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a b s t r a c t

Vesicular stomatitis virus (VSV) has been extensively utilized as a viral vector system for the induction
of protective immune responses against a variety of pathogens. We constructed recombinant VSVs spec-
ifying either the Indiana or Chandipura virus G glycoprotein and expressing the West Nile virus (WNV)
envelope (E) glycoprotein. Mice were intranasally vaccinated using a prime (Indiana)-boost (Chandipura)
immunization approach and challenged with the virulent WNV-LSU-AR01. Ninety-percent (9 of 10) of
the vaccinated mice survived as compared to 10% of the mock-vaccinated mice after WNV lethal chal-
lenge. Histopathological examination of brain tissues revealed neuronal necrosis in mock-vaccinated
mice but not in vaccinated mice, and vaccinated, but not mock-vaccinated mice developed a strong neu-
tralizing antibody response against WNV. Extensive immunological analysis using polychromatic flow
cytometry staining revealed that vaccinated, but not mock-vaccinated mice developed robust cellular
immune responses as evidenced by up-regulation of CD4+ CD154+ IFN�+ T cells in vaccinated, but not
umoral and cellular immunity
mock-vaccinated mice. Similarly, vaccinated mice developed robust E-glycoprotein-specific CD8+ T cell
immune responses as evidenced by the presence of a high percentage of CD8+ CD62Llow IFN�+ cells.
In addition, a sizeable population of CD8+ CD69+ cells was detected indicating E-specific activation of
mature T cells and CD4+ CD25+ CD127low T regulatory (T reg) cells were down-regulated. These results
suggest that VSV-vectored vaccines administered intranasally can efficiently induce protective humoral

onse
and cellular immune resp

. Introduction

.1. West Nile virus (WNV)

West Nile virus (WNV) was first isolated more than 70 years
go from a febrile patient in the West Nile province of Uganda

1]. WNV is a positive-sense RNA virus belonging to genus Fla-
ivirus in the Falviviridae family [2]. The lipid-bilayer membrane
f the nascent virus contains 180 molecules of the envelope (E)
nd premembrane (preM) proteins organized into 60 asymmetric
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s against WNV infections.
© 2008 Published by Elsevier Ltd.

trimeric spikes of preM-E heterodimers [3,4]. The E glycoprotein
is the major antigenic determinant and is involved in virus binding
and fusion [5]. WNV spread rapidly in North America after its initial
introduction in New York [6]. WNV was transmitted via mosquito
vectors and caused substantial morbidity and mortality in birds,
horses and other animals including humans. Humans constitute a
dead-end host because the virus does not efficiently replicate in
humans. WNV can be transmitted by the intrauterine route [7],
through breast milk [8,9], blood transfusion [10–12], bone-marrow
transplant [13], organ transplantation [14,15] and through kidney
dialysis [16,17].
The human incubation period for West Nile is 2–14 days
[18]. WNV-infected persons may exhibit a variety of clinical
symptoms including fever, headache, muscle weakness, fatigue,
nausea, vomiting, gastrointestinal manifestations, lymphadenopa-
thy and non-pruritic maculopapular skin rash [19–21]. Additional

http://www.sciencedirect.com/science/journal/0264410X
http://www.elsevier.com/locate/vaccine
mailto:vtgusk@lsu.edu
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on-neurological clinical manifestations include rhabdomyolysis
22,23], pancreatitis [24], hepatitis [25], myositis, orchitis [26],
horioretinitis [27] and cardiac dysrhythmias [28]. Typically, less
han 1% of patients suffer from West Nile neuroinvasive disease
WND) including West Nile meningitis (WNM), encephalitis (WNE)
nd acute flaccid paralysis (poliomyelitis-like syndrome, WNP)
29]. Among WND cases, an estimated 55–60% of the patients
ad WNE resulting in an estimated 20% case fatality. Addition-
lly, 10–50% of mortalities in humans could be attributed to
NP [29].

.2. WNV vaccines

The absence of effective treatment against WNV infection has
ncouraged vaccine development. A variety of different approaches
ave been employed to produce WNV vaccines including inac-
ivated virus, subunit and DNA-based vaccines. Most of these
accines appeared to be highly immunogenic, and in some cases
rotected against WNV-infection in experimental animals [30].
ecently, recombinant viruses expressing WNV antigens have
een shown to induce strong immune responses and protection
gainst WNV challenge in animals. Specifically, a recombinant live
anarypox-vectored vaccine expressing the preM protein and the
glycoprotein induced strong immune responses in horses and

ats [31–34], that appeared to be partially protective [35]. Other
iral-vectored vaccines that elicited protective immune responses
n mice include a lentivirus vector based vaccine (TRIP/sEWNV)
36], and a measles virus-vectored vaccine [37]. Recombinant
ellow fever virus (YFV) has also been used to express WNV
reM and E proteins based on the extensive safety record of
he YFV attenuated vaccine [38,39]. A YFV recombinant vaccine
ChimeriVaxTM) has shown good immune responses in hamster,

ice, non-human primates and humans [40–42]. A Phase II clinical
rial with ChimeriVaxTM-WNV is currently underway [43].

