
METHODS
published: 06 January 2016

doi: 10.3389/fnins.2015.00492

Frontiers in Neuroscience | www.frontiersin.org 1 January 2016 | Volume 9 | Article 492

Edited by:

Brian Caffo,

Johns Hopkins University, USA

Reviewed by:

Xi-Nian Zuo,

Chinese Academy of Sciences, China

Xin Di,

New Jersey Institute of Technology,

USA

*Correspondence:

Ewald Moser

ewald.moser@meduniwien.ac.at

†
These authors have contributed

equally to this work.

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 15 August 2015

Accepted: 10 December 2015

Published: 06 January 2016

Citation:

Boubela RN, Kalcher K, Huf W,

Našel C and Moser E (2016) Big Data

Approaches for the Analysis of

Large-Scale fMRI Data Using Apache

Spark and GPU Processing: A

Demonstration on Resting-State fMRI

Data from the Human Connectome

Project. Front. Neurosci. 9:492.

doi: 10.3389/fnins.2015.00492

Big Data Approaches for the Analysis
of Large-Scale fMRI Data Using
Apache Spark and GPU Processing:
A Demonstration on Resting-State
fMRI Data from the Human
Connectome Project
Roland N. Boubela 1, 2 †, Klaudius Kalcher 1, 2 †, Wolfgang Huf 1, 2, Christian Našel 3 and

Ewald Moser 1, 2, 4*

1Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria, 2MR Centre of

Excellence, Medical University of Vienna, Vienna, Austria, 3Department of Radiology, Tulln Hospital, Karl Landsteiner

University of Health Sciences, Tulln, Austria, 4Brain Behaviour Laboratory, Department of Psychiatry, University of

Pennsylvania Medical Center, Philadelphia, PA, USA

Technologies for scalable analysis of very large datasets have emerged in the domain

of internet computing, but are still rarely used in neuroimaging despite the existence of

data and research questions in need of efficient computation tools especially in fMRI. In

this work, we present software tools for the application of Apache Spark and Graphics

Processing Units (GPUs) to neuroimaging datasets, in particular providing distributed

file input for 4D NIfTI fMRI datasets in Scala for use in an Apache Spark environment.

Examples for using this Big Data platform in graph analysis of fMRI datasets are shown

to illustrate how processing pipelines employing it can be developed. With more tools for

the convenient integration of neuroimaging file formats and typical processing steps, big

data technologies could find wider endorsement in the community, leading to a range of

potentially useful applications especially in view of the current collaborative creation of a

wealth of large data repositories including thousands of individual fMRI datasets.

Keywords: fMRI, big data analytics, distributed computing, graph analysis, Apache Spark, scalable architecture,

machine learning, statistical computing

1. INTRODUCTION

The pressure to continuously analyze fast growing datasets has led internet companies to engage
in the development of specialized tools for this new field of Big Data analysis, at first strongly
focused on the specific data structures used by their applications, but increasingly taking more
generalized forms. One of the most fundamental developments in this area is Google’s MapReduce
paradigm (Dean and Ghemawat, 2004), designed for efficient distributed computations on datasets
too large to fit on a single machine, which are instead stored in a distributed file system in a cluster
environment. The computation concept behind MapReduce is to use the individual cluster nodes
where the data are stored as efficiently as possible by transfering as much of the computation as
possible to the individual storage nodes instead of transfering their data to a designated compute
node, and only perform subsequent aggregation steps of the computation to master compute

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnins.2015.00492
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2015.00492&domain=pdf&date_stamp=2016-01-06
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:ewald.moser@meduniwien.ac.at
http://dx.doi.org/10.3389/fnins.2015.00492
http://journal.frontiersin.org/article/10.3389/fnins.2015.00492/abstract
http://loop.frontiersin.org/people/76391/overview
http://loop.frontiersin.org/people/66124/overview
http://loop.frontiersin.org/people/71123/overview
http://loop.frontiersin.org/people/116093/overview
http://loop.frontiersin.org/people/61701/overview

Boubela et al. Big Data Approaches for fMRI Analyses

nodes. Thus, there exists a strong link between the distributed
data storage and the computation. For example, Apache’s open
source implementation of the paradigm consists of Hadoop, the
implementation of the actual MapReduce computation engine,
and the Hadoop Distributed File System (HDFS) for data storage.
The Hadoop ecosystem is further complemented by a variety of
toolkits for specialized applications like machine learning.

