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Communication between brain regions is thought to be facilitated by the synchronization

of oscillatory activity. Hence, large-scale functional networks within the brain may be

estimated by measuring synchronicity between regions. Neurophysiological recordings,

such as magnetoencephalography (MEG) and electroencephalography (EEG), provide a

direct measure of oscillatory neural activity with millisecond temporal resolution. In this

paper, we describe a full data analysis pipeline for functional connectivity analysis based

on dynamic imaging of coherent sources (DICS) of MEG data. DICS is a beamforming

technique in the frequency-domain that enables the study of the cortical sources of

oscillatory activity and synchronization between brain regions. All the analysis steps,

starting from the raw MEG data up to publication-ready group-level statistics and

visualization, are discussed in depth, including methodological considerations, rules of

thumb and tradeoffs. We start by computing cross-spectral density (CSD) matrices

using a wavelet approach in several frequency bands (alpha, theta, beta, gamma).

We then provide a way to create comparable source spaces across subjects and

discuss the cortical mapping of spectral power. For connectivity analysis, we present

a canonical computation of coherence that facilitates a stable estimation of all-to-all

connectivity. Finally, we use group-level statistics to limit the network to cortical regions for

which significant differences between experimental conditions are detected and produce

vertex- and parcel-level visualizations of the different brain networks. Code examples

using the MNE-Python package are provided at each step, guiding the reader through a

complete analysis of the freely available openfMRI ds000117 “familiar vs. unfamiliar vs.

scrambled faces” dataset. The goal is to educate both novice and experienced data

analysts with the “tricks of the trade” necessary to successfully perform this type of

analysis on their own data.
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1. INTRODUCTION

In this paper, we demonstrate the application of dynamic imaging

of coherent sources (DICS), a spatial filtering technique for

magneto/electro-encephalography (MEG/EEG) data originally
proposed by Gross et al. (2001). Spatial filters, or beamformers,

are constructed to pass the activity originating at a specific
location, while suppressing activity from other locations using
a weighted sum of the sensor signals (Van Veen et al., 1997).
DICS is a linearly constrained minimum variance beamformer in
the frequency domain, which can be used to calculate oscillatory
power at any given location in the brain and coherence between
any two given locations (Gross et al., 2001; Kujala et al., 2008).
This enables us to create cortical “power maps” and to perform
functional connectivity analysis.

Interacting large-scale functional networks in the brain are
thought to support cognition and behavior. Dynamic changes
in connectivity are of increasing interest, as recent results
have shown that functional connectivity between brain regions
changes in a time-resolved and task-dependent manner (Betti
et al., 2013; Liljeström et al., 2015a; Gonzalez-Castillo and
Bandettini, 2017; Liljeström et al., 2018) and hence provides
information that is complementary to the analysis of evoked
responses (Salmelin and Kujala, 2006; Laaksonen et al., 2012).
Magnetoencephalography (MEG) recordings provide a direct
measure of neural activity with excellent time resolution. MEG
enables non-invasive estimation of connectivity between brain
regions with a cortex-wide spatial coverage that cannot be
attained with, for example, intracranial recordings.

There are different ways to define and quantify functional
connectivity (Schoffelen and Gross, 2009). In general, two
regions are assumed to interact when certain aspects of the
recorded brain activity over these regions are consistent. In
this paper, we focus on coherence, which quantifies the cortico-
cortical synchrony of oscillatory activity, as a connectivity
measure (Gross et al., 2001). Oscillatory activity in neuronal
populations is a principal feature of brain activation and
synchronization, or coherence, of such oscillating activity across
brain regions is thought to promote efficient communication
within large-scale neural networks (Bressler and Kelso, 2001;
Fries, 2005). Coherence is thus a neurophysiologically well
motivated measure of functional connectivity. Previous studies
have suggested that oscillatory activity/interaction within specific
frequency bands may have different functional roles (Buffalo
et al., 2011; Donner and Siegel, 2011; Hipp et al., 2012; Liljeström
et al., 2015a). Using coherence as a measure of connectivity
enables a direct mapping of connectivity at different frequencies,
without the need to estimate time series at the level of cortical
sources (Kujala et al., 2008).

Recently, we developed a pipeline for estimating all-to-all
functional connectivity (Liljeström et al., 2015a; Saarinen et al.,
2015) for MEG network analysis, which utilizes the DICS spatial
filter combined with a wavelet approach to achieve a high
temporal resolution (Laaksonen, 2012). With this approach, we
have demonstrated that a transient reorganization of the large-
scale functional networks that support language takes place
before onset of speech (Liljeström et al., 2015a,b).

For the current paper, we have made a new implementation
of our pipeline and integrated it with the MNE-python
package (Gramfort et al., 2013). We will demonstrate it
using the freely available MEG dataset collected by Wakeman
and Henson (2015), for which we have chosen to compare
changes in oscillatory activity and functional connectivity
between processing faces and scrambled images, as described
in section 1.1. We will go over all the steps of the analysis and
provide examples of how to implement them usingMNE-Python.

The preprocessing of the MEG data is briefly outlined in
section 2. In the DICS beamformer, a cross-spectral density
(CSD) matrix is used to represent the measured oscillatory
activity and their dependencies. In section 3, we describe
estimation of the CSD matrices, the mathematical formulation,
and its implementation using the python code. For group-level
comparisons it is important to obtain comparable source-points
and connections across subjects. For this purpose, we have
chosen to create a surface-based cortical grid in a template brain
and transform the source locations to each individual subject. In
section 4, we outline how this is implemented.

While the current pipeline was primarily developed for
the purpose of all-to-all connectivity analysis, it can also
be used for estimation of oscillatory activity, (i.e., “power
mapping”), which we discuss in section 5. In section 6, we
introduce a “canonical” computation of coherence between
brain regions, which facilitates the stable estimation of all-to-all
connectivity (Saarinen et al., 2015). In this approach, the source
orientation configuration for each cortico-cortical connection
is determined by identifying the orientation combination that
maximizes coherence between the two sources.

Neurophysiological recordings are inherently sensitive to
spatial blurring of the signal due to field spread, thus
complicating the estimation of functional connectivity between
brain regions (Schoffelen and Gross, 2009). Hence, we focus
on connections that span long distances (>4 cm). To further
suppress effects related to field spread, the current approach
is based on identifying statistically significant differences in
functional connectivity between power-matched experimental
conditions, rather than absolute coherence values. This analysis
step is described in section 7.

Importantly, this approach identifies changes in connectivity
between brain regions that can be linked to the specific task
manipulation, rather than the entire underlying network. For
visualization of the identified networks, we use a combination
of a cortical-level degree map which shows the total number of
connections for each source point, and a circular connectogram
that summarizes the number of connections between brain
regions at a cortical parcellation level. This is presented in
section 8.

Finally, we discuss benefits and limitations of the present
approach in section 9, and present several methodological
considerations related to functional connectivity analysis with
MEG.

1.1. Example Dataset
Throughout this paper, we will demonstrate the application of
our pipeline to an example dataset. For this purpose, we use the
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data collected by Wakeman and Henson (2015). This subsection
will provide a brief description of the characteristics of the data
that are most salient to the present paper. For further details on
the dataset, see Wakeman and Henson (2015).

The dataset consists of simultaneous MEG and EEG
recordings, collected from 19 participants who were viewing
images of either faces or scrambled versions of the face stimuli.
The original study excluded data from 3 participants due to the
presence of artifacts in the data (Wakeman and Henson, 2015);
we also excluded those data from our analysis. The data was
recorded by an Elekta Neuromag Vectorview 306 system that has
204 planar gradiometers. Only the gradiometer MEG data was
used in our example.

The stimuli consisted of 300 grayscale photographs, half from
famous people (known to the participants) and half from people
unknown to participants, and 150 images of scrambled versions
of either famous or unknown faces. Each stimulus was presented
twice, for a total of 2× (300+ 150) = 900 trials, with the second
repetition occurring either immediately after the first, or with
an interval of 5–15 intervening stimuli. In our example analysis,
we focus on the distinction between faces vs. scrambled images,
regardless of whether the faces were known or unknown to the
participant.