.3. Vesicular stomatitis-vectored vaccines

VSV is an enveloped, negative strand RNA virus belonging
o the Rhabdoviridae family. Natural VSV infections of humans
re rare causing at most mild flu-like illness [44]. VSV infec-
ious viruses can be efficiently recovered by a reverse genetic
pproach that utilizes multiple plasmids expressing VSV genes. This
ethodology has enabled the rapid construction of recombinant
SV viruses expressing a variety of viral and bacterial antigens

or vaccine purposes including influenza virus, bovine diarrhea
irus, cotton-tail papillomavirus, human immunodeficiency virus,
imian immunodeficiency virus, respiratory syncytial virus, hep-
titis C, measles virus, Ebola virus, Lassa fever virus, Marburg
irus, severe acute respiratory syndrome virus (SARS), and her-
es simplex type-2 virus [45–63]. Recombinant VSVs have been
lso constructed and tested as vaccines for bacterial pathogens
ncluding Mycobacterium tuberculosis and Yersinia pestis [64,65].
SV-vectored vaccines have been administered via intranasal,

ntramuscular and subcutaneous routes and have been shown to
licit robust mucosal and systemic humoral and cellular immune
esponses [45–63,66–68].

We constructed recombinant VSVs expressing the WNV E gly-
oprotein. A prime-boost approach was employed utilizing two
ifferent recombinant VSVs expressing either the Indiana or the
handipura G glycoproteins for priming and boosting immuniza-
ions, respectively. Intranasal immunization of mice conferred high

rotection against lethal challenge with the virulent WNV strain
NV-LSU-AR01 [69]. Neuronal necrosis was observed in mock-

accinated but not in vaccinated mice. These results suggest that
SV recombinant vaccines expressing the WNV E glycoprotein may
e efficacious intranasal vaccines for animal and human use.
7 (2009) 893–903

2. Materials and methods

2.1. Cells and plasmids

Baby hamster kidney cells (BHK-21) were obtained from the
American Tissue Culture Collection (ATCC). These cells were grown
using Dulbecco’s modified minimal essential media (DMEM) sup-
plemented with 10% fetal bovine serum (FBS) and appropriate
amounts of antibiotics. The West Nile virus envelope (E) gene
was obtained by first producing a cDNA of the E gene from
the WNV-LSU-AR01 strain, and subsequently cloning this gene
into the pcDNA3.1 plasmid (Invitrogen, Inc.) after PCR amplifica-
tion. The E gene was further amplified by PCR from this plasmid
using primers that introduced unique NotI and BamHI sites at
the 5′ and 3′ using 5′ WNE-FLAG-Not-I (5′-GACGACGCGGCCGC-
ATGTTTAACTGCCTTGGAA TGAGC-3′) and 3′ WNE-FLAG-BamHI (5′-
GCAGCAGGATCCAGCGTGCACGTTCACGG AGAGG-3′) primers. NotI
and BamHI sites are italicized. The fragment was then cloned into
plasmid p3XFLAG-CMV-14 (Sigma) placing the FLAG epitope cod-
ing sequence downstream and in-frame with the E glycoprotein
sequence. All recombinant plasmids were confirmed by restriction
endonuclease digestion and DNA sequencing.

2.2. Transient expression of the WNV E gene

BHK-21 cells were transfected with the WNV E-3XFLAG plasmid
using Lipofectamine 2000 (Invitrogen) as suggested by the manu-
facturer. E glycoprotein was detected at 48 h post-transfection using
anti-FLAG (Sigma) and anti-West Nile rabbit polyclonal antibody
(Abcam). For immunofluorescence assay (IFA), cells were washed
twice with phosphate buffered saline (PBS) and fixed with ice-cold
methanol. Cells were then washed with PBS and wells were blocked
with 2% BSA and 5% goat serum in TBS (Tris-buffered saline) for
1 h. Mouse anti-FLAG antibodies (Sigma) in blocking buffer and
rabbit anti-WNV antibodies were added to respective wells at a
1:500 dilution and incubated for 1 h at room temperature. Cells
were then washed six times with TBS and the secondary anti-
body Alexa Fluor® 488 goat anti-mouse IgG and goat anti-rabbit
IgG (Invitrogen) were added to the respective wells at the same
dilution. Cells were incubated in dark for 1 h. Finally, cells were
washed six times with TBS and observed under a fluorescence
microscope.

2.3. Construction of recombinant VSVs expressing the WNV E gene

Plasmid clones that efficiently expressed the WNV E gene were
used as the template for PCR amplification of the gene, while
at the same time introducing unique XhoI and NheI sites at the
5′ and 3′ ends of the gene fragment using 5′-XN2-Xho-I (5′-
CCGCGGCTCGAGATGTTT AACTGCCTTGGAATGAGC-3′) and 3′-XN2-
Nhe-I (5′-GACGACGCTAGCGGATCACTAC TTGTCATCGTC-3′) primers.
XhoI and NheI restriction sites are italicized. This DNA fragment was
cloned into the pVSV-XN2-IN and pVSV-XN2-CH transfer vectors.
Cells were infected with recombinant vaccinia virus expressing T7
polymerase (vTF7-3) at a multiplicity of infection (MOI) of 10 for
1 h. Subsequently, BHK 21 cells were co-transfected with pBS-N,
pBS-P, pBS-L and pVSV-XN2 containing the WNV E gene and recom-
binant virus was recovered as described in detail previously [70,71].
Control viruses having no exogenous inserted genes were also pro-
duced using pBS-N, pBS-P, pBS-L and the pVSV-XN2 (empty vector).
Anti-FLAG and anti-WNV-E antibodies were used to detect expres-

sion of the E glycoprotein by IFA in VSV-infected BHK cells. Viral
isolates expressing high amounts of the WNV E glycoprotein were
selected through multiple rounds of plaque purification. Viral titers
were determined and stocks were stored at −80 ◦C for vaccination
studies.
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.4. Vaccination study