The principles of the MapReduce paradigm can best be
illustrated using the distributed algorithm for counting the
number of occurrences of words in large documents, the
canonical example for MapReduce computations. As the name
suggests, these computations consist of two steps, termed Map
and Reduce, with Map being performed on each node separately,
and the Reduce step computed on a central node, aggregating the
individual Map results. In the word count example, the Map step
would consist in generating, for each part of the document stored
on the distributed file system, a set of keys and values, with words
being the keys and the number of occurrences of each word being
the associated value. The Reduce step would then aggregate these
partial results by building the sum of all values from all individual
nodes associated with each word, thus gaining the overall number
of occurrences of this word in the entirety of the dataset.

While the approach proves to be flexible enough for a wide
range of computations, this brief description should also make
it apparent that not all kinds of computations can be performed
in this way. For example, many data analysis applications,
like iterative machine learning algorithms, need to access data
multiple times, which would be very inefficient if implemented
in pure MapReduce terms. Addressing this issue and providing a
more general framework for distributed computations on large
datasets was the main motivation behind the introduction of
the Spark framework (Zaharia et al., 2012; The Apache Software
Foundation, 2015). The counterpart of data stored in the Hadoop
distributed filesystem in the Spark framework are so-called
resilient distributed datasets (RDD), which, unlike files in the
HDFS, can be held entirely in memory if space allows (and
cached to disk if memory is not sufficient), and provide a high-
level interface for the programmer. The details of the distributed
storage and computation on this distributed dataset are thus
abstracted, making the writing of distributed code much easier in
practice. Furthermore, Spark encompasses higher-level libraries
for many applications including machine learning (MLlib) and
graph analysis (GraphX), further facilitating the development of
analyses in these specific domains. Spark can be used interactively
from a Scala shell or via its Application Programming Interface
(API), with APIs existing for Scala, Java, python and, most
recently, R. With Spark being written in Scala and the interactive
shell being a Scala shell, the connection between Spark and Scala
is the strongest, and the other languages’ APIs do not yet have
the full functionality of the Scala API; for example, there is no
interface to many functions of GraphX in python, and the R API
is currently only in an early stage of development.

A further approach to accelerating computations on large
datasets by parallelization, though not directly related to the
Big Data technologies in the stricter sense mentioned above,
concerns optimization of computations on a single machine,
where in particular the use of Graphics Processing Units (GPUs)

can make an enormous difference in terms of computational
efficiency and thus rendering possible the analysis of even larger
datasets in a reasonable amount of time.

Both the big data frameworks and GPU acceleration can
prove useful in the field of neuroimaging in general and
functional MRI in particular, where increasing spatial and
temporal resolutions as well as larger sample sizes lead to a rapid
increase in the amount of data that needs to be processed in a
typical study. GPU computing has been embraced not only to
provide faster programs for standard algorithms (Eklund et al.,
2014), but also to make some more complex analyses possible at
all (Boubela et al., 2012; Eklund et al., 2012, 2013). Apart from
such special tools, GPU acceleration has in some cases already
be harnessed in standard neuroimaging data analysis libraries
like, for example, in FSL (Jenkinson et al., 2012). In contrast
to Big Data technologies in the narrower sense, however, these
technologies do not scale arbitrarily, but are instead limited
to the amount of data that can be held in memory on a single
machine. But while GPUs have slowly been picked up by the
neuroimaging community, the spread of Hadoop and Spark
is more limited. In the context of the Human Connectome
Project, Marcus et al. (2011) describe the infrastructure for
the storage and exploration of such a large dataset, but do
not employ big data tools for efficient analyses on the whole
dataset of 1400 subjects. Only two published papers have yet
used them in the field of neuroimaging: Wang et al. (2013) used
Hadoop to use random forests for machine learning on a large
imaging genetics dataset, and Freeman et al. (2014) provide
an analysis framework based on Apache Spark and highlight
applications for two-photon imaging and light-sheet imaging
data.

The dearth in this domain is all the more surprising in view
of the emergence of a number of data sharing initiatives and
large-scale data acquisition projects covering a wide array of
topics in human neuroimaging (Biswal et al., 2010; ADHD-
200 Consortium, 2012; Nooner et al., 2012; Assaf et al., 2013;
Jiang, 2013; Mennes et al., 2013; Van Essen et al., 2013;
Satterthwaite et al., 2016). Certainly, the opportunities offered
by the availability of neuroimaging data from a large number of
subjects are coming with some challenges (Akil et al., 2011). As
has previously been noted, the sheer size of the datasets and their
complexity require new approaches to harvest the full benefit
of “human neuroimaging as a big data science” (Van Horn and
Toga, 2014). For example, Zuo et al. (2012), when computing
network centrality measures at a voxel-wise level, resampled all
datasets to a 4mm (isotropic) resolution and stated two reasons
for this choice. The first reason is the average resolution of
the datasets available from the 1000 Functional Connectomes
dataset in the largest voxel dimension, which was notmuch below
4mm, leading to the conclusion that using a higher resolution
might not be worth the effort on this dataset. The second stated
reason was the computational demands that a higher resolution
would require: while the voxelwise network at a 4mm resolution
had 22,387 nodes, this number would increase to 42,835 when
using a 3mm resolution. Since then, even higher resolutions
than 3mm have become more and more common— the Human
Connectome Project dataset for example uses isotropic 2mm

Frontiers in Neuroscience | www.frontiersin.org 2 January 2016 | Volume 9 | Article 492

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Boubela et al. Big Data Approaches for fMRI Analyses

voxels—and the need to address the computational demands that
accompany this increase in data size becomes obvious.

