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Abstract

Kinomics is an emerging field of science that involves the study of global kinase activity. As

kinases are essential players in virtually all cellular activities, kinomic testing can directly

examine protein function, distinguishing kinomics from more remote, upstream components

of the central dogma, such as genomics and transcriptomics. While there exist several dif-

ferent approaches for kinomic research, peptide microarrays are the most widely used and

involve kinase activity assessment through measurement of phosphorylation of peptide sub-

strates on the array. Unfortunately, bioinformatic tools for analyzing kinomic data are quite

limited necessitating the development of accessible open access software in order to facili-

tate standardization and dissemination of kinomic data for scientific use. Here, we examine

and present tools for data analysis for the popular PamChip® (PamGene International)

kinomic peptide microarray. As a result, we propose (1) a procedural optimization of kinetic

curve data capture, (2) new methods for background normalization, (3) guidelines for the

detection of outliers during parameterization, and (4) a standardized data model to store

array data at various analytical points. In order to utilize the new data model, we developed

a series of tools to implement the new methods and to visualize the various data models. In

the interest of accessibility, we developed this new toolbox as a series of JavaScript proce-

dures that can be utilized as either server side resources (easily packaged as web services)

or as client side scripts (web applications running in the browser). The aggregation of these

tools within a Kinomics Toolbox provides an extensible web based analytic platform that

researchers can engage directly and web programmers can extend. As a proof of concept,

we developed three analytical tools, a technical reproducibility visualizer, an ANOVA based

detector of differentially phosphorylated peptides, and a heatmap display with hierarchical

clustering.
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Introduction

Kinases are fundamental to cellular life; they provide essential regulation and function in

nearly every pathway. Due to this, there has been increasing interest in investigating kinases

on a global scale. Kinase based investigations generally focus on one of two major categories;

(1) the phosphoproteome[1–4], the set of kinase targets and, (2) the kinome[5–9], the set of

cellular kinases. Kinome analysis can focus on either quantification of kinase abundance or

activity. Arguably, the most potential clinical relevance is in the measurement of kinase activ-

ity[6,7]. In general, kinome activity has been measured utilizing either mass spectrometry

(MS) or peptide array methods. Due to the low abundance of kinases, MS requires enrichment

or purification of kinases or their products to produce useful information. A variety of isola-

tion techniques are used in conjunction with tandem MS to quantify and accurately measure

kinase activity[7]. While these MS techniques are continuing to develop and gaining popular-

ity, peptide arrays remain the more commonly used kinomic approach.

Covered thoroughly in the recent Baharani et al. review[9], three core peptide array tech-

nologies exist for measuring kinase activities. All three technologies affix phosphorylatable

peptide residues to a different matrix; (1) glass beads in solution, (2) glass slide based, 2D

kinome microarrays, and (3) porous 3D microarrays, PamGene PamChip1 [9]. The more

developed PamChip and 2D kinome microarrays provide a high-throughput measure of

kinase activity by exposing kinases to phosphorylatable peptide residues and utilizing either

fluorescent antibodies or radioactive isotopes to detect phosphorylation amounts[6,9].

Our lab focuses on the PamChip system, that has arrays with at least 144 distinct peptides,

each composed of 12–15 amino acids, with one or more phosphorylatable residues. The arrays

are specifically designed to capture kinase assay data for either the tyrosine kinome (protein

tyrosine kinase or PTK PamChip) or serine/threonine kinome (serine/threonine kinase or

STK PamChip) with target peptides containing phosphorylatable tyrosine or serine/threonine

residues, respectively. Peptides are printed onto the array in ‘spots’, and similar to other micro-

array technologies, phosphorylation is quantified utilizing image pixel brightness at each spot.

To capture kinetic data, images are taken at set intervals over the course of a reaction. To cap-

ture end-level (post-wash) data, images are taken at varying camera exposure times. Each

image is analyzed utilizing proprietary software that can report a number of parameters

including median signal and background. Depending on the study, either median signal[10]

or a median signal, background value[11–13] is then utilized for subsequent analyses.