Each trial began with the presentation of a fixation cross for
a random duration of 400–600 ms, followed by presentation of
the stimulus for a random duration of 800 to 1,000 ms, after
which a white circle was presented for 1,700 ms. The task for
the participants was to press one of two buttons depending on
whether they judged the image to be “more” or “less” symmetric
than average.

1.2. Data and Code Availability
The multi-subject, multi-modal human neuroimaging
dataset (Wakeman and Henson, 2015) that we use in this
study can be found at: https://openfmri.org/dataset/ds000117.

The code repository related to this project is at: https://github.
com/wmvanvliet/conpy. This currently includes the ConPy
project code (in the conpy/ folder), the analysis scripts to process
the Wakeman and Henson (2015) dataset (in the scripts/

folder), the scripts to produce the figures in this paper (also in
the scripts/ folder), the code examples included in this paper
(in the paper/code_snippets/ folder), and the LATEX code to
produce the final pdf (in the paper/ folder). Further instructions
on how to run the pipeline are provided in the README.md file.

2. PREPROCESSING

DICS based power analysis and functional connectivity can be
investigated for multiple kinds of experimental designs, ranging
from ones consisting of isolated events (Laaksonen et al., 2008)
to ones with continuous naturalistic stimulation (Saarinen et al.,
2015; Alexandrou et al., 2017). The present analysis pipeline
focuses on data representing neural processes related to external
stimuli or events whose timing can be determined exactly.
For this type of analysis, an important preprocessing step is
to cut up the continuous MEG recording into fragments of
data surrounding the onset of such events. These fragments are
referred to as “epochs.”

The process of going from raw data to epochs is not specific
to DICS analysis, but are the first steps shared by many
analysis pipelines. A sister paper, Jas et al. (2018), discusses the
many parameters and trade-offs involved in these important
preprocessing steps and provides code examples, using the same
dataset as in this paper. Therefore, to keep the topic of the current
paper focused on estimating cortical power and connectivity
analysis, and to avoid duplication of effort, we refer the reader
to Jas et al. (2018) for a detailed description of the preprocessing
steps, which we will only summarize below.

Construction of the source space and forward model (see
section 4) depends on a 3D model of the subject’s head that
is created from a structural magnetic resonance imaging (MRI)
scan, which is done in our analysis pipeline using the FreeSurfer
(Dale et al., 1999) package.

The MEG data is processed with the maxfilter program,
developed by Electa and also implemented in MNE-Python, to
eliminate noise sources that originate outside the MEG helmet.
Furthermore, the program uses the head coils that are attached
to the participant’s head to track the head position during the
recording, and projects the data such that the influence of head
movements is minimized.

To remove the signals produced by the head coils, the
MEG signal must be low-pass filtered to at least below 150Hz.
Additionally, the signal should be high-pass filtered above at least
1Hz when performing independent component analysis (ICA).

To reduce the contamination of the MEG signal by artifacts
caused by eye blinks and heart beats, ICA components are
estimated on the continuous data. However, no actual data
decomposition is performed yet. Next, an automated detection
algorithm is applied to detect the onset of blinks and heart
beats, and segments of data surrounding each onset are created
and averaged, yielding an “average blink” segment and average
“heart beat” segment. The average blink and average heart beat
segments are then decomposed along the ICA components and
the correlation between the electro-oculography (EOG) and
electro-cardiography (ECG) sensors and each signal component
is computed. The ICA components for which the corresponding
signal components correlate strongly with the EOG or ECG
signal are flagged as “bad” and will be removed in the next step.

The continuous data is cut up into segments in a short
time window relative to the onset of the presentation of each
stimulus. These segments are referred to as “epochs.” The data
of each epoch is decomposed along the ICA components that
were computed in the previous step, the components flagged as
“bad” are dropped, and the signal is recomposed. Finally, epochs
where the signal amplitude of one or more channels exceeds a
predefined threshold, signifying the presence of an artifact (for
example such as those caused by movements and biting) that
contaminates the data segment beyond repair, are removed.

2.1. Application to the Example Dataset
For our analysis of the Wakeman and Henson (2015) dataset,
we mostly follow the preprocessing pipeline of Jas et al. (2018),
which implementation can be found at https://github.com/mne-
tools/mne-biomag-group-demo. However, there are some key
differences between our pipeline and the one used by Jas et al.
(2018):
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1. Since our pipeline operates on MEG data, we restrict our
preprocessing pipeline to only use the gradiometer and
magnetometer channels, whereas Jas et al. (2018) also include
EEG data.

2. Since we are analyzing oscillatory activity rather than evoked
potentials, we high-pass filter the data above 1Hz, whereas Jas
et al. (2018) perform no high-pass filtering other than the one
performed by the recording hardware.

3. We do not make use of the autoreject package for
dynamically determining thresholds when rejecting epochs
which have a too large signal amplitude, but rather use a fixed,
more lenient, threshold. This is because since our analysis of
oscillatory activity is less sensitive to isolated signal spikes than
the analysis of evoked potentials performed in Jas et al. (2018).

The preprocessing pipeline is implemented in the following
scripts:

Script Function

00_fetch_data.py downloads the openfmri ds117
dataset and extracts it

01_anatomy.py runs the FreeSurfer recon-all
program on the anatomical MRI data
and uses the FLASH images to create
surface meshes

02_filter.py performs band-pass filtering between
1Hz to 40Hz on the MEG data

03_ica.py uses ICA to decompose the MEG
signal into independent components.
Finds at most two ICA components
that correlate with heart beats (ρ >

0.05), at most two components that
correlate with eye blinks (ρ > 0.1),
and flags these components for
removal.

04_epochs.py cuts the continuous MEG data into
epochs from−0.2 s to 2.9 s relative to
the onset of the stimuli. Removes
ICA components that were flagged in
the previous step. Removes epochs
where the signal amplitude of one or
more gradiometer channels exceed
3× 10−10 T/cm or one or more
magnetometer channels exceed
4× 10−12 T.

From this point on, the analysis pipeline becomes specific to
DICS analysis and will be described in more detail.

3. ESTIMATING CROSS-SPECTRAL
DENSITY (CSD) MATRICES

Estimating the cortical origins of oscillatory activity (we refer to
this as “power mapping”) and estimating connectivity between
cortical sources (we refer to this as “connectivity analysis”) both

start with the computation of one or more cross-spectral density
(CSD) matrices. The CSD is the covariance between the two
signals, in our case the activity recorded at two sensors, in the
frequency domain. A CSD matrix defines the CSD between all
sensor-pairs and is similar in nature to a covariance matrix.

Commonly, both the analysis of oscillatory power and
connectivity are conducted in multiple frequency bands, time
windows, and/or experimental conditions. For each of these, a
separate CSD matrix needs to be computed.

Because we wish to compute CSD matrices for specific
frequency bands and time windows, we choose to transform the
signal to the time-frequency domain using a wavelet transform.
We follow the method outlined in Tallon-Baudry et al. (1997),
which offers a better tradeoff between time and frequency
resolution than a standard Fourier transform.