All animal studies were carried out after the appropriate
pprovals were obtained from the LSU Institutional Animal Care
nd Use Committee (IACUC) and BSL3 Biosafety Committee. Four
roups of ten 4-week-old female Balb/c mice (Harlan, IN, USA) were
sed in this study. Each individual mouse was identified with an
ar tag (National Band and Tag Company, KY, USA). Group I (vac-
ine group): These animals were mildly anesthetized by inhalation
f 2–3% isoflurane and 10 �l dose of vaccine containing 105 PFU of
he vaccine (rVSV-IN-WNV E) was administered intranasally using a
0 �l pipette (5 �l per nostril). Animals were boosted with the rVSV-
H-WNV E at 21 days post-vaccination using the same technique.
ne mouse from this group was not included in the fluorescence-
ctivated cell sorting (FACS) analysis due to sample preparation
roblems (n = 9). Group II (control for vaccine group): Control group
nimals were vaccinated in the same way as described above with
he exception that they were inoculated with 10 �l of uninfected
ell culture supernatant. These animals were boosted at 21 days
ost-vaccination with uninfected cell culture supernatant. Animals
elonging to Groups I and II were humanely euthanized at 14
ays post-boost. Spleens were collected in Eppendorf tubes con-
aining RPMI and processed by flow cytometry for intracellular
ytokines and cell-surface markers associate with memory T cells,
egulatory T cells and cytotoxic T cells among others. For serol-
gy, animals were bled by the sub-mandibular route (cheek bleed)
sing Golden-Rod lancets (Medipoint, NY). Animals were bled on 21
ays post-vaccination and 14 days post-boost. Blood was collected

n Becton Dickinson microtainers with serum separators (Becton
ickinson).

.5. Challenge studies: Group III (challenge group) and Group IV
challenge group control)

These 20 animals were treated exactly in the same way as Groups
and II until the boost stage. At 10 days post-boost, these ani-
als were transported to the animal biosafety level-3 (ABSL-3)

acility for acclimatization. Blood was collected at 14 days post-
oost (before challenge). Animals were challenged intraperitonially
ith 105 PFU of WNV-LSU-AR01 and observed 2–3 times a day

or 18 days. Animals showing severe neurological symptoms (like
taxia and hunching posture) were humanely euthanized and
ead animals were surgically processed immediately (thoracic and
bdominal cavities opened up and placed in 10% formalin jars) for
athological studies.

.6. Plaque reduction neutralization test (PRNT90)

Serum samples were inactivated by incubation at 65 ◦C for
0 min. Serial two-fold dilutions of the serum were incubated with
qual volumes of 50 PFU of WNV-LSU-AR01 at 37 ◦C for 1 h. Serum-
irus mixtures were then added to Vero cell monolayers in 12-well
lates in triplicates and the plates were incubated for another
our. Plates were then overlaid with Dulbecco’s modified minimum
ssential media (DMEM) containing 1% methyl cellulose and 2%
etal bovine serum. Plates were incubated at 37 ◦C for 72 h and then
xed with 10% formalin in phosphate buffered saline (PBS). Plates
ere washed three times with PBS and stained with 0.01% crys-

al violet. Plaques were counted and the highest dilution of serum
esulting in reduction of 90% of the plaques was noted.
.7. Polychromatic flow cytometric staining and analysis

Mouse splenocytes were adjusted to 107 cells/ml. One-hundred
icrolitre aliquots of splenocyte suspension was incubated with

ppropriately diluted concentrations of antibodies for 30 min at
7 (2009) 893–903 895

room temperature. Cells were washed once with PBS and fixed with
1X BD stabilizing fixative buffer (BD Biosciences) in distilled water.
Cells were kept protected from light at 4 ◦C and flow cytometric
acquisition was completed within 24 h of staining. Polychromatic
(7 parameters) flow cytometric acquisition was performed on a LSR
II Becton Dickinson instrument having three lasers (488 nm blue
laser, 633 nm red laser and 407 violet laser) by using FITC, PE-Texas
red, APC, APC-Cy7 and Pacific Blue as the available fluorochrome
parameters. Single-stained controls for each fluorochrome were
used for setting flow cytometry compensation. Monoclonal anti-
bodies including CD127 FITC (A7R34, eBioscience), CD62L PE-Texas
Red (MEL-14, Invitrogen), CD25 APC (3C7, BD Biosciences), CD4
APC-Cy7 (GK1.5, BD Biosciences) and CD8a Pacific Blue (53-6.7, BD
Biosciences) were used. At least 50,000 events were collected by
gating on CD4+ T cells and those data were analyzed using FlowJo
software (TreeStar Inc.) version 8.7.1.