While the PamChip system lacks the quantity of phosphorylatable peptide targets found on

some complementary 2D kinome microarrays, it does provide unique data in the form of

kinetic phosphorylation measurements during the multiplexed in vitro kinase assay. Unfortu-

nately, the majority of published PamChip studies do not report kinetic data, but instead,

describe only the end level data (e.g., end of reaction data points) albeit with upstream kinase

prediction analyses[11,12,14]. We believe the underutilization of the kinetic data is due to its

relative complexity[15,16]. Studies that do utilize the kinetic curves focus on the early slope

(so-called initial velocity or Vini) and often do so in combination with another unique tech-

nique available, ex vivo addition of kinase inhibitors to cell lysate immediately prior, or during

the assay. Kinase inhibitor inclusion allows for "biological interrogation" of the lysate by visual-

izing the reduction in specific phosphopeptide(s) intensities [11,17]. Nevertheless, kinetic

curve data has largely been ignored in the literature.

Another major challenge facing the field is that of data management. A multitude of recent

studies have identified opaque data analysis tools as a major problem [18]. Initiatives such as

FAIR are now setting the ground rules for data and analytical products to be “Findable, Assess-

able, Interoperable, and Reproducible [19]. Unfortunately, development of FAIR analytic
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platforms for kinomics data is quite limited. Initial approaches for handling 2D kinome micro-

array data included two versions of an analysis platform, PIIKA, specifically designed for the

PepScan system [20,21]. This platform was created utilizing R and Perl allowing users to

upload annotated files and receive an analysis by email. BioNavigator [22], a licensed software

package, can perform similar, but less transparent, analyses for PamChip data but requires

domain expertise and manual interaction.

A related challenge in the field is the lack of kinomic data standardization as highlighted in

two recent reviews [9,23]. Recommendations include adoption of a specialized version of Min-

imum Information About a Microarray Experiment (MIAME) standard[24] for kinomic pub-

lications, and a kinome specialty meeting to discuss standards, respectively[9,23]. A follow-up

critique of MIAME indicates early shortfalls of this standard were the lack of simple data for-

mat standards and a lack of publicly available data sets[25].

Therefore, we have addressed these two major challenges by: 1) creating a series of web-

based analysis and display tools for PamChip data in an open source format with transparent

data handling for background normalization, curve fitting, data parameterization and outlier

detection; and 2) by supplying a simple, but rigorous, JavaScript Object Notation (JSON)

document-based data standard and instructions for creation of a MongoDB database. The

“Kinome Toolbox” functionality is demonstrated through a case study of genetically modified

glioblastoma (GBM) cells, a disease well known for aberrant kinase signaling.

Methods

Cell culture system

We have previously published on the expression and function of the protein Myristoylated

Alanine Rich C-Kinase Substrate (MARCKS) in the human GBM cell line U87 including the

generation and characterization of doxycycline-inducible MARCKS mutant U87 cell lines

[26,27]. The specific alterations to this protein are shown schematically in S1 Fig, and are as

follows:

1. Vector Control (CT): U87 transduced with an empty vector.

2. MARCKS overexpression (WT+): U87 transduced with the wild-type MARCKS protein

which contains four phosphorylatable serine residues in its effector domain (ED).

3. Non-Phospho MARCKS (NP): U87 transduced with MARCKS whose phosphorylatable

serine residues within the ED are mutated to non-phosphorylatable alanine’s, thus mimick-

ing the unphosphorylated state of MARCKS[27].

4. Pseudo-Phospho MARCKS (PP): U87 transduced with MARCKS whose phosphorylatable

serine residues in the ED are mutated to aspartic acid, permanently mimicking the charge

of phosphorylated serine residues[27].

The culture conditions have been previously described but briefly, 5 x 105 of each mutant

cell line were plated in biological triplicate and induced overnight with 1 μg/mL doxycycline in

standard growth medium—Dulbecco’s modified Eagle’s medium (DMEM) supplemented

with 10% fetal bovine serum (FBS). All cells were maintained at 37˚C in 5% CO2.

Kinomic assay

Cells were lysed according to standard operating procedures of The University of Alabama at

Birmingham’s (UAB) Kinome Core similar to prior reports[11,28], with slight modification in

order to assess the effects of measurement accuracy, background normalization, and saturation
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as described below. Samples were quantified for protein content and normalized to equivalent

DNA levels and run in biological triplicate on the PamStation112 housed in the UAB Kinome

Core. There are two phases to the kinomic assay, the kinetic and end-level (post-wash) phases.