3.1. Mathematical Formulation
For each frequency f (in Hertz) we want to include in the
analysis, we construct the corresponding Morlet wavelet m(f ),
which has a Gaussian shape both in the temporal and frequency
domain. The standard deviation of this Gaussian shape in the
time domain, σt, is an important parameter that determines
the tradeoff between temporal and frequency resolution of the
resulting time-frequency decomposition. A common tactic is
to use a large σt at low frequencies, increasing the frequency
resolution at the cost of temporal resolution, and use increasingly
smaller values at higher frequencies, trading frequency resolution
for temporal resolution. A convenient way to achieve this is
to define no as the number of oscillations the Morlet wavelet
completes. Then,

σt =
no

2π f
. (1)

AMorlet wavelet of the desired length can then be constructed as
follows:

t = [−5σt,−5σt + 1/fs, . . . , 5σt], (2)

m(f ) = (σt
√

π)−1/2 exp(− t2

2σ 2
t

) exp(2iπ f t), (3)

where t are the time points at which the Morlet function is
evaluated and fs is the sampling frequency of the MEG signal.
The transformation to the time-frequency domain is performed
by convolution of the Morlet wavelet for each frequency with the
MEG signal:

e1(f ) = m(f ) ∗ x1, (4)

e2(f ) = m(f ) ∗ x2, (5)

where (∗) denotes linear convolution. The resulting vectors e1(f )
and e2(f ) contain the complex time courses of the signals x1 and
x2 filtered at frequency f . Finally, we compute the CSD between
the signals by taking the dot product of e1(f ) and the complex
conjugate of e2(f ) for all the frequencies and time points we wish
to include in the analysis and by averaging the result:

c(x1, x2) =
1

Nf

1

Nt

∑

f

∑

t

e1(f )(t) · e2(f )(t)∗, (6)

Frontiers in Neuroscience | www.frontiersin.org 4 September 2018 | Volume 12 | Article 586

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


van Vliet et al. Connectivity and Power Analysis Using DICS

where Nf is the number of frequencies, Nt the number of time
points, (·) denotes the dot product between two vectors, the
superscript (∗) the complex conjugate operation and e(f )(t) the
signal at frequency f and time t. Since the frequency domain is
described using complex numbers, cwill be a complex number as
well when the computations are done for distinct signals x1 and
x2.

To compute the full CSD matrix, Equation 6 is repeated for
each pair of channels. Each element C(i, j) of the resulting CSD
matrix C ∈ C

Ns×Ns holds the CSD between sensors i and j. The
matrix is Hermitian, so C(i, j) and C(j, i) are complex conjugates
of each other, and the diagonal elements hold the mean power-
spectral density (PSD) for each sensor. The CSD matrices are
computed for each epoch separately and then averaged to
produce a single CSD matrix per experimental condition.

3.2. Code Example
The following code example will compute the CSD matrix over
the time range from 0 s to 0.4 s relative to the stimulus onset, for
two frequency ranges:

# Import required Python modules

import numpy as np, mne

# Read epochs from FIFF file

epochs = mne.read_epochs('sub002-epo.fif')

# Select the experimental condition

epochs = epochs['face']

# Specify frequencies to use

frequencies = np.linspace(7, 17, num=11)

# Compute the CSD

csd = mne.time_frequency.csd_morlet(

epochs, frequencies, tmin=0, tmax=0.4,

n_cycles=7, decim=20)

# CSD for alpha band: 7-13 Hz

csd_alpha = csd.mean(7, 13)

# CSD for beta band: 13-17 Hz

csd_beta = csd.mean(13, 17)

As discrete wavelet transforms are used in the CSD computation,
the frequencies are specified as a list, rather than a range. These
frequencies should evenly span the desired frequency range.
Their suitable spacing depends on the frequency resolution of the
wavelets.

The n_cycles parameters of the csd_epochs function
controls no, thus controling the tradeoff between frequency
and time resolution of the wavelet transform. It can either
be set to a fixed value (as in the example), which means the
wavelets get shorter as the frequency increases (increasing the
temporal resolution and decreasing the frequency resolution).
Alternatively, one may specify a list of values, one for each
frequency, to have precise control over the time/frequency
resolution tradeoff.

The decim parameter of the csd_epochs function controls
the spacing of the time points t that are used in Equation (6),
enabling more efficient computation of the CSD matrix. The

time resolution of the signals following the wavelet transform
(Equation 4) is generally much lower than the sampling rate of
the original signals. In these cases we can safely pick every nth
time point without losing information.

The wavelet convolution method assumes that the data across
time has an approximate mean of zero. In our pipeline, we choose
to remove the signal offset for each epoch. Another good option
is to first apply a highpass filter to the data, in which case further
detrending is not necessary.

3.3. Application to the Example Dataset
For our analysis of the Wakeman and Henson (2015)
dataset, we computed CSD matrices for the following
frequency bands (following Liljeström et al., 2015a):

Frequency range Band name

3–7 Hz theta
7–13 Hz alpha
13–17 Hz low beta
17–25 Hz high beta 1
25–31 Hz high beta 2
31– 40 Hz low gamma

We choose to use a fixed no = 7, and the width of our chosen
frequency bands reflect the resulting time/frequency resolution
tradeoff. There is no golden standard for which frequency bands
to use and you may have to adapt the frequency ranges to fit your
dataset and research question. For example, frequencies higher
than 40Hz may be of interest as well.

The CSD matrices were computed for both the time window
from 0 to 0.4 s, and during the “baseline” period from −0.2 to
0 s, relative to the onset of the stimulus. We will later compare
the cortical sources of oscillatory activity before and after the
presentation of a stimulus. This analysis step is implemented in
script 05_csd.py and an example of the resulting CSD matrices
is presented in Figure 1.

4. SOURCE SPACE AND FORWARD
MODEL

The DICS beamformer will, given a CSD matrix and forward
modeling of neural currents, estimate the power of the oscillatory
activity originating from one specific point on the cortex. DICS
uses a spatial filter to determine the activity at the given point on
the cortex while suppressing contributions from all other sources.
By creating a grid of regularly spaced points along the cortex and
computing spatial filters for each point, a complete picture of
brain-wide activity emerges. This grid is referred to as the “source
space” (Figure 2, left). The DICS power estimates are also used
during connectivity analysis, where the source space is used for
defining the start and end point of possible connections.

To create the source space, we first need a 3D-model of the
subject’s brain. Here, we obtain it by performing a structural MRI
scan on the subject and processing the data with FreeSurfer (Dale
et al., 1999). The details are explained in Jas et al. (2018) and the
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FIGURE 1 | CSD matrices computed for different frequency bands. The CSD matrices were computed across all the epochs where a face stimulus was presented to

subject 2, in the time window from 0 to 0.4 s relative to the presentation of the stimulus. Each row and column corresponds to one of the 204 gradiometers. Note that

each row has a separate color scale.

FIGURE 2 | The source space and forward model used in connectivity analysis. (Left) The white matter surface, as reconstructed by FreeSurfer. The source space is

defined as a grid of points along this surface, shown in yellow. All points further than 7 cm from the closest MEG sensor (shown as blue squares in the background)

have been discarded. (Right) The forward model defines two dipoles at each source point. The orientation of the dipoles is tangential to a sphere with its origin at the

center of the brain.

implementation can be found in the script 01-run_anatomy.ipy
accompanying that paper. The FreeSurfer analysis results in
several 3D meshes, corresponding to different brain tissues, of
which the white matter surface serves as the basis for our source
space.

For group-level analysis, it is important that connections
between the points within source spaces can be compared across
subjects. This is feasible if the same connections exist for each
subject, which, in turn, means that the same source points must
be defined for each subject. To facilitate this, we first define the
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source space on the “fsaverage” brain: a template brain model,
provided by FreeSurfer, constructed by averaging the MRI scans
of 40 subjects (Fischl et al., 1999). The resulting source space is
thenmorphed to each individual subject, transforming the source
points to corresponding locations on the cortex (Fischl et al.,
1999). Note that the morphed source space will generally be only
approximately evenly spaced. For creating powermaps, we advice
to create evenly spaced source spaces for each individual subject
and morph the estimated power map to the average brain, as
explained in Jas et al. (2018).

In our analysis pipeline, we compute all-to-all connectivity
between the source points. To keep the number of connections
manageable, only a limited number of source points can be used.
Partly, this is facilitated by placing the sources at slightly larger
spatial intervals than is common in studies focusing on cortical
activity. In addition, we place sources only in areas that can be
reliably measured using MEG, rather than in “deep sources” that
do not generate signals that would be readily detectable with
MEG sensors.