To test CD4+ or CD8+ T lymphocytes subsets for IFN� production,
intracellular cytokine flow cytometry (CFC) assay was employed
in response to each WNV peptide pool stimulation as described
previously [72]. Briefly, processed splenocytes were resuspended
at 1 × 106 cells/ml in complete RPMI-10 with 10% FCS, and stimu-
lated with 2 different WNV peptide pools at a final concentration
of 1 �g/ml of each peptide pool. Peptide pools (15–19mers with
10–11 amino acids overlap) derived from the WNV E glycopro-
tein were based on the WNV-NY99 E amino acid sequence (NIH
Biodefense and Emerging Infections Research Resources Reposi-
tory, NIAID, NIH). The 67 peptide array was divided to generate two
peptide pools. Peptide pool 1 (pp1) was made of peptides 1–34
and peptide pool 2 (pp2) was composed of peptides 35–67. For
positive controls, PMA (50 ng/ml, Sigma) and ionomycin (1 �g/ml,
Sigma) were used. Negative controls had no antigen or mito-
gen stimulation. Brefeldin A (10 �g/ml, Sigma) was added to
cultures after the first hour, in a 6-h incubation period. Follow-
ing stimulation, cells were stained for cell-surface markers with
directly conjugated mAbs to CD69 FITC (H1.2F3, BD Biosciences),
CD62L PE-TR, CD4 APC-Cy7 and CD8a pacific blue for 30 min at
room temperature and washed with dPBS/BSA wash buffer. Cells
were then fixed and permeabilized by using Cytofix/Cytoperm
(BD Biosciences), washed twice in Perm Buffer (BD Biosciences),
and stained with intracellular mAbs. IFN� PE (XMG1.2, BD Bio-
sciences) and/or CD154 APC (MR1, eBiosciences) were added to
cells and incubated at room temperature for 30 min. Single color
and isotype-matched control antibodies were used to confirm
staining specificity. After washing, cells were resuspended in 1%
paraformaldehyde in PBS and stored in the dark at 4 ◦C. Data were
acquired within 24 h of staining using a LSR II instrument (BD
Immunocytometry System) and FACSDiva software (BD Immuno-
cytometry System). For each sample, 50,000 events were collected
by gating on CD4+ T cells. Data analysis was performed using FlowJo
software. Gated CD4+ and CD8+ T cells were further analyzed for
its cytokine production. Positive cytokine responses were deter-
mined based on the percentage of cytokine responses obtained
above background responses (unstimulated medium control) in
each experiment.

2.8. Histopathology

Tissues (brain, lung, liver, bilateral kidneys, heart, spleen, skull,
and vertebra) were collected from the mice, euthanized or after
dead, and fixed by immersion in 10% neutral buffered formalin.
The skull and vertebra were decalcified in 10% formic acid for 3

days. All sampled tissues were routinely processed into paraffin,
and 3–4 �m sections were cut for hematoxylin and eosin staining
(H&E). H&E sections of the nasal olfactory epithelium and bulb in
the skull and four sections of the spinal cord including two consec-
utive anterior cervico-thoracic and two consecutive lumbar-sacral
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Fig. 1. Construction of rVSVs expressing the LSU-AR01 E glycoprotein. (A) The WNV-LSU-AR01 E-FLAG fusion gene was cloned into the unique XhoI and NheI sites in pVSV-
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ells (control).

osterior sections in the vertebrae were examined under the light
icroscope.

.9. Statistical analysis

Graphical presentation and statistical analysis of the results
ere performed by two-tailed Student’s paired t-test using

he GraphPad Prism 4.0 (GraphPad Software Inc., SanDiego,
A). Expressions of CD62L, CD154, CD25 and CD127 between

mmunized and mock challenged mice were determined by non-
arametric Mann–Whitney t-test. For all statistical analysis, results
ere considered significant if p < 0.05. Mouse survival analysis was
one with GraphPad Prism 5.01 (GraphPad Software Inc., SanDiego,
A) using the Gehan-Breslow-Wilcoxin test.

. Results

.1. Cloning and transient expression of the WNV E glycoprotein

The WNV-LSU-AR01 strain was isolated from a dead blue jay
Cyanocitta cristata) in Louisiana in 2001. Recently, the entire

enome of this strain was sequenced and phylogenetically com-
ared to 75 full WNV genomes deposited in GeneBank [69]. The
gene was amplified from viral RNA using specific primers as

escribed in Section 2 and cloned into plasmid p3XFLAG (Sigma)
lacing the entire open reading frame of WNV E in-frame with the
K-21 cells. Expression of the WNV E glycoprotein was assayed using anti-FLAG and
olecular mass of 53–55 kDa on a western immunoblot using anti-FLAG antibodies.
e 4 is the molecular mass ladder and lane 5 is cell lysate from VSV-infected BHK-21

3XFLAG coding sequence resulting in the addition of the 3XFLAG
amino acid sequence immediately after the last carboxyl termi-
nal amino acid of the E glycoprotein. The p3XFLAG-E plasmid was
transfected into baby hamster kidney cells (BHK-21) and E gly-
coprotein expression was detected at 48 h post-transfection using
anti-FLAG monoclonal antibody. The anti-FLAG antibody detected
E glycoprotein expression in 3XFLAG-E transfected BHK cells, while
mock-transfected BHK cells failed to react with the anti-FLAG anti-
body.

3.2. Construction of recombinant vesicular stomatitis virus (VSV)
expressing the WNV E glycoprotein

To construct recombinant VSVs expressing the E glycoprotein,
the E gene was amplified with primers engineered to have unique
XhoI and NheI restriction sites at the E 5′ and 3′ termini, respec-
tively. The amplified E gene (with the 3XFLAG coding sequence)
was cloned within the unique XhoI and NheI restriction sites of
plasmids pVSV-XN2-IN and pVSV-XN2-CH containing the Indiana
and Chandipura G glycoprotein gene, respectively (Fig. 1A). Recom-
binant VSV was recovered after co-transfection of pVSV-XN2-E with

three other plasmids encoding the VSV polymerase subunits (P and
L), and the nucleocapsid (N), purified by filtration and extensively
plaque-purified. The appropriate insertion of the WNV gene within
the VSV genomes was confirmed by direct DNA sequencing of viral
RNA after RT-PCR amplification of specific cDNA regions. WNV E
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Fig. 2. Vaccination and animal challenge schedule. (A) Schematic of the time-
line followed for vaccination, boost-vaccination and challenge with WNV-AR01. (B)
Kaplan-Meier Survival curves. Mice in challenge groups were challenged intraperi-
toneally with 105 PFU of WNV-LSU-AR01 14 days post-boost-vaccination and
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bserved for 18 days. Ninety percent of the WNV vaccinated animals survived, while
0% of the mock-vaccinated animals died. A statistically significant difference was
bserved between the WNV and mock-vaccinated groups (p = 0.0004) using the
ehan-Breslow-Wilcoxin test.