Still, while large-scale data repositories could provide a
good model on how to use big data technologies in human
neuroimaging, they have not yet been explored with these
methods. One reason for the neuroimaging community not
embracing big data tools more readily might be the lack of
reasonably efficient I/O from (and, to a lesser extent, to) standard
neuroimaging file formats like NIfTI. Removing this barrier of
entry might open the way to a variety of analysis tools that could
then be directly applied to datasets of practically arbitrary size.
While the range of tools that can currently be applied to large
datasets is limited to computationally relatively simple methods
like regression, scaling the computation power using clusters can
extend this to more complex machine learning and graph mining
algorithms, including methods without closed form solution
that need to be solved iteratively. Another research area where
computationally intensive methods might prove useful is the
investigation of reliability and reproducibility of neuroimaging
methods as reviewed by Zuo and Xing (2014), who also note
that easing the computational demand by aggregation, e.g.,
averaging the signal from multiple voxels based on anatomical
structure, leads to difficulties in the reliability and interpretation
of derived results, and strongly encourage voxel-wise analysis
for the evaluation of the functional architecture of the brain.
The Consortium for Reliability and Reproducibility in particular
has gathered a large dataset of over 5000 resting-state fMRI
measurements to this end (Zuo et al., 2014), and proposes a
number of computational tools for use on this database, yet these
do not currently include big data tools.

2. TESTING PLATFORM AND DATA

2.1. Computing Environment
The computation of the connectivity matrices based on Pearson
correlation were performed on a server running Ubuntu Linux
(version 12.04) equipped with 192 GB random access memory
(RAM), two Intel Xeon X5690 processors and four Nvidia Tesla
C2070 GPUs. As an aside, it should be noted that while these
GPUs are somewhat dated, they already have full support for
double precision computations; while modern GPUs no longer
have issues with double precision computation, older generations
(with compute capability <2.0, corresponding approximately
to models developed before 2011) might be slow or unable to
perform anything but single precision computations. The linear
algebra operations on the GPUs were accessed using CUDA 6.0
and integrated in R (Boubela et al., 2012; R Core Team, 2014).
Spark was used via the Scala shell and API for the practical
reasons discussed above. OpenBLAS version 0.2.14 was compiled
and installed for the Apache Spark compute nodes to enable
these machine optimzed libraries to be used by Spark’s linear
algebra functionality in MLlib. Further, R uses the OpenBLAS
implementation of the singular value decomposition (SVD) for
performance comparison purposes.

The cluster running Apache Spark 1.5.1 consists of ten Sun
Fire X2270 servers using Ubuntu Linux (version 14.04) with

48 GB RAM and two Intel Xeon X5550 processors. Additionally,
each server uses three 500 GB hard disk drives (HDD) as local
disk space for the Apache Spark framework. Beside a standard
1 GBit ethernet connection, the cluster nodes are connected via
the IP over Infiniband protocol on QDR Infiniband hardware.

2.2. Subjects
To test the methods described, 200 sample datasets from the
Human Connectome Project (Van Essen et al., 2013) were
downloaded from the project repository and used for example
analyses. In this study, only the resting-state fMRI data were used,
though the methods are not limited to this type of data.

2.3. Source Code
All code presented in this work can be found in the github
repository https://github.com/rboubela/biananes.

3. HUMAN CONNECTOME PROJECT DATA
ANALYSIS

3.1. NIfTI File Input for fMRI
One of the most basic obstacles to using Apache Spark for fMRI
datasets is the lack of an efficient file input function able to
process any file formats usually used in this field like NIfTI-1.
Of course, file readers in Java, python or R exist which could be
used when using Spark from their respective API, and the Java
file reader could be used in Scala (and thus also in the Scala
shell), but none of those file readers is suited for the distributed
environment. For this, a distributed file reader for fMRI data
was implemented in Scala and C which reads 4D NIfTI files in
parallel on multiple nodes, with each node reading a different set
of the image’s volumes, and gathers the results into an RDD in
the Spark environment. To avoid unnecessary overhead, a brain
mask can be used to restrict reading to in-brain voxels; the brain
mask must also be available as a NIfTI file and will be applied to
all volumes of the 4D NIfTI file to be read. Files can be read from
local harddisks on the nodes or via the network file system (NFS)
protocol from a centralized storage accessible to the compute
nodes (see Figure 1). While in principle, the former method is
faster than reading the files over the network, reading the input
data is rarely the computational bottleneck in fMRI data analysis,
and thus reading the input files even from the same common
network storage device is efficient enough while typically being
much more convenient. Nonetheless, for situations where fast
file access over the network is not available, or if local storage
is prefered for other reasons, the reader also allows for reading
NIfTI input from local harddisks, in which case the NIfTI input
file(s) must be available on all nodes under the same path.