We start out with a regularly spaced grid of 5,124 points
covering the entire surface of the cortex, yielding an average
distance of 2.6mm between neighboring points. To limit the
number of source points, all points that are further than 7 cm
from the nearest MEG sensor are discarded. For this dataset,
a cutoff distance of 7 cm provides a good tradeoff between the
number of source points and coverage across the cortex, but this
value may need to be adjusted for other datasets. Close visual
inspection of the result is required, see Figure 2 (left). To ensure
that the same source points are defined for each subject, the
distance from source points to the closest sensor is determined
in one subject, and the resulting set of points is then used for
all subjects. Since the distance from the source points to the
sensors is dependent on the position of the subject’s head in the
MEG helmet, it is important to ensure that the initial distance
computations are done for a subject whose head was in an
approximately average position across subjects with respect to the
helmet.

The resulting restricted source spaces are only used during
connectivity analysis. For computing power maps, the number
of source points is less of an issue and therefore we always use the
full source space.

Given the source space, we construct a forward model that
models how the magnetic field, produced by a current at each
source point, travels through the various tissues of the brain and
head, resulting in activity recorded at the MEG sensors. For this
computation, we employ a boundary element method (BEM)
model (Hämäläinen et al., 1993) that uses the FreeSurfer meshes
of the brain tissues, assuming homogeneous conductivity within
each mesh. For MEG datasets, we only include the inner skull
meshes, resulting in a single-layer BEMmodel.

The neural currents at the source points are modeled as
equivalent current dipoles (ECDs) that represent the dominant
component of the local current as a vector that has both a
magnitude and a direction. The forward model represents the
ECD at each source point using three separate dipoles, arranged
in three orthogonal orientations, representing the magnitude of
the current in the x-, y-, and z-directions. We will refer to these

orthogonal dipoles, which are merely mathematical constructs,
simply as “dipoles,” while we will refer to the source dipole that is
formed by combining the three orthogonal dipoles, as “the ECD.”

During the connectivity computation, we reduce the number
of dipoles for computational efficiency reasons (section 6.1)
and use only two orthogonal dipoles instead of three;
specifically, we use two orthogonal dipoles that are tangential
to a spherical approximation of the head shape (Figure 2,
right) and that generate stronger magnetic fields than radial
sources (Hämäläinen et al., 1993). For computing power maps,
we prefer to use three orthogonal dipoles at each source point.

4.1. Code Example
The following code example will construct a forward model for a
single subject, suitable for connectivity analysis, following all the
steps outlined above:

import conpy, mne

# Define source space on average brain

src_avg = mne.setup_source_space(

'fsaverage', spacing='ico4')

# Morph source space to individual subject

src_sub = mne.morph_source_spaces(

src_avg, subject='sub002')

# Discard deep sources

info = mne.io.read_info('sub002-epo.fif')

verts = conpy.select_vertices_in_sensor_range(

src_sub, dist=0.07, info=info)

src_sub = conpy.restrict_src_to_vertices(

src_sub, verts)

# Create a one-layer BEM model

bem_model = mne.make_bem_model(

'sub002', ico=4, conductivity=(0.3,))

bem = mne.make_bem_solution(bem_model)

# File containing the MRI<->Head transformation

trans = 'sub002-trans.fif'

# Make the forward model

fwd = mne.make_forward_solution(

info, trans, src_sub, bem, meg=True, eeg=False)

# Only retain orientations tangential to a sphere

# approximation of the head

fwd = conpy.forward_to_tangential(fwd)

For group-level analyzes, it is important to note that MNE-
Python stores the source points as vertex indices of the original
FreeSurfer mesh and that these indices are always stored in
sequential order. Thus, when we morph the source space defined
on the “fsaverage” brain to an individual subject, the ordering
of the source points is not preserved. For example, the first
source point of subject 1 can correspond to the fourth source
point of subject 2. To account for this, we always store vertex
indices in the order defined in the “fsaverage” source space.
To re-order the individual-level source-points correctly, we first
determine the changes in the ordering of the vertices using the
conpy.utils.get_morph_src_mapping function and modify
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the vertex indices accordingly. This process is implemented in
script 07_forward.py.

4.2. Application to the Example Dataset
In the example dataset, the source space was first defined on
the “fsaverage” brain and then morphed to each subject. For
each subject, three orthogonal dipoles were placed at each
source point and the white matter and skull FreeSurfer meshes
were used to compute the forward model. The construction of
the source spaces for the “fsaverage” brain is implemented in
script 06_fsaverage_src.py and the morphing of the source
space to the brains of the individual subjects and subsequent
computation of the forward models are implemented in script
07_forward.py.

While power mapping was done using all the source points,
connectivity analysis used a restricted source space where
all source points further than 7 cm from the closest MEG
gradiometer were discarded. This distance measurement was
performed on the first subject and then used for all other subjects.
This process is implemented in script 08_select_vertices.py.
In connectivity analysis, the forward models that define three
dipoles at each source point were transformed into “tangential”
models that define two dipoles at each point. This step is
implemented in script 10_connectivity.py.

5. POWER MAPPING

The DICS beamformer can be used to estimate the cortical
sources of oscillatory activity within a given frequency band. As
explained in section 4, a grid of source points is defined along the
cortex. At each source point, three current dipoles are defined
that are arranged to have orthogonal orientations. A whole-brain
estimate of the oscillatory power is produced by computing,
for each dipole, a spatial filter that passes activity that can be
attributed to the dipole, while reducing activity originating from
other sources (Van Veen et al., 1997).

Other than the various parameters involved in computing
the CSD matrix and the forward model, the “regularization”
parameter is an important parameter governing the creation
of the spatial filters. In practice, the regularization parameter
represents a tradeoff between the amount of detail in the
power maps and their sensitivity to noise. If the amount of
regularization is too small, it may result in the estimates being
driven by noise factors, yielding sub-optimal results. If too much
regularization is used, relevant details may be obscured and the
power map will be dominated by the strongest sources. Typical
values are in the range 0.01–0.1, scaled by the mean singular
values of the CSD matrix.

The resulting cortical power maps define, at each source point,
the power in all orientations. Typically, for each source point,
only the power corresponding to the orientation that maximizes
the power is reported.

5.1. Mathematical Formulation
The regularization parameter α arises from the need to compute
the inverse of the CSD matrix. Since this matrix is often
rank deficient, its inverse cannot be directly computed, but

a pseudo-inverse needs to be approximated. This estimation
is more stable when a small value is added to the diagonal
(diagonal loading):

λ = α
trace(C)

Ns
, (7)

Ĉ−1 = (C+ λI)−1. (8)

We use the Moore–Penrose pseudoinverse to compute
(C+ λI)−1.

Initially, the power maps will be biased toward superficial
sources, since they have a larger effect on the MEG sensors. To
counter this, the leadfields can be normalized before computing
the spatial filters:

L̂(r) = L(r)

|L(r)| , (9)

where L(r) is a row vector containing the leadfield connecting
dipole r to each sensor, | · | denotes the norm of the vector and L̂

is the normalized leadfield.
The DICS beamformer is a linearly constrained minimum

variance (LCMV) beamformer, computed using and applied to
a (time-)frequency transformation of the original signals. We
deviate slightly from Gross et al. (2001) by computing the filter
for each dipole separately:

A(r) = L̂(r)⊺ Ĉ−1

L̂(r)⊺ Ĉ−1 L̂(r)
, (10)

where A(r) is a vector of weights that constitutes a linear spatial
filter that attempts to isolate the signal power for the dipole from
the rest of the signal. In our approach, we treat dipoles with
different orientations as separate sources, even if their locations
are the same, and consequently compute the beamformer filter
for each dipole individually. In this case, L̂(r)⊺ Ĉ−1 L̂(r) reduces
to a scalar value, which avoids having to compute the inverse
of another rank deficient matrix. We obtain an estimate of the
power at a source point by multiplying the filters for all dipoles
defined at the location with the CSD matrix:

P(r) = A(r)CA(r)⊺∗, (11)

where A(r) is a matrix whose rows contain the filters for all
dipoles r defined at the source point and P(r) is the resulting
power estimate. The power estimate contains, along the diagonal,
the square of the power at each dipole, and the off-diagonal
elements contain the cross-power estimates between dipoles.