xpression was readily detected by indirect immunofluorescence
ssay (IFA) using anti-FLAG monoclonal antibody in recombinant
SV-infected BHK cells, while WNV E was not detected in mock-

nfected BHK cells (Fig. 1B). Cell lysates from BHK-21 cells infected
ith recombinant VSVs expressing the WNV E glycoprotein were

ested for E glycoprotein expression in western immunoblots.
nti-FLAG antibody readily detected major protein species with
pparent molecular masses of approximately 53–55 kDa, respec-
ively in agreement with previous reports (Fig. 1C) [33,73].

.3. Mouse immunization and challenge schedule

Four groups of 4-week-old Balb/c mice (Harlan, IN, USA) were
sed for the vaccine-challenge experiments. All four groups of
ice were vaccinated by intranasal administration of 105 PFU of

VSV-XN2-IN-E recombinant virus at day 0 and boosted with pVSV-
N2-CH-E (105 PFU) 21 days post-vaccination (Fig. 2A). Mice in
roups I and II were processed for immunological analyses (see
ection 2), while Groups III and IV were challenged with 105 PFU of
NV-LSU-AR01 administered intraperitoneally. Mice in the chal-

enge groups were observed for 18 days for clinical signs including
uffled fur, ataxia, hunching posture, lethargy and mortality. VSV-

vaccinated and boosted animals exhibited 90% survival, while
nly 10% of the mock-vaccinated animals survived WNV-LSU-AR01
hallenge (p = 0.004) (Fig. 2B). Vaccinated animals appeared to
ave mild clinical signs post-challenge including mild fur ruffling,
ut recovered quickly to a full healthy status. In contrast, mock-
accinated animals exhibited severe clinical signs post-challenge
ncluding high degree of fur ruffling, ataxia, lethargy and even-
ually death. Post-mortem histopathological examination revealed
hat none of the vaccinated mice showed any central nervous sys-
em (CNS) pathology as compared to mock-vaccinated animals,
hich exhibited severe neuronal necrosis and lymphoplasmacytic
erivascular cuffing (Fig. 3). The single mouse in the vaccinated

roup that died at 12 days post-challenge had suppurative rhinitis
hich may be suggestive of bacterial infection. Mild suppurative

nflammation was also observed in the visceral pleura and sub-
leura of three mock-vaccinated mice that died before 11 days
ost-challenge (not shown). There were no significant histopatho-
7 (2009) 893–903 897

logical abnormalities within other tissues examined. In a separate
set of experiments mice were vaccinated via the intramuscular
route and challenged with a different strain of WNV (WNV-NY99)
9 weeks post-boost. The vaccine efficaciously protected 70% of the
vaccinated mice (not shown).

3.4. Induction of strong neutralizing antibody correlates with
protection

The ability of mouse sera to neutralize WNV-LSU-AR01 strain
was tested in a standard plaque reduction neutralization test
(PRNT90). Vaccinated animals developed strong neutralizing anti-
body responses against the LSU-AR01 at 21 days after primary
vaccination. Specifically, 9 of 10 mice developed PRNT90 titers of
1:32 and one mouse had a titer of 1:64. Neutralizing antibody titers
increased at 14 days post-boost-vaccination. Specifically, 9 of 10
mice had a PRNT90 titer of 1:64, while the remaining mouse had a
titer of 1:128.

CD154 expression in CD4+ T cells is intimately involved in
the polyclonal activation of immature B cells [74]. Therefore, we
compared the expression of CD154 in both vaccinated and mock-
vaccinated mice after in vitro stimulation with PMA/ionomycin
followed by FACS analysis (see Section 2). These experiments
revealed the presence of a significantly higher population of
CD4+CD154+IFN�+ T cells in vaccinated mice compared to mock-
vaccinated mice (mean value 1.73% versus 1.0% in vaccinated and
mock-vaccinated mice respectively, p < 0.0001, Fig. 4A and C), as also
indicated by the observed differences in their mean fluorescence
intensities (Fig. 4B and D).

3.5. Antigen-specific cellular immune responses

Antigen-specific cytokine responses were determined in all vac-
cinated and mock-vaccinated mice. Specifically, WNV-E specific T
cell responses were measured using cytokine flow cytometry (CFC)
to determine IFN� responses. Overall, 7 of 9 vaccinated mice had
detectable IFN� responses (ranged from 0.07 to 0.80%) in splenic
CD8+ T cells. CD4+ T cell positive IFN� responses were absent in
any of the vaccinated mice. Both peptide pools 1(E amino acids
291–554) and 2 (E amino acids 544–791) appeared to contain
T cell epitopes, however, peptide pool 1 contained dominant T
cell epitopes. One of the 9 mice developed antigen-specific IFN�
responses against both the WNV-E peptide pools. None of the
mock-vaccinated mice had any detectable IFN� responses above
background levels.