In Spark, the voxelwise timeseries data is stored in the
columns of a RowMatrix object. This type of object is the most
commonly used in the interface of the Apache Spark machine
learning library MLlib for the distributed handling of large
numerical matrices. For example, SVD or principal component
analysis (PCA) can be applied directly on this RowMatrix, which
in turn can be the basis for various further statistical analyses
like independent component analysis (ICA). Column similarities

Frontiers in Neuroscience | www.frontiersin.org 3 January 2016 | Volume 9 | Article 492

https://github.com/rboubela/biananes
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Boubela et al. Big Data Approaches for fMRI Analyses

FIGURE 1 | Data flow using the proposed analysis methods. Bold arrows represent intensive data flow, the other arrows represent communication of control

commands. In this example, parts of the computations have been performed on a separate GPU computing server which was not part of the Apache Spark cluster.

The use of a centralized data storage facilitates the integration of all steps into a comprehensive pipeline, as the fMRI data is loaded directly from there onto the GPU

server, who then writes the results as edgelist back on the storage to be directly readable by Apache Spark. Note that storing data directly on the compute nodes is

also possible as an alternative if issues related to data transfer speed are encountered.

based on the cosine similarity can also be computed efficiently

on a RowMatrix in Spark (Zadeh and Goel, 2012; Zadeh and
Carlsson, 2013). Examples for using the data input function

are shown in code listings 1 and 2 for single-subject and group

data import, respectively, and the runtime of the NIfTI reader
is shown in Figure 2. To exemplify possible linear algebra

computations, a call for the SVD computation from MLlib is

shown at the end of code listing 2. It should be noted that while
this toy example demonstrates that usingMLlib functions is very

straightforward and easy, it would not make much sense from

a computational point of view in this particular case: on four
nodes, the computation of 10 singular values and vectors takes

604 s, and the computation of 100 singular values and vectors

takes 2700 s; the same values can be computed on a single one
of those nodes using svd in R with OpenBLAS as linear algebra

backend in 118 and 126 s, respectively. Using Spark for linear
algebra computations seems only sensible if the size of input data

precludes the use of standard optimized linear algebra packages

like OpenBLAS. The examples that follow will thus focus on
more data-intensive problems like graph mining, where even

single-subject analysis can involve the handling of very large

datasets.

Listing 1: Reading a single-subject fMRI dataset

import org.biananes.io.NiftiTools

val hcp_root = sys.env("HCP_ROOT")

val func = "/MNINonLinear/Results/rfMRI_REST1_RL/

rfMRI_REST1_RL.nii.gz"

val mask = "/MNINonLinear/Results/rfMRI_REST1_RL/

brainmask_fs.2.nii.gz"

FIGURE 2 | Comparing the runtime (in seconds) for reading one

resting-state fMRI dataset using NiftiImageReadMasked on an Apache

Spark cluster with different numbers of compute nodes. Note that the

reduction in computation time scales almost with 1/n, n being the number of

nodes in the cluster.

val template = "/usr/share/data/fsl-mni152-templates/

MNI152lin_T1_2mm.nii.gz"

val img_file = hcp_root + "167743" + func_file

Frontiers in Neuroscience | www.frontiersin.org 4 January 2016 | Volume 9 | Article 492

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Boubela et al. Big Data Approaches for fMRI Analyses

val mask_file = hcp_root + "167743" + mask

val mat = NiftiImageReadMasked(img_file, mask_file, sc

)

Listing 2: Reading a group of subjects storing the data in one big
group matrix and compute SVD on this matrix

val subjects = sc.textFile(hcp_root + "subjectIDs.txt"

)

val input_files = subjects.map{ subject =>

new Tuple2(new String(hcp_root + subject + func)

,

template) }.collect

val group_matrix = input_files.map{

f => NiftiImageReadMasked(f._1, f._2, sc) }.reduce((

m1, m2) => new RowMatrix(m1.rows.union(m2.rows))

)

val svd_result = group_matrix.computeSVD(1000)