The kinetic phase is indexed by cycles of sample fluid pumping with measurements beginning

at cycle 32. The most commonly used method involves substrate phosphorylation image cap-

ture during every 4 subsequent cycles (for a total 92 cycles) at a single 50ms exposure time. Fol-

lowing this, the chip is washed of active lysate and 5 pictures are taken at varying exposure

times (10ms, 20ms, 50ms, 100ms, 200ms) and labeled as post-wash data. For the case study

presented here, we extended the chip run time to 152 cycles, taking pictures at 5 exposure

times (10ms, 20ms, 50ms, 100ms, 200ms) every 6 cycles during the kinetic data portion, then

captured the traditional 5 post-wash images. All images were then processed by the Evolve2

(0.08)[22] software to extract separate median signal and median background measurements.

This data was then exported with all metadata as 2 ‘BioNavigator crosstab’ files for subsequent

Kinome Toolbox as detailed below.

General data workflow

The proposed workflow for preparation for data analysis is briefly described here and shown

schematically in S2 Fig. All steps are described thoroughly in other sections and unless other-

wise indicated can be performed stepwise using client-side JavaScript or in an integrated fash-

ion using server side NodeJS.

1. Image analysis is performed by Evolve2 (0.08)[22] the results of which are exported in Bio-

Navigator’s crosstab format separately as 2 files: Median signal and Background with all

possible metadata. Additionally, all images captured during the run are added to a directory

on the server.

2. A data parser creates JSON documents for lvl 1.0.0 and basic names data from the crosstab

format. These data are added to the database as part of the appropriate collections.

3. Outlier detection is performed on the lvl 1.0.0 data creating lvl 1.0.1 documents. This is

based on temporary shifting, curve fitting to detect outliers, followed by permanent shifting

of kinetic data. If multiple exposure time were utilized for kinetic curves, the slopes created

by varying exposure times are added here as an additional kinetic curve, cycle series.

4. A linear regression-based background-smoothing algorithm is applied to lvl 1.0.1 to create

lvl 1.1.2 data objects.

5. Final curve parameterization is performed on both lvl 1.0.1 and lvl 1.1.2 data objects. These

create lvl 2.0.1 and lvl 2.1.2 parameter objects respectively.

Outlier detection

Data points were automatically marked as potential outliers when the following was true:

e2 > 16s2
e where e is an individual error residue and s2

e is the variance of the error for a given

model. s2
e was estimated from the variance of all errors separately from both linear and non-

linear models. A fit containing at least one outlier then undergoes iterative fitting, dropping

each point in sequence. Based on each fit an adjusted R2 is calculated, the best R2 is removed

from the list, and a mean R2 and standard deviation, sR2 are calculated. If the best model R2 >

R2 þ 2sR2 the corresponding point is called an outlier. This is done recursively up to 4 times or

until the number of points for a linear model is < 4 or kinetic model < 9. These models used

as a basis for this are described below in Methods: Data Parameterization.
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Background normalization

This procedure can be applied to each image separately. For a given image, all values are

shifted by y0 so the lowest value is 0. Every point is then collected along with neighboring back-

grounds into the following equation, and the β parameter matrix is solved for:

b0

..

.

b144

2

6
6
4

3

7
7
5 ¼

1 y1 b1;1 b2;1

..

. ..
. ..

. ..
.

1 y144 b1;144 b2;144

2

6
6
6
4

3

7
7
7
5

b0

b1

b2

b3

2

6
6
6
6
4

3

7
7
7
7
5

ð1Þ

Where bi is the background for spoti, yi is the signal for spoti, b1,i is the average background

spots directly above and below spoti, b2,i is the average background for spots directly diagonal

from spoti. Once the β parameter matrix is solved the signal values are returned to their origi-

nal value and the new background values are set as follows:

b̂i ¼ b0 þ b1y1 þ b2b1;i þ b3b2;i ð2Þ

Data parameterization

All data were treated separately as background and signal. This is due to the differences in ana-

lytic techniques used across the literature and due to the more robust fitting of lower signal

spots when data is treated separately. All kinetic data for a given exposure time had the mini-

mum background across all data subtracted. This sets the baseline at an acceptable place for

the following model:

yðcÞ ¼
ymax � vi � ðc � c0Þ

ymax þ vi; � ðc � c0Þ
ð3Þ

Where ymax is the predicted maximum value for the kinetic curve, vi is the initial velocity

parameter; c0 is an adjustment parameter. The linear (post-wash) data was fit utilizing a stan-

dard linear model as were all image series taken throughout the kinetic reads.

yðeÞ ¼ mx þ b ð4Þ

The complexity of this particular data set makes some additional notation helpful.

m Slope of the line formed by the values from the post-wash analysis.

mc Slope of the line formed by the values from a given cycle number. In this experiment it

takes values from 32 to 152. (cycles)

vi,� Initial velocity parameter from Eq 3 utilizing all mc as y values.

vi,e Initial velocity parameter from Eq 3, for a given exposure time ‘e’. Takes values of 10, 20,

50, 100, 200 (ms).