3.6. Profiles of CD62L and CD69 expression

CD62L is a lymphocyte homing marker that is generally asso-
ciated with extravasation of activated T cells to peripheral sites of
inflammation. Generally, increased percentages of CD8+ T cells were
present in the vaccinated mice compared to the mock-vaccinated
mice (mean 18.3% and 15.3% for vaccinated and mock-vaccinated
mice respectively, p = 0.01) (Fig. 5A). CD8+ T cell subsets in all
vaccinated mice had lower CD62L expression compared to mock-
vaccinated mice (p = 0.0003) (Fig. 5B). To further characterize the
cells responsible for inducing cytokine responses, antigen-specific
cytokine positive cells were determined. A significant population
(0.73%) of the IFN� positive cells was memory cells (CD8+ CD62L−)
(Fig. 5C).

CD69 is an early activation marker indicative of the pres-
ence of antigen-specific stimulation of mature T cells [75]. CD69

up-regulation of activated CD8+ T cells was detected in all
the vaccinated mice following antigen stimulation compared to
mock-vaccinated mice (mean 1.8% versus 0.8% in vaccinated and
mock-vaccinated mice, p = 0.012) indicating E-specific stimulation
of mature T cells in vaccinated animals (Fig. 5D).
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Fig. 3. Histopathology of cerebrum sections from mock-vaccinated and vaccinated mice after WNV challenge. (A) Mock-vaccinated group: Cerebral cortex showing large
numbers of necrotic neurons (arrows), characterized by angular and shrunken cell bodies containing pyknotic nucleus and densely eosinophilic cytoplasm at 40×magnification.
(
m

F
i
C
t
o
v

B) WNV vaccinated group: Cerebral cortex showing normal neurons at 40× magnificatio
agnification. H&E stain, Bar = 50 �m (A and B) or 100 �m (C and D).

ig. 4. Correlates of T cell-mediated induction of humoral immune responses: (A) Repre
n vaccinated mice compared to mock-vaccinated mice after 6 h of in vitro PMA/ION sti
D4+CD154+IFN�+ T cells in a vaccinated mouse compared to a mock-vaccinated mouse. (
o mock-vaccinated animals (p = 0.01). (D) The increased MFI percentage of CD4+CD154+

f costimulatory signals inducing humoral immune responses. A statistically significant
accinated and mock-vaccinated animals (p < 0.001).
n. Cerebral cortex of mock-vaccinated (C) and WNV vaccinated (D) groups at 60×

sentative contour plot showing increased percentage of CD4+CD154+IFN�+ T cells
mulation. (B) Histogram showing increased mean fluorescence intensity (MFI) of
C) Increased MFI in CD4+CD154+IFN�+ T cells was observed in WNV mice compared
IFN�+ T cells suggests that activated CD4+ T cells stimulated B cells with the help
difference was observed in the percentage of CD4+CD154+IFN�+ T cells between
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Fig. 5. Induction of WNV E-specific CD8+ T cells: (A) A higher percentage of CD8+ T cells was present in vaccinated animals compared to mock-vaccinated controls (p = 0.01). (B)
Down-regulation of CD62L expression in CD8+ T cells in vaccinated mice. A statistically significant difference was observed in the CD8+CD62L+ T cell populations (p = 0.0003)
i tour p
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n the WNV vaccinated versus the mock-vaccinated animals. (C) Representative con
ere CD8+CD62L− T cells (black circle) indicating the presence of activated effecto

accinated mice versus mock-vaccinated mice indicating the presence of WNV E-sp

.7. Profile of T reg activation in vaccinated versus
ock-vaccinated mice

Initial determination of CD4+T cell percentages in spleno-
ytes revealed no significant differences between vaccinated and
ock-vaccinated mice (Fig. 6A). CD127, the �-chain of the IL7

eceptor, in combination with CD25, the �-chain of the IL2 recep-
or, were used to define the relative abundance of T reg cells

ithin the population of conventional T cells [76]. Analysis of CD4+

D25+CD127low cells revealed that vaccinated mice had a signifi-
antly lower population of these cells (mean 6.3%) in comparison
o the mock-vaccinated mice (mean 7.3%) (p < 0.05) (Fig. 6B and
).
lots showing WNV E-specific CD8+ T cells. The majority of the IFN� producing cells
ls. (D) The percentage of CD8+CD69+ T cell population was increased (p = 0.012) in
stimulation of T cells.

4. Discussion

VSV-vectored vaccines have shown exceptional promise for pro-
tecting animals and humans against different viral and bacterial
pathogens. A VSV-vectored vaccine expressing the WNV-E glyco-
protein was constructed and found to efficiently protect mice after
intranasal administration against lethal WNV challenge. The salient
features of this vaccine study are: (1) A prime-boost intranasal vac-

cination approach with recombinant VSVs expressing the WNV E
glycoprotein produced robust CD8+IFN�+ T cell responses; (2) This
vaccine approach produced strong neutralizing titers against the
WNV; (3) Vaccinated mice were protected against lethal challenge
and they were free of neuronal necrosis, while unvaccinated mice
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Fig. 6. Role of regulatory T cells in vaccinated animals: (A) Percentage of CD4+ T
cells in WNV vaccinated and mock-vaccinated animals. There was no statistically
significant difference observed between these two groups. (B) Representative dot
plots showing the gating strategy for T reg cells derived from spleenocytes. CD4+
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cells were first gated and plotted for CD25 and CD127. CD4+ CD25+CD127low T
ells were defined as T regs. (C) Percentage of CD4+CD25+CD127low T reg cells. A
tatistically significant difference (p < 0.05) was observed between WNV-vaccinated
nd mock-vaccinated mice.

xhibited severe neuronal necrosis and inflammation in the brain.
hese results suggest that a prime-boost VSV-vectored intranasal
accine approach induces strong humoral and cellular immune
esponses that protect mice against WNV-induced neuronal necro-
is.