3.2. GPU Connectivity Matrix
Amore common similarity measure that can be used to compare
voxel time series is the Pearson correlation coefficient, which is
often used as functional connectivity measure in fMRI. Beside
visualization of these connectivity patterns themselves, this
measure can also be used in further analyses including machine
learning (Eickhoff et al., 2016) or graph analyses (Craddock
et al., 2015; Kalcher et al., 2015), as illustrated in the workflow
diagram in Figure 3. In contrast to the above mentioned cosine
similarity, Pearson correlation coefficients are simple linear
algebra computations that can be computed by the arithmetic
units on GPUs in a highly parallelized way, making it a viable
application for GPU acceleration. Larger matrices might exceed
the memory available on a GPU, however, but this problem
can be addressed by tiling the input matrices in a way to
separately compute submatrices of the result and subsequently
concatenating the parts to form the complete matrix. In the
case of the Human Connectome Project data, the voxelwise
correlation matrix in the original resolution of all in-brain voxels
(228200± 2589 voxels) for one subject takes up∼390GB, which
is divided into 91 tiles of 4.2GB each (the rest of the GPU RAM
is used up by the input needed to compute the respective tile).

The resulting correlation/connectivity matrix can be
thresholded to obtain an adjacency matrix for a graph, with
different options being available for the choice of a correlation
threshold. For the estimation of the runtime for multiple subjects
as shown in Figure 4, the matrix was thresholded at absolute
values of 0.6 of the correlation coefficients. Subsequently, these
sparse matrices were saved to RData files for further usage. (Note
that since different fMRI datasets can be rather heterogeneous,
it is in general more advisable to use an automated selection of
a correlation threshold to achieve a certain edge density in the
graph, for example defined by the value of S = logE/ logK, with
E being the number of edges and K the average node degree.)

3.3. Graph Analysis in Apache Spark
The Apache Spark framework contains the GraphX library
for the efficient development of distributed and scalable graph

FIGURE 3 | Flowchart depicting an examplary analysis workflow.

Graphs based on voxelwise functional connectivity can be computed using the

GPU accelerated R package. Graph measures using graph theory results can

be extracted in Apache Spark, subsequently, these measures can be fed into

the development of machine learning classifiers.

algorithms. A graph object from this library can be constructed
from a variety of different inputs, including cosine similarities
computed from the RowMatrix object or by directly reading a
comma separated value (CSV) file containing a list of edges.
Graphs defined using this library are represented in the Spark
environment as two RDDs, one containing the vertices and the
other the edges, in order to allow for distributed computations on
the graph. Code listing 3 shows an example of importing multiple
graphs from individual subject graph edge lists, and computing
and saving connected components in each of the graphs. The
corresponding computation times are illustrated in Figure 5,
and exemplary results from graph analyses are shown in Figure 6.

Listing 3: Reading connectivity graphs from text files; computing
connected components and storing results on disk

import org.apache.spark.graphx._

val edgeListFiles = sc.textFile(hcp_root + "

hcp_edgelist_files.txt").collect

val graphs = edgeListFiles.map { edgefile => new

Tuple2(edgefile, GraphLoader.edgeListFile(sc,

edgefile, false)) }

// compute the connected components for all graphs

val allConnectedComponents = graphs.map { g => new

Tuple2(g._1, g._2.connectedComponents().vertices)

}

// saving the results

Frontiers in Neuroscience | www.frontiersin.org 5 January 2016 | Volume 9 | Article 492

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Boubela et al. Big Data Approaches for fMRI Analyses

FIGURE 4 | Estimated combined computation times for reading the fMRI data, computing the connectivity graph and writing the thresholded (and

thus sparse) connectivity matrix to compressed (left) and uncompressed (right) RData files are depicted for different numbers of subjects on a single

GPU. Since computation time depends linearly on the number of subjects, computation time for larger numbers of subjects are estimated using average per-subject

computing times measured from 200 subjects. By employing multiple GPUs the runtime can be reduced linearly; for example, using four GPUs instead of one for

computing 500 subject’s connectivity graph would reduce the computation time from about 36 days down to 9.

FIGURE 5 | Computation times for reading and writing the graph data

in addition to computing connected components for a different

number of subjects is shown performed on an Apache Spark cluster

using four compute nodes. The largest part of the computation time is

spent on the graph computations themselves. Note that the computational

complexity of the search for connected components is relatively low (O(n)), in

the case of more complex computations, the proportion of the total

computation time spent with data I/O further decreases.

val resfiles = allConnectedComponents.map{ cc => {

val file = cc._1.substring(0, 106) + "

connected_components"

cc._2.coalesce(1, true).saveAsTextFile(file)

file }

}

One of the main advantages of using GraphX for graph
analyses in fMRI is that computations can be distributed very
easily to allow for pooled analysis of large groups of subjects. The
example in code listing 4 demonstrates this using the example of
the computation of voxelwise local clustering coefficients for all
single-subject graphs read in the previous code listing. Note how
the parallelized computation for all subjects is achieved with only
a single line of code, without the need for explicit commands for
the parallelization.