Common methods of summarizing P(r) are:

1. choosing the direction that maximizes the power, i.e., the first
singular value of P(r)

2. the sum of the squared power for each dipole, i.e., trace(P(r))
3. the squared power in the direction that is orthogonal to the

surface of the cortex.

5.2. Code Example
In the following example, we compute the cortical power maps
for oscillatory activity in the range from 7 to 13 Hz for the epochs
corresponding to trials where a face stimulus was presented:
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import mne

# Read info, forward solution and CSD matrix

info = mne.io.read_info('sub002-epo.h5')

fwd = mne.read_forward_solution('sub002-fwd.fif')

csd = mne.time_frequency.read_csd('sub002-csd.h5')

# Obtain CSD for frequency band 7-13 Hz.

csd = csd.mean(fmin=7, fmax=13)

# Compute DICS beamformer filters

filters = mne.beamformer.make_dics(

info, fwd, csd, reg=0.05, pick_ori='max-power')

# Compute the power map

stc = mne.beamformer.apply_dics_csd(csd, filters)

The regularization parameter reg is set here to 0.05, which
is generally a good tradeoff between the level of spatial detail
and sensitivity to noise. It is good practice to experiment with
different values to see how the power maps behave: if the power
estimates change substantially for small increments of the reg

parameter, it may be set too low. The pick_ori parameter selects
the method with which to summarize the power at each source
point. In this case, for each source point, the power is computed
along the direction which maximizes the power.

When comparing the power maps from different subjects,
the stc objects can be morphed to the “fsaverage” brain with
the stc.morph(to_subject)method. Themorphed stc objects
can then be straightforwardly averaged and analyzed using the
statistical functions in the same manner as for other types of
source estimates (Jas et al., 2018).

5.3. Application to the Example Dataset
The scripts 09_power.py and 11_grand_average_power.py

implement the full analysis on the example dataset. Script
figure_power.py produces Figure 3.

It is common for the power maps to be dominated by alpha
and/or beta activity, as is the case for our example dataset as
well (Figure 3, top row). The alpha rhythm is typically generated
in the parieto-occipital cortex. The beamformer localizes the
alpha activity over the entire 0 to 0.4 s time window as a single,
somewhat deep source (Ciulla et al., 1999).

More interesting effects are revealed by contrasting two
experimental conditions. In the case of the example dataset, these
are the presentation of faces vs. scrambled images. Furthermore,
we are interested in the changes in oscillatory power caused
by the presentation of the stimuli, relative to the baseline
period. Accordingly, our final power maps are computed as
“(faces−scrambled pictures)/baseline” (Figure 3, bottom row).

The experimental paradigm used in the example dataset was
designed to produce strong evoked potentials (EPs). Although
DICS aims to capture oscillatory activity, the power maps are
dominated by the EPs, especially in the lower frequency bands. In
our case, all frequency bands highlight the primary visual cortex,
where there is a strong EP following shortly after the presentation
of a visual stimulus. The upper frequency bands only shows some
very slight increases in activity, which is why we chose to perform
the connectivity analysis for the low gamma band, since large

differences in power between conditions will severely bias an
all-to-all connectivity estimate.

For better interpretation of these results, one can proceed with
statistical analysis of the power maps in a similar fashion as done
with source estimates of evoked data, as detailed in Jas et al.
(2018).

6. CONNECTIVITY ANALYSIS

In addition to analysis of oscillatory power, DICS is commonly
used to investigate connectivity between cortical areas. The DICS
beamformer is well suited for estimating cortical connectivity,
as coherence between brain regions can be determined based on
the sensor-level CSD matrices, without the need to first estimate
the time courses for the regions of interest, as required for most
other connectivity metrics. The coherence metric quantifies the
level of synchronicity between the oscillatory activity of different
areas, on a scale from 0 (no synchronization) to 1 (perfectly
synchronized). Coherence is thought to be indicative of inter-
areal communication (Fries, 2005).

Ideally, one would compute coherence between all source
points in the source space. However, in practice, this is currently
computationally intractable, so several thresholds will be applied
to prune the number of connections. In section 4, the first
threshold was applied, namely that deep sources were eliminated
from the source space. This has the effect of only considering
source locations where the MEG signals are the most reliable.
The second threshold we apply is a distance criterion. Due to the
inherent field spread of theMEG signal (Hämäläinen et al., 1993),
source points that are close together will always exhibit strong
coherence.While this effect is alleviated by considering a contrast
between two conditions, long-range connections (Salmelin and
Kujala, 2006) can be estimated more reliably than short-range
ones. For this reason, all connections between source points
which are closer than a distance threshold (e.g., ≤4 cm) are
removed from further analysis. The distance threshold is a
parameter that needs to be chosen with care and in consideration
with the research question of the study. When interpreting the
result, one should always remember that there may be additional
short-range connections present, but hidden from view due to the
distance threshold.

In order to perform group-level analysis, coherence must be
computed for the same connections in each subject. Therefore,
the distance threshold based pruning is first applied to the
connectivity pairs in a single subject, and the selection is
subsequently carried over to the other subjects. In section 7,
connections are further pruned based on a contrast between the
experimental conditions.

6.1. Canonical Computation of Coherence
The connectivity computation is complicated somewhat by the
fact that, generally, the forward model defines currents with
both a magnitude and an orientation, represented through the
use of multiple dipoles at each source point. For example,
our connectivity pipeline employs a “tangential” forward model
that defines two orthogonal dipoles tangential to a sphere (see
section 4). As mentioned in the section on power mapping
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FIGURE 3 | DICS grand average power maps. Cortical activity is visualized on an “inflated” version of the cortex, so as not to hide activity within the sulci. (Top)

Estimation of cortical origins of oscillatory activity in the alpha band. In this case, the inflated view makes it seem there are three sources of alpha power, but in reality,

these sources are adjacent on the original white matter surface. (Bottom) Contrasts between faces and scrambled images for all frequency bands. Warm colors

indicate sources with more activity for faces than scrambled images and cold colors indicate sources with less.

(section 5), there are several ways to summarize the information
at each source point. One way would be to only use the
orientation that maximizes source power (Gross et al., 2001).
However, simulations that were performed as part of the
study by Saarinen et al. (2015) have shown that this strategy
tends to produce spurious increases in coherence between
unsynchronized sources. A better strategy may be to use, for each
connection, orientations that maximize the coherence between
the two source points. This involves going through all the possible
orientation combinations for the two source points, and choosing
the orientation pair that maximizes the coherence. We refer to
this strategy as “canonical computation of coherence” and it is
the default strategy implemented in the ConPy package.

6.2. Mathematical Formulation
Given a CSD matrix C, it is straightforward to compute
coherence between sensors (and later between cortical regions).
The coherencem between sensors i and j is:

m(i, j) =
∣∣C(i, j)

∣∣2

C(i, i)C(j, j)
. (12)

To compute coherence between source points, the CSD matrix
is first run through the DICS beamformer to obtain power
estimates at each source point. In our canonical coherence
pipeline, we deviate from Gross et al. (2001) and replace the CSD

matrix C in Equation (11) by the regularized version Ĉ. This
results in an approximation of the power that is much faster to
compute, as the equation simplifies to:

P̂(r) = A(r) Ĉ A(r)⊺∗ =
[̂
L(r)⊺ Ĉ−1 L̂(r)

]−1
, (13)

where P̂(r) is an approximation of the power estimate for dipole
r. Similarly, the cross-power between two dipoles (r1, r2) is

approximated by [̂L(r1)
⊺ Ĉ−1 L̂(r2)]

−1
.

In the canonical computation of coherence, coherence is
estimated by optimizing the orientation of the ECDs at both
source points for each connection. Here, we employ a tangential
forward model, which defines two orthogonal dipoles at each
source point to encode information about the leadfield in
different orientations. Using the tangential source orientation
plane, we denote the leadfield for an ECD with orientation θ as:

L̂(r, θ) = sin(θ) L̂(r1)+ cos(θ) L̂(r2), (14)

where r1 and r2 are the two dipoles defined at the source point
and r = [r1, r2].