Mucosal surfaces constitute the natural route of VSV infec-
ions. VSV is primarily a veterinary viral pathogen that infects
attle, horses, sheep and other animals. VSV infects animals via
ransmucosal and transcutaneous routes [77]. VSV may also be
ransmitted through sandflies, blackflies and mosquitoes [44,78].
he VSV G glycoprotein is a potent immunogen and also serves

mportant functions in virus-entry and virus-induced cell fusion
79]. Recombinant VSVs expressing a variety of viral and bacte-
ial antigens have been constructed. Vaccine studies with these
ecombinant VSVs have showed that intranasal and intramuscu-
ar administration of the rVSVs were safe and efficient in inducing
7 (2009) 893–903

protective humoral and cellular immune responses against a vari-
ety of pathogens [78]. Of particular interest is the ability of the
VSV-vector system to elicit strong humoral and cellular immune
responses via the intranasal route [48,49,59,60,65,80] that can be
substantially easier to administer than intramuscularly injected
vaccines. In these vaccine studies, although the “empty” VSV vec-
tor elicited robust humoral and cellular immune responses against
VSV, these responses did not contribute to protection against a vari-
ety of pathogens indicating that specific immune responses against
the expressed transgene were primarily responsible for protection
[49,58–60,81,82].

We constructed rVSVs that expressed the WNV-E glycopro-
tein and either the VSV Indiana G glycoprotein, or the Chandipura
vesiculovirus G glycoprotein. This pair of rVSVs was used in a
prime-boost-vaccination approach to maximize humoral immune
responses against the WNV-E glycoprotein expressed by both
viruses, while minimizing the anamnestic immune response
against the VSV vector targeted predominantly against the G gly-
coprotein. This is largely accomplished because the Chandipura G
and the VSV-Indiana G glycoproteins are approximately 60% dif-
ferent in their amino acid sequences [83]. Recombinant VSVs are
known to non-specifically incorporate certain other viral and cel-
lular glycoproteins into their virions without adversely affecting
viral infectivity [70]. The insertion of the foreign E gene into the
VSV genome did not adversely affect viral replication and infec-
tivity, because rVSV containing the E gene replicated to similar
titers with those of the VSV control virus that did not have a for-
eign gene inserted within their genomes (not shown). Moreover,
rVSV-E isolates were stable, since multiple serial passages of virus
stocks in BHK cells did not affect E glycoprotein expression and
genomic stability (not shown). Although it is unclear whether the
WNV E glycoprotein is inserted into VSV envelopes, these results
suggested that rVSV-E were stable retaining wild-type levels of viral
replication and infectivity. Recombinant VSV-E expressed WNV-E
glycoprotein to high levels in BHK cells and the expressed E gly-
coprotein appeared to be fully glycosylated as evidenced by the
apparent molecular mass of approximately 53–55 kDa in SDS-PAGE
in agreement with published reports [33,73].

Based on the known strong immune responses generated
by VSV, especially when administered via the intranasal route,
we devised an experimental vaccine protocol to vaccinate mice
through the intranasal route using a prime-boost strategy. This
prime-boost-vaccination approach resulted in 90% (9 of 10) of the
mice surviving lethal challenge with the WNV-LSU-AR01 virulent
strain. The single mouse from the vaccinated group of mice that
died late in the experiment (12 days post-challenge) appeared to die
from WNV-unrelated causes, since histopathological examination
showed severe suppurative rhinitis but no histological abnormality
in the brain. Therefore, the rVSV-E prime-boost intranasal vaccina-
tion protocol was highly efficacious in protecting mice against WNV
infection. Similar results were obtained in a different experiment in
which mice were vaccinated via the intramuscular route and chal-
lenged with WNV-NY99 strain instead of the LSU-AR01 9 weeks
post-boost. In this experiment 70% of the mice survived indicat-
ing that intramuscular immunization may also provide protective
immune responses against WNV infection.

Primary WNV infection is thought to result in local replica-
tion of the virus in peripheral organs and viremia that ultimately
results in virus invading the CNS. WNV mortality is thought to be
largely caused by replication of the virus in the CNS tissues of ani-
mals and the resultant immunopathological damage of CNS tissues.

Accordingly, unvaccinated mice showed obvious clinical signs of
neurological disease such as ataxia, hunching posture, lethargy and
hindlimb paralysis. Histopathological examination of brain tissues
showed neuronal necrosis, perivascular cuffing, and microgliosis. In
contrast, only a few vaccinated mice developed mild clinical signs
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uch as mild ruffled fur, but recovered quickly. Importantly, none of
he vaccinated mice exhibited any neuronal necrosis.

The interaction of CD40 on B cells with CD154 (CD40L) on CD4+

cells results in T cell mediated activation of B cells resulting in
mmunoglobulin class switching, somatic hypermutation and pro-
iferation [84–86]. Accordingly, CD4+ CD154+ IFN�+ T cells were
p-regulated in vaccinated but not control mice indicating gen-
ration of T cell mediated B cell activation. The specificity of this
esponse is not discernable, since it may be due to either or both VSV
nd WNV antigens. However, strong neutralizing antibody titers
ere also produced against WNV indicating the induction of E-

pecific humoral immune responses. This result is in agreement
ith previous reports showing that other VSV-vectored vaccines

nduced strong humoral immune responses against different VSV-
xpressed antigens. Specifically, recombinant VSVs expressing
ither the respiratory syncytial virus F glycoprotein [49], or rVSV
xpressing the severe acute respiratory syndrome (SARS) corona
irus (SARS-CoV) produced high antibody titers against the F glyco-
rotein and SARC-CoV spike (S) glycoprotein, while strong immune
esponses against the VSV virus was noted [59].