Listing 4: Computing the local clustering coefficient for each
voxel for all graphs

val allClusteringCoeff = graphs.map { g => new Tuple2(

g._1, g._2.degrees.join(g._2.triangleCount.

vertices).map{ case (id, (d, tc)) => (id, tc / (d

* (d - 1) / 2.0))})

}

4. DISCUSSION

Big Data technologies are not yet often employed in the
analysis of neuroimaging data, though the emergence of large
collaborative repositories especially in the field of fMRI provides
an ideal environment for their application. One of the main
reasons for the currently limited interest in these technologies by
researchers in neuroimaging seems to be a comparatively high
effort for a first entry into this domain, in particular in view of
the lack of interfaces to the data formats typically used in the field.
Here, we present a distributed NIfTI file reader written in Scala
for Apache Spark and show applications that become possible
with this framework, including graph analyses using GraphX.

Frontiers in Neuroscience | www.frontiersin.org 6 January 2016 | Volume 9 | Article 492

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Boubela et al. Big Data Approaches for fMRI Analyses

FIGURE 6 | Spatial distribution of node degrees (top), local clustering coefficients (center), and PageRank (bottom) at a voxelwise level for one

representative subject, using the graph based on the correlation map thresholded at 0.6.

In addition, the computation of correlation matrices from fMRI
time series was implemented to run on GPUs and optimized for
the 4D structure of time series fMRI data.

Most Spark code was written in Scala, which is the preferred
language for development in this framework at the moment.
However, interfaces to different languages are available at various
stages of maturity, including python and R, which are both
commonly used for fMRI data analysis. Though using Spark via
the API from one of those languages does not currently provide
access to the full range of analysis tools available in the Scala API,
adding wrappers for these languages into our package would be a
valuable addition.

Transferring fMRI computations into a Big Data analysis
framework like Spark offers the advantage of the direct
availability of a range of tools optimized for particular problems.
Two of the most notable applications here are machine learning
and graph data analysis, provided by the the Spark libraries
MLlib and GraphX, respectively. Both machine learning and
graph analysis are rapidly growing subfields in the fMRI
community (Bullmore and Sporns, 2009; Craddock et al., 2015),
but the applications of these methods is often limited by the
computational means available for tackling the comparatively
complex calculations involved.

Apart from efficiency in the sense of computation speed, a
second type of efficiency is just as important in practical research
software development: efficiency in terms of development time.
While parallelization tools are available in multiple programming
languages at different levels, one of the advantages of Spark in this
respect is the relative ease with which it allows for distributing
computations in cluster environments even in an interactive
shell. As shown in code listing 4, the details of the distribution
of computations is hidden from the developer, allowing for
easier programming compared to other tools requiring explicit

parallization. Furthermore, ease of access could be further
improved by convergence with open data pipelines as developed
in the context of data sharing initiatives (Zuo et al., 2014; Xu
et al., 2015), as the inclusion of big data tools into published
analysis pipelines could help spread such tools to a wider
community of researchers who might otherwise not investigate
these opportunities.

Another important aspect of using a scalable platform is the
ability to avoid buying and operating on premise computing
equipment, but instead move data analysis and computation
tasks to cloud service providers. As Freeman et al. (2014) have
shown in their work, using large amount of quickly available
cloud computing resources can conveniently be leveraged using
the Spark Framework. For example, in addition to running the
Spark Framework, the Amazon web services (AWS) cloud (as
used by Freeman et al., 2014) also provides compute nodes
with GPUs (https://aws.amazon.com/ec2/instance-types/), and
therefore, could also be employed for the GPU accelerated
computation of connectivity graphs as proposed herein.

It is probably the difficulty of climbing the first steep learning
curve that is responsible for the limited application of big data
tools in neuroimaging research, with only two published papers
so far, one using Hadoop (Wang et al., 2013), the other using
Spark (Freeman et al., 2014). The more tools are published to
make the first steps with these technologies easier, of which the
distributed NIfTI file reader provides a starting point, the more
researchers will be able to use these tools, thus incentivizing
further developments in this area. Compared to the software
packages typically used by researchers in the field, Spark offers
much simpler parallelization and scaling of analyses to arbitrarily
large data sizes, but lacks most of the practical tools essential
for convenient setup of analysis pipelines as they exist in more
commonly used languages (i.e., python or R). Stronger links

Frontiers in Neuroscience | www.frontiersin.org 7 January 2016 | Volume 9 | Article 492

https://aws.amazon.com/ec2/instance-types/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Boubela et al. Big Data Approaches for fMRI Analyses

between these two worlds could allow for the development of
analysis pipelines powerful enough to handle large datasets, yet
as simple as any of the standard data applications.