Canonical coherence between two source points M(r1, r2) is
computed as follows:

M(r1, r2) = max
θ1 , θ2

|̂L(r1, θ1)⊺ Ĉ−1 L̂(r2, θ2)|2
[̂L(r1, θ1)

⊺ Ĉ−1 L̂(r1, θ1)] [̂L(r2, θ2)
⊺ Ĉ−1 L̂(r2, θ2)]

,

(15)
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where r1 are the two dipoles defined at the first source point and
r2 are the dipoles defined at the second source point, and θ1 is
the orientation of the ECD at the first source point and θ2 the
orientation of the ECD at the second source point.

The computation maxθ1 ,θ2 is conducted by performing a
search over all possible ECD orientation combinations and using
the maximum coherence value encountered during the search.
In practice, ca. 50 different orientations are evaluated at both
locations, spanning the tangential orientation plane at discrete
intervals.

6.3. Code Example
In the following example, we compute connectivity between all
combinations of source pairs that are at least 4 cm apart. For each
connection, we compute the coherence between ECDs that are
oriented in such a manner that the coherence between them is
maximized (canonical computation of coherence). To reduce the
search space for the optimal orientation, we convert the forward
model from one with three dipoles at each source point, to a
tangential model with two (Figure 2, right), which limits the
orientations to the tangential plane:

import conpy, mne # Import required Python modules

# Read and convert a forward model to one that

# defines two orthogonal dipoles at each source,

# that are tangential to a sphere.

fwd = mne.read_forward_solution('sub002-fwd.fif')

fwd_tan = conpy.forward_to_tangential(fwd)

# Pairs for which to compute connectivity.

# Use a distance threshold of 4 cm.

pairs = conpy.all_to_all_connectivity_pairs(

fwd_tan, min_dist=0.04)

# Load CSD matrix for 'face' condition

csd = conpy.read_csd('sub002-csd-face.h5')

# Obtain CSD for frequency band 31-40 Hz.

csd = csd.mean(fmin=31, fmax=40)

# Compute source connectivity using DICS. Try 50

# orientations for each source point to find the

# orientation that maximizes coherence.

con = conpy.dics_connectivity(

pairs, fwd_tan, csd, reg=0.05, n_angles=50)

When performing group-level analysis, it is important that
connectivity is evaluated between the same pairs of source points
in the same order across subjects. However, as we saw in section
4.1, by default, the ordering of the source points differs between
subjects. Therefore, before comparing coherence values across
subjects, the connectivity estimates need to be transformed to
define the source points in the same order, e.g., the order of the
“fsaverage” brain, with the con.to_original_srcmethod.

6.4. Application to the Example Dataset
For the example dataset, connectivity was estimated for the
low gamma frequency band (31–40 Hz) in each subject. The
connectivity pairs were computed for the first subject and
then carried over to the other subjects. This computation

is implemented in script 08_select_vertices.py. The
connectivity computations are implemented in script
10_connectivity.py. The visualization of the connectivity
results is performed after computing group-level statistics.

7. GROUP-LEVEL STATISTICS

Our analysis pipeline is designed for studying changes in cortico-
cortical connectivity between different experimental conditions
(as opposed to resting state analysis which studies the naturally
occurring network while the subject is “at rest” in the scanner,
Rosazza and Minati, 2011). Thus, instead of attempting to
map the entire network, we focus on the parts of the network
where connectivity changes between experimental conditions.
This means that the experimental design plays a vital role
in our analysis pipeline, as experimental conditions must be
designed so that contrasting them will reveal the sub-network
of interest and are power-matched to minimize the effects of
field spread.

All-to-all connectivity results can give an overwhelming
amount of information that can be difficult to interpret. One way
to manage the complexity is to compute connectivity between
parcels, rather than source points. However, in this paper we
will demonstrate an alternative approach that focuses on pruning
connections until a manageable number remains. The procedure
is an adaptation of the non-parametric cluster-permutation test
by Maris and Oostenveld (2007), where the difference is in the
way the data is clustered.

Starting from the initial all-to-all connectivity estimate, we
prune connections that do not show a reliable difference between
the experimental conditions. To this end, we perform a paired
t-test for each connection, comparing the coherence values for
all subjects between the conditions. All connections with an
associated absolute t-value below a given threshold are pruned,
while the surviving connections are grouped into “bundles.” A
“bundle” means in this context a group of connections whose
start and end points are in close proximity to each other. Bundles
can be found by constructing a six-dimensional space, where
each connection is assigned a position based on the Cartesian
(xyz) coordinates of its starting and end points, and performing
a hierarchical clustering in this space. This clustering procedure
is performed separately on connections with positive vs. negative
t-values, to assure that a bundle only contains connections that
have an experimental effect in the same direction. Each bundle is
assigned a “bundle-t-value” by summing the absolute t-values of
the connections inside the bundle.

To determine which bundles show a significant effect, we
repeat the above procedure many times with randomly permuted
data to model the distribution of bundle-t-values we may expect
from random data. Random data was produced by flipping the
condition labels for a random number of subjects, choosing a
new random set of subjects for each permutation. Importantly,
for each random permutation, only themaximum bundle-t-value
is appended to the list of randomly observed t-values. This is
an effective way to manage type-I errors (Maris and Oostenveld,
2007). Any bundle with a bundle-t-value that is higher than at
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least 95% of the randomly obtained bundle-t-values, is deemed
significant (p ≤ 0.05).

This procedure has two important parameters: the
initial t-value threshold (cluster_threshold) for pruning
connections and the maximum distance between connections
to be considered part of the same bundle (max_spread). Both
parameters have an effect on the size of the bundles and hence the
sensitivity of the test. Since the bundle-t-values are the sum of the
t-values of the individual connections, large bundles will usually
have a large bundle-t-value, making them more likely to survive
the statistical threshold. However, the cluster-permutation test
only tells whether a bundle as a whole is significant, not which
connections inside a bundle drive this significance. This means
that a bundle that was flagged as significant could contain many
connections that show little difference between experimental
conditions, as long as it also contains connections that do show a
salient difference.

In practice, we advise choosing cluster_threshold such
that a manageable number of connections remain (up to a few
thousand) and max_spread such that a reasonable number of
connections (tens to hundreds) are assigned to each bundle.
When choosing these parameters, it may help to visualize
the selected connections (see section 8) before performing the
permutation test.

7.1. Code Example
The following example reads in the connectivity objects for all
subjects and all conditions and prunes the connections using the
statistical thresholds outlined above.

import conpy, mne

from operator import add

from functools import reduce

# Connectivity objects are morphed back to the

# fsaverage brain

fsaverage = mne.read_source_spaces(

'fsaverage-src.fif')

# For each of the subjects, read connectivity for

# different conditions. Re-order the vertices to be

# in the order of the fsaverage brain.

face = []

scrambled = []

contrast = []

subjects = ['sub002', 'sub003', 'sub004', 'sub006',

'sub007', 'sub008', 'sub009', 'sub010',

'sub011', 'sub012', 'sub013', 'sub014',

'sub015', 'sub017', 'sub018', 'sub019']

for subject in subjects:

con_face = conpy.read_connectivity(

'%s-face-con.h5' % subject)

con_face = con_face.to_original_src(fsaverage)

con_scram = conpy.read_connectivity(

'%s-scrambled-con.h5' % subject)

con_scram = con_scram.to_original_src(fsaverage)

face.append(con_face)

scrambled.append(con_scram)

# Create contrast

contrast.append(con_face - con_scram)

# Compute the grand-average contrast

contrast = reduce(add, contrast) / len(subjects)

# Perform a permutation test to only retain

# connections that are part of a significant bundle.

connection_indices = conpy.cluster_permutation_test(

face, scrambled, cluster_threshold=5,

max_spread=0.01, src=fsaverage,

n_permutations=1000, alpha=0.05)

# Prune the contrast connectivity to only contain

# connections that are part of significant bundles.

contrast = contrast[connection_indices]

7.2. Application to the Example Dataset
In the connectivity analysis of the example data, we focus
on a selection of connections that show the most reliable
difference between the experimental conditions. The pruning
of the all-to-all connectivity results is implemented in script
12_connectivity_stats.py.