The WNV E glycoprotein contains multiple predicted and exper-
mentally verified cytotoxic T cell (CTL) epitopes [87–90]. The
vailability of a library of overlapping peptides derived from the

NV E glycoprotein allowed the elucidation of antigen-specific
ellular immune responses. Peptide pool 1 composed of the first
4 peptides averaging 12–18 amino acids each generated stronger
ellular CD8+IFN�+ T cell responses in in vitro proliferation assays,
n comparison to peptide pool 2, which represented the carboxyl
erminus-half of the WNV E glycoprotein. Peptide pool 1 contains
he experimentally verified CTL epitope RSYCYLAT (E 347–354)
hile peptide pool 2 contains the CTL epitope IALTFLAV (E771–778),

oth of which have been shown to confer protection against lethal
NV-challenge in mice [87,89]. In vitro stimulation of lymphocytes

rom vaccinated mice revealed the presence of antigen-specific
FN� responses specifically in CD8+CD62Llow T cells. CD62L (L-
electin) mediates adhesion of resting lymphocytes to peripheral
ymph nodes. Typically, high expression of CD62L (CD62Lhi) reveals
ntrapment of lymphocytes within lymph nodes, while low CD62L
CD62Llow) cell-surface expression (the result of T cell activation)
s indicative of lymphocyte extravasation to sites of inflamma-
ion [91]. Splenocytes from vaccinated mice had significantly lower
xpression of the CD62L marker on E-specific IFN�+ CD8+T cells
evealing activation and extravasation of these cells to periph-
ral sites, potentially involved in killing virus-infected cells prior
o transmission to the CNS. CD69 is an early activation marker
hat is absent in resting lymphocytes [75]. The up-regulation of
he CD8+CD69+ E-specific T cell responses in vaccinated versus

ock-vaccinated mice provides additional evidence for the stimu-
ation of T cells. Accordingly, CD8+CD69+ E-specific population of T
ells was up-regulated in vaccinated versus mock-vaccinated mice
ndicating the generation of activated memory CD8+ T cells. It is
nclear whether the observed CD8+T cell memory responses con-

er long-term immunity against WNV infection. T regs are known
o play important roles in down-regulation of anti-self immune
esponses [92], and to suppress proliferation and cytokine pro-
uction of effector T cells [93]. Typically, during viral infections,
p-regulation of humoral and cellular immune responses causes
own-regulation of T reg activation. Typically, T regs express the
oxP3 and CD25 markers. The IL-7 receptor CD127 marker expres-
ion is inversely correlated to FoxP3 expression and CD127low

D25+ cells have been shown to be positive for FoxP3 [93,94].

onsequently, the CD25+CD127low population was used to define
regs. As expected, there was a negative correlation between

he relative population of T reg cells (CD4+CD25+CD127low) and
ntigen-specific CTL responses in the vaccinated mice. However,
he specificity of this immune response cannot be discerned, since
7 (2009) 893–903 901

it most likely is caused by both VSV and E glycoprotein anti-
gens.

A variety of experimental vaccine approaches have been
reported to generate protective humoral and cellular immune
responses against flaviviruses and specifically WNV. The relative
role of humoral versus cellular immune responses has been exten-
sively debated in the literature. Certain studies have suggested that
a strong humoral immune response evidenced by the production
of high titer anti-WNV titers is necessary and sufficient to pro-
tect mice from CNS infection, while other reports have argued
that a cellular immune response characterized by a robust anti-

NV CD8+ T cell responses is necessary for protecting and clearing
brain tissues from WNV [89,95,96]. One report has argued that
CTL-immune responses may result in exacerbated immunopathol-
ogy in brain and CNS tissues at infections with low WNV titers
(103 PFU) [95]. In our experiments, 105 WNV PFU were inoculated
intraperitoneally. Vaccinated mice had no evidence of neuronal
necrosis suggesting the CD8+T cell responses conferred protection
and virus clearance. It is probable that both humoral and cellular
immune responses generated against the WNV E glycoprotein pre-
vented the virus from entering CNS, potentially arresting the virus
at peripheral sites. Alternatively, if some virus escaped peripheral
immune surveillance, it is possible that CTLs cleared the virus from
brain tissues before it could cause significant damage and resultant
immunopathological manifestations.

In summary, the VSV-E-vectored vaccine appeared to elicit
robust humoral and cellular immune responses that efficiently
protected mice from WNV lethal challenge. Intranasal vaccina-
tion is second only to oral vaccination with regard to the relative
ease of administration and patient compliance issues rendering
this approach attractive for human use. Recently, single-cycle VSV-
vectored vaccines have been shown to generate robust immune
responses against a number of viral pathogens including HIV, Ebola,
Marburg, Lassa, influenza, avian influenza, hepatitis C and RSV
viruses [46,47,49,54–58,81,97]. Based on these results, it is expected
that single cycle VSV-WNV vaccines would be also efficacious. Addi-
tional improvements in attenuating VSV can be made by providing
more than one viral protein in trans through complementing cells,
as well as engineering additional mutations that are known to
attenuate VSV.
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