ACKNOWLEDGMENTS

This study was financially supported by the Austrian Science
Fund (P22813, P23533) and the Federal Ministry of Science,

Research and Economy via the Hochschulraum-Strukturmittel
project. Data were provided by the Human Connectome

Project, WU-Minn Consortium (Principal Investigators:
David Van Essen and Kamil Ugurbil; 1U54MH091657)

funded by the 16 NIH Institutes and Centers that support
the NIH Blueprint for Neuroscience Research; and by the

McDonnell Center for Systems Neuroscience at Washington
University.

REFERENCES

ADHD-200 Consortium (2012). The ADHD-200 consortium: a model to advance

the translational potential of neuroimaging in clinical neuroscience. Front. Syst.

Neurosci. 6:62. doi: 10.3389/fnsys.2012.00062

Akil, H., Martone, M. E., and Van Essen, D. C. (2011). Challenges and

opportunities in mining neuroscience data. Science 331, 708–712. doi:

10.1126/science.1199305

Assaf, Y., Alexander, D. C., Jones, D. K., Bizzi, A., Behrens, T. E. J., Clark, C. A.,

et al. (2013). The connect project: combining macro- and micro-structure.

Neuroimage 80, 273–282. doi: 10.1016/j.neuroimage.2013.05.055

Biswal, B. B., Mennes,M., Zuo, X.-N., Gohel, S., Kelly, C., Smith, S.M., et al. (2010).

Toward discovery science of human brain function. Proc. Natl. Acad. Sci. U.S.A.

107, 4734–4739. doi: 10.1073/pnas.0911855107

Boubela, R. N., Huf, W., Kalcher, K., Sladky, R., Filzmoser, P., Pezawas, L., et al.

(2012). A highly parallelized framework for computationally intensive MR data

analysis.MAGMA 25, 313–320. doi: 10.1007/s10334-011-0290-7

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical

analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.

doi: 10.1038/nrn2575

Craddock, R. C., Tungaraza, R. L., and Milham, M. P. (2015). Connectomics and

new approaches for analyzing human brain functional connectivity.Gigascience

4, 13. doi: 10.1186/s13742-015-0045-x

Dean, J., and Ghemawat, S. (2004). “Mapreduce: simplified data processing on

large clusters,” in Proceedings of the 6th Conference on Symposium on Opearting

Systems Design & Implementation - Volume 6, OSDI’04 (Berkeley, CA: USENIX

Association). Available online at: http://dl.acm.org/citation.cfm?id=1251254.

1251264

Eickhoff, S. B., Thirion, B., Varoquaux, G., and Bzdok, D. (2016). Connectivity-

based parcellation: critique & implications. Hum. Brain Mapp. doi:

10.1002/hbm.22933. [Epub ahead of print].

Eklund, A., Andersson, M., and Knutsson, H. (2012). fMRI analysis on the GPU-

possibilities and challenges. Comput. Methods Prog. Biomed. 105, 145–161. doi:

10.1016/j.cmpb.2011.07.007

Eklund, A., Dufort, P., Forsberg, D., and LaConte, S. M. (2013). Medical image

processing on the GPU - past, present and future. Med. Image Anal. 17,

1073–1094. doi: 10.1016/j.media.2013.05.008

Eklund, A., Dufort, P., Villani, M., and Laconte, S. (2014). BROCCOLI: software

for fast fMRI analysis onmany-core CPUs and GPUs. Front. Neuroinform. 8:24.

doi: 10.3389/fninf.2014.00024

Freeman, J., Vladimirov, N., Kawashima, T., Mu, Y., Sofroniew, N. J., Bennett,

D. V., et al. (2014). Mapping brain activity at scale with cluster computing. Nat.

Methods 11, 941–950. doi: 10.1038/nmeth.3041

Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W.,

and Smith, S. M. (2012). FSL. Neuroimage 62, 782–790. doi:

10.1016/j.neuroimage.2011.09.015

Jiang, T. (2013). Brainnetome: a new -ome to understand the brain and its

disorders. Neuroimage 80, 263–272. doi: 10.1016/j.neuroimage.2013.04.002

Kalcher, K., Boubela, R. N., Huf, W., Nasel, C., and Moser, E. (2015).

Identification of voxels confounded by veneous signals using resting-state

fMRI functional connectivity graph clustering. Front. Neurosci. 9:472. doi:

10.3389/fnins.2015.00472

Marcus, D. S., Harwell, J., Olsen, T., Hodge, M., Glasser, M. F., Prior, F., et al.