In our analysis of the example dataset, we applied an initial
t-value threshold of 5 to the connections, retaining 1,028 out
of the total of 4,781,057 connections. During the clustering
step, connections with start and end points within 1 cm were
grouped, resulting in 162 bundles. The above thresholds were
chosen such that there remained a manageable subset of the
full all-to-all connectivity network, which shows the most
robust differences between the processing of faces vs. scrambled
images. The permutation test revealed two bundles that show
a significant difference in coherence between the processing of
faces vs. scrambled images (p < 0.05), containing a total of 270
connections.

8. VISUALIZATION

Depending on the statistical threshold, there may be hundreds
or thousands of connections that survive the pruning step. In
order to visualize this many connections, we use a combination of
a circular connectogram that summarizes connectivity between
parcels (i.e., predefined cortical regions based on a brain atlas),
and a “degree map” that shows, for each source point, the
total number of connections from and to the point. In this
framework, we may use the circular connectogram to assess
global connectivity patterns between parcels and use the degree
map to see which specific parts of the cortex contain the start and
end points of the connections.

To create a connectivity object that defines connectivity
between parcels, rather than source points, we use brain atlases,
such as the ones provided by the FreeSurfer package. These
atlases provide a list of parcels (also referred to as “labels”) and
a list of vertices of the cortical mesh belonging to each parcel.
Using this information, we can determine which source points
belong to which parcel and make a parcel-wise summary.

In our pipeline, we choose to summarize the connection
between two parcels by counting the total number of connections
between them that survived the statistical thresholding (i.e., the
degree). The summary can then be visualized using a circular
connectogram. In general, large parcels that contain many source
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points will have more connections and thus a larger degree.
Therefore, if the intention is for the circular connectogram to
represent the overall connectivity between parcels, this “degree
bias” could lead to misinterpretation of the result and it may be
appropriate to remove this bias. This can be done by dividing the
sum by the total number of possible connections from and to the
parcel.

The cortical degree map is created by counting the number
of connections that survived the statistical threshold from and to
each source point. This degree map suffers from a similar bias
as the circular connectogram, so it may be appropriate to divide
the initial summary of each source point by the total number of
possible connections from and to the point to remove this bias.

8.1. Code Example
The following example will parcellate a connection object
according to the “aparc” brain atlas (Fischl et al., 2004), create
a circular connectogram and a cortical degree map:

import conpy, mne

con = conpy.read_connectivity('contrast-con.h5')

# Get parcels from atlas

l = mne.read_labels_from_annot('fsaverage', 'aparc')

del l[-1] # Drop the last parcel (unknown-lh)

# Parcellate the connectivity object and correct for

# the degree bias

con_parc = con.parcellate(l, summary='degree',

weight_by_degree=True)

# Plot a circle diagram showing connectivity

con_parc.plot()

# Plot a vertex-wise degree map and connect for the

# degree bias

brain = con.make_stc(

'degree', weight_by_degree=True

).plot(hemi='split')

# Draw the 'aparc' atlas on the degree-map

brain.add_annotation('aparc')

The above example results in a very basic circular connectogram.
For optimal clarity, some care needs to be put into the order and
organization of the parcels along the circle. For example, it may
be useful to dedicate the left half of the circle to parcels in the
left hemisphere and the right half to the right hemisphere. Script
figure_connectivity.py contains a more elaborate example
of a circular connectogram.

8.2. Application to the Example Dataset
The visualization of the pruned all-to-all connectivity
of the example dataset is implemented in script
figure_connectivity.py and presented in Figure 4.

The intended interpretation of Figure 4 is to first, using the
degree map, identify the main areas where connectivity changes
between faces vs. scrambled images and then see which parcels
overlap with these areas. Then, using the circular connectogram
(Figure 4, right), we can determine which connections between
these areas are influenced by the experimental manipulation.

In our example dataset, the pruning of the all-to-all
connectivity network resulted in a subnetwork that highlights
a bundle of connections from the right middle temporal gyrus
to the left superior frontal cortex and a bundle from the left
motor cortex to the left oribitofrontal cortex (Figure 4, top-left).
Since the obtained connectome is so sparse, we opted not to
compensate for the degree bias in the degree map and circular
connectogram and simply report the number of connections.

The start and end points of the connection bundles do
not always line up well with the parcels that are defined by
the “aparc” brain atlas, which makes it less obvious in the
circular connectogram that we are looking at two bundles
of connections. However, when the circular connectogram is
interpreted alongside the degree map, the two bundles become
clear.

9. DISCUSSION

The presented analysis pipeline facilitates mapping of cortico-
cortical coherence, specifically its modulation between
experimental conditions, in an all-to-all manner based on whole-
headMEG data. The original estimation of coupling is conducted
at the level of a detailed grid of source points covering the entire
cortex, but statistical testing and visualization of the results
can be conducted both at this level and at the level of a coarser
cortical parcels. In addition to the estimation of connectivity, the
pipeline provides source estimates of oscillatory activity (“power
mapping”) at the same spatial scales as used in the coherence
analysis. The analysis pipeline consists of several steps that
involve choices regarding how connectivity can be estimated,
some of which are general considerations that are relevant also
for other pipelines than the one presented here. In this section,
we discuss the effects and possible developments regarding some
of these choices for the most critical analysis steps.

9.1. Estimation of the Cross Spectral
Density Matrix
In the present manuscript, we considered cortico-cortical
connectivity for event-related experimental paradigms where
the cross spectral density matrix, which represents the mutual
dependencies of neural signals at the sensor-level, needs to be
estimated in a time-resolved manner. This type of analysis is
useful as it allows the use of event-related paradigms where
experimental manipulation is generally more straightforward
than in continuous andmore naturalistic experiments. Moreover,
the approach readily allows limiting the analysis to an artifact-
free time window of the experiment (e.g., in speech production).
The original DICS was developed for continuous data (Gross
et al., 2001) where the CSD estimation is based on Fourier
transformations. In the present analysis, as well as in previous
work using event-related DICS (Kujala et al., 2012, 2014;
Liljeström et al., 2015a), wavelet-based analysis was used to
obtain the time-frequency CSD. In the time-frequency domain,
wavelets provide an optimal compromise between time and
frequency resolution. However, the time-resolved estimation
could equally well be conducted using short-term Fourier
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FIGURE 4 | The subnetwork of the all-to-all connectivity network that shows the most robust changes across the experimental conditions. (Left) Degree map

showing, for each source point, the percentage of connections, out of all possible connections, that survived the statistical threshold and clustering operations.

(Right) Circular connectogram showing the number of connections between each parcel. Parcels were defined using the “aparc” anatomical brain atlas, provided by

FreeSurfer.

transformation, especially if appropriate windowing functions
are used. More importantly, while the present analysis focused
on the event-related estimation of cortico-cortical coupling, the
pipeline can directly be applied also to continuous data by
replacing the CSD estimation step with Fourier transformation
based computations, as was done in Gross et al. (2001).

