, these results
indicated that the ecosystem quality, ecological integrity, and landscape connectivity
of Hefei would be considerably improved.

The study certainly adds to our understanding of the relationship between future
landscape patterns and ecological restoration. Aside from its exploratory nature, this paper
offers some insight into assessing the intended effect of ecological restoration and provides
a new perspective for the formulation of multilevel ecological restoration policies. There is
no doubt that land use change-based modeling provides a good direction for the dynamic
adjustment of ecological security patterns.
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