(2011). Informatics and data mining tools and strategies for the human

connectome project. Front. Neuroinform. 5:4. doi: 10.3389/fninf.2011.00004

Mennes, M., Biswal, B. B., Castellanos, F. X., and Milham, M. P. (2013). Making

data sharing work: the FCP/INDI experience. Neuroimage 82, 683–691. doi:

10.1016/j.neuroimage.2012.10.064

Nooner, K. B., Colcombe, S. J., Tobe, R. H., Mennes, M., Benedict, M. M.,

Moreno, A. L., et al. (2012). The NKI-rockland sample: a model for accelerating

the pace of discovery science in psychiatry. Front. Neurosci. 6:152. doi:

10.3389/fnins.2012.00152

R Core Team (2014). R: A Language and Environment for Statistical Computing.

Vienna: R Foundation for Statistical Computing. Available online at: http://

www.R-project.org/

Satterthwaite, T. D., Connolly, J. J., Ruparel, K., Calkins, M. E., Jackson,

C., Elliott, M. A., et al. (2016). The philadelphia neurodevelopmental

cohort: a publicly available resource for the study of normal and abnormal

brain development in youth. Neuroimage 124 (Pt B), 1115–1119. doi:

10.1016/j.neuroimage.2015.03.056

The Apache Software Foundation (2015). Apache Spark. Wilmington, DE.

Available online at: https://spark.apache.org/

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E. J., Yacoub, E., Ugurbil,

K., et al. (2013). The WU-Minn human connectome project: an overview.

Neuroimage 80, 62–79. doi: 10.1016/j.neuroimage.2013.05.041

Van Horn, J. D., and Toga, A. W. (2014). Human neuroimaging as a “Big

Data” science. Brain Imaging Behav. 8, 323–331. doi: 10.1007/s11682-013-

9255-y

Wang, Y., Goh, W., Wong, L., Montana, G., and the Alzheimer’s Disease

Neuroimaging Initiative (2013). Random forests on Hadoop for genome-

wide association studies of multivariate neuroimaging phenotypes. BMC

Bioinformatics 14(Suppl. 16):S6. doi: 10.1186/1471-2105-14-S16-S6

Xu, T., Yang, Z., Jiang, L., Xing, X.-X., and Zuo, X.-N. (2015). A connectome

computation system for discovery science of brain. Sci. Bull. 60, 86–95. doi:

10.1007/s11434-014-0698-3

Zadeh, R. B., and Carlsson, G. (2013). Dimension independent matrix square using

mapreduce. Preprint arXiv:1304.1467.

Zadeh, R. B., and Goel, A. (2012). Dimension independent similarity computation.

J. Mac. Learn. Res. 14, 1605–1626.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., et al. (2012).

“Resilient distributed datasets: a fault-tolerant abstraction for in-memory

cluster computing,” in Proceedings of the 9th USENIX Conference on Networked

Systems Design and Implementation (Berkeley, CA: USENIX Association).

Zuo, X.-N., Anderson, J. S., Bellec, P., Birn, R. M., Biswal, B. B., Blautzik, J., et al.

(2014). An open science resource for establishing reliability and reproducibility

in functional connectomics. Sci. Data 1:140049. doi: 10.1038/sdata.

2014.49

Zuo, X.-N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F. X.,

Sporns, O., et al. (2012). Network centrality in the human functional

connectome. Cereb. Cortex 22, 1862–1875. doi: 10.1093/cercor/

bhr26

Zuo, X.-N., and Xing, X.-X. (2014). Test-retest reliabilities of resting-state

fmri measurements in human brain functional connectomics: a systems

neuroscience perspective. Neurosci. Biobehav. Rev. 45, 100–118. doi: 10.1016/

j.neubiorev.2014.05.009

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Boubela, Kalcher, Huf, Našel and Moser. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 8 January 2016 | Volume 9 | Article 492

http://dl.acm.org/citation.cfm?id=1251254.1251264
http://dl.acm.org/citation.cfm?id=1251254.1251264
http://www.R-project.org/
http://www.R-project.org/
https://spark.apache.org/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	Big Data Approaches for the Analysis of Large-Scale fMRI Data Using Apache Spark and GPU Processing: A Demonstration on Resting-State fMRI Data from the Human Connectome Project
	1. Introduction
	2. Testing Platform and Data
	2.1. Computing Environment
	2.2. Subjects
	2.3. Source Code

	3. Human Connectome Project Data Analysis
	3.1. NIfTI File Input for fMRI
	3.2. GPU Connectivity Matrix
	3.3. Graph Analysis in Apache Spark

	4. Discussion
	Acknowledgments
	References