9.2. Definition of the Source Space
In general, reliable evaluation of cortico-cortical connectivity
requires a group-level description of neural interactions. This,
in turn, necessitates the estimation of the neural connectivity
patterns in the same locations across subjects. This can be
achieved both at the level of detailed grids of source points
and cortical parcellations. Parcellations have been used more
commonly for all-to-all type connectivity estimation (Palva et al.,
2010; Saarinen et al., 2015; Schoffelen et al., 2017) as they reduce
the computational load of the estimation and the amount of
statistical testing. The present analysis pipeline facilitates both
using a grid of source points and parcel-level estimation. An
effective group-level estimation of connectivity between source
points is achieved by generating a grid of points along the
cortex of a reference brain (e.g., FreeSurfer’s “fsaverage” brain)
and transforming this grid to each individual’s anatomy. As
a consequence, the same connections are estimated in every
subject, allowing direct estimation of the group-level statistics. A
parcel-level description can then also by readily obtained as it is
sufficient to assign each point-level connection to a parcel-pair
in the common brain instead of doing the assignments separately
in each subject. For the parcel-level estimation it would be almost
equally straightforward to use individually defined grids of source
points. However, when one aims to evaluate more detailed spatial
aspects of connectivity, the chosen approach eliminates the need

for massive interpolation operations that would be required if
individual-level grids of source points were used.

9.3. Choice of the Interaction Metric
Here, we chose to apply a DICS based estimation of cortical
connectivity that allows a direct mapping of the mutual
dependencies of the sensor-level signals to a cortical space
without the need for estimation of cortical-level time-series of
activity. As the present connectivity estimation is dependent
on the use of a CSD matrix, coherence is the only interaction
metric that can be estimated straightforwardly in this manner.
Notably, similar approaches that map the sensor level interaction
patterns to the source level without the time-series estimation
step have also been developed for metrics such as partial
directed coherence (Michalareas et al., 2013) or imaginary
coherence (Drakesmith et al., 2013).

Since interactions due to field spread exhibit zero phase lag,
using an interaction measure that is sensitive only to non-
zero phase lag, such as imaginary coherence (Nolte et al., 2004;
Drakesmith et al., 2013), may reduce the detection of spurious
interactions. However, there is good indication that not all
zero-phase-lag connections are spurious (Gollo et al., 2014), so
methods focusing solely on imaginary coherence should be used
with care.

As theoretical models of neural interactions propose
that neuronal coherence mechanistically subserves neuronal
communication (Fries, 2005), the choice of coherence as
an interaction metric factor does not necessarily represent
a limitation of the approach. However, if the goal is to use
some other metric to quantify neural interactions the analysis
pipeline would need to be adjusted. Within the framework of
transforming sensor-level dependency patterns to the source
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level, it would be possible to utilize, e.g., weighted phase-lag
index (Vinck et al., 2011) by transforming single-trial (as opposed
to average) CSDmatrices to the source level. Most metrics would,
however, require that one would first estimate cortical-level time-
series of activity. This would be readily possible by using the
DICS spatial filter for weighing the sensor-level time-series.
Within this framework, however, the use of a detailed grid of
source points would no longer be computationally tractable and
it would be better to construct parcel-level time-series before the
metric-dependent quantification of neural interactions.

9.4. Considerations Regarding Field
Spread and Source Orientations
In the presented analysis we focused on estimating connectivity
in an all-to-all manner without the need for a priori seed
regions or constraining of the analysis to connections between
preselected brain areas. The field spread based confounding
factors in connectivity estimation are particularly critical for
this type of analysis (Schoffelen and Gross, 2009) where it is
difficult, e.g., to visually evaluate whether the observed changes
in patterns of neural interactions truly represent modulation
of coupling as opposed to modulation of field spread between
experimental conditions. To minimize the effects of field spread,
we focused only on long range (≥4 cm) connections and
examined coherence modulations for conditions for which the
amount of neural activity/oscillatory power are closely matched.
However, the exact degree of matching that is required for
contrasting canonical coherence, or any other type of coherence
estimates, remains an open question.

Most of the neural signals detected byMEG and EEG originate
from sources that are approximately orthogonal to the surface
of the cortex (Hämäläinen et al., 1993). So, one may restrict the
source space by defining only ECDs that point in the orthogonal
direction, by for example leveraging the surface normals of
the 3D-mesh produced by FreeSurfer (Dale and Sereno, 1993).
However, in practice, each source grid-point represents the signal
for a patch of cortical surface which, due to the folding of
the cortex, includes locations with different surface normals.
Especially when using a large spacing between grid-points, as
we do in our pipeline, the source within each patch that drives
the activity at the grid-point does not necessarily have the
same orientation as the average surface normal of the patch
as a whole. This is why it is recommended to allow for some
flexibility regarding dipole orientation whenever possible (Lin
et al., 2006). Whether this is possible in practice depends on
the computational costs of performing the source estimates for
multiple orientations and whether the SNR is good enough to
produce a reliable estimate of the optimal orientation.

In the current pipeline we exclusively used a canonical
estimation of coherence (Saarinen et al., 2015; Liljeström et al.,
2015a,b) where, for each connection, the orientations of the
source ECDs at both sides of the connection are selected such that
they maximize coherence. Tomake this computationally feasible,
we restrict the number of possible orientations by leveraging
the fact that MEG is less sensitive to “radial” sources, due to
the properties of the magnetic field (Hämäläinen et al., 1993).

By choosing a tangential source space (see Figure 2, right),
coherence values are only computed for those ECD orientations
that yield the largest signal on the MEG sensors. This canonical
estimation of coherence yields a maximally stable estimate of
coherence and it is well suited for investigating modulation of
coherence between experimental conditions. The estimates are,
however, relatively smooth. For estimating absolute coherence
values for short-range connections, especially when the expected
coherence values are small, other criteria for defining the source
orientations could be more appropriate.

For the connectivity analysis, we chose to design separate
sets of DICS beamformer filters for each condition, instead
of designing one set of filters to apply to both conditions.
Accordingly, the estimation of coherence and optimization of
the source orientations was also performed separately for each
condition. This approach allows for subtle differences in optimal
source orientations between the conditions and avoids biasing
the solution toward the condition with better SNR. If the goal
were to ensure that field spread effects are be maximally canceled
out by contrasting two conditions, it would be beneficial to
conduct the orientation optimization and weight estimation
using a joint CSD across the conditions. The optimal choice
between the alternatives depends on the research question and
properties of the data.

9.5. Statistical Testing and Visualization
In the final stage of connectivity analysis one also needs to
consider both what type of statistical testing and what spatial
scales are optimal. As stated above, the present analysis pipeline
has been designed for examining coherencemodulations between
experimental conditions. Moreover, to minimize confounding
effects resulting from substantial power differences between
conditions, the pipeline is aimed at contrasting different tasks
as opposed to contrasting a single task to resting baseline levels
of neural interaction. It is also possible to contrast a single
task to a task-average (Saarinen et al., 2015) to highlight
how the connectivity changes in a specific task with respect to
multiple different tasks. Notably, the analysis pipeline does not
provide a full connectome, that is, a complete description of the
underlying networks. Instead, it yields a snapshot of a specific
part of the network where cortico-cortical coupling has changed
from one experimental condition to another. By introducing a
battery of control conditions and comparisons between different
conditions, the pipeline would thus allow the identification of
different subnetworks that are critical for different aspects of
neural processing in performing the tasks.

The present analysis pipeline enables the evaluation of the
above aspects both at the level of detailed grids of source points
and coarser parcellations. An effective visualization combines a
connectogram that shows the connectivity at the parcel level,
with a visualization of the grid-level connectivity on the cortex.
This makes it possible to evaluate whether the patterns of neural
connectivity evaluated at the grid-level are faithfully represented
also at the level of a parcellated cortex. This, in turn, allows the
fine tuning of the parcellation schemes, which are generally based
on anatomical division, to better suit MEG data.
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10. CONCLUSION

We have presented an analysis pipeline that facilitates the cortical
mapping of oscillatory activity and estimation of all-to-all type
cortico-cortical coherence. Combined with Jas et al. (2018), all
the necessary steps of the analysis of a real experiment are
described: starting from the processing of raw MEG data to the
statistical group analysis of the networks and visualization of the
results using connectograms, as one would use in a publication.
We have developed a new python package called ConPy, which
integrates with MNE-python (Gramfort et al., 2013) to offer a
clean interface to all required software routines to reproduce the
analysis. It is our hope that our example analysis will serve as a
strong foundation for others who seek to implement their own
DICS analysis pipelines.
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