All indicators add a subscript b when describing exclusively the background or b̂ when dis-

cussing background corrected values. For the most part, we will be focusing on vi,50 and m.

This is because the majority of literature utilizes these values.

When accounting for background current methods either ignore background (less com-

mon) or correct for it in the following manner:

ls100ðpðsÞ; pðbÞÞ ¼ log
2
ð100ðpðsÞ � pðbÞ þ ceÞÞ ð5Þ
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Where the corrected value is the ls100, p(s) is the parameter value for the signal s curve of inter-

est, p(b) is the corresponding background parameter (for either b or b̂) and ce is a correction

factor. ce is determined by pooling all s−b across an experiment, by subtracting the 5th quantile,

V1, from 1: ce = 1−V1({s1−b1,. . ., sn−bn}). Unfortunately, this correction factor is highly depen-

dent on the number of samples and must be rederived for sample subsets or meta-analyses of

grouped experiments. To overcome this experiment-specific correction factor, we propose an

alternative approach that accounts for background by the following:

lsðpðsÞ; pðbÞÞ ¼ log
2

pðsÞ
pðbÞ

� �

ð6Þ

Reproducibility

Measurement reproducibility. In this case, we refer to measurement reproducibility as

the accuracy of the values as obtained by a single image analysis step. To determine this, we

utilize different camera exposure times for the parameterization of kinetic curves. This allows

the parameterization of Eq 3 for a more robust signal value (vi,�) to be compared to that

obtained in a less robust manner (vi,e). For this comparison, we treat the 12 samples indepen-

dently with a correlation being calculated based on one (vi,e) to one (vi,�).

Technical reproducibility. Technical replicates are the same sample run on multiple

PamChip arrays. For this, we have 4 samples with 3 technical replicates each[29]. Correlations

were based on 1–2 comparison where replicates are paired in all possible ways transforming

the 3 measurements to 6 (x, y) points ({x,y,z}! {(x,y), (x,z), (y,x), (y,z), (z,x), (z,y)}. To deter-

mine if the reproducibility is a factor of sample or random, 4 random groups of 3 were formed

10 times over and the same correlations were calculated.

Database: Application program interface

We utilized JavaScript Object Notation (JSON) Objects for data representation. This is due to

its relative ubiquity as parsable data and its ability to represent the complex structure without

significant repetition. Data models for the 3 major levels can be seen in S3–S5 Figs. In addition

to the 3 major levels, the minor levels are described in S1 Table and S2 Fig.

MongoDB 3.4 was utilized as the database backend. A small read-only server was created

with NodeJS v 8.0.0 (NodeJS) with the packages: restifyJS v4.3.0, and MongoDB 2.2.6. This

server is utilized to serve MongoDB documents and captured images. The documents are

available at http://db.kinomecore.com/db/1.0.0/{level}/<params>. The images are available

at: http://db.kinomecore.com/image/{img_name}. Full API documentation with swagger can

be found https://app.swaggerhub.com/apis/adussaq/KINOME/1.0.0. The code for creating

your own backend server along with full documentation of its use can be found https://github.

com/kinome/kinome_toolbox. The MongoDB server is housed at UAB as part of our research

cluster. The restifyJS server code is viewable here: https://github.com/kinome/kinome_

toolbox/blob/master/server.js.

Results

Kinome toolbox development

The kinome toolbox is a series of tools utilized for the processing and visualization of PamChip

kinomic peptide arrays. The client toolbox is available at http://toolbox.kinomecore.com/ and

the code for all three parts is available at https://github.com/kinome/kinome_toolbox. It is
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written in JavaScript for both the client and the server and has three major components as

described below (Schematically shown in Fig 1).

Library. The library is a series of packages that can be utilized to convert data between levels

and to enrich the kinome objects with a rich software development kit (SDK) for easier use.

This SDK is documented https://github.com/kinome/kinome_toolbox.

Server. The server component exists to quickly create the documents for all major and

minor levels from the input of a Bionavigator crosstab file. It is written in nodeJS and uses a

flag-based command line interface.

Client. The client consists of a series of tools designed to make working with kinome data

as simple as possible. It has two major pages: (1) an image loader that accepts an image name

and displays the array image associated and (2) a data loader that creates a contextually deter-

mined home page.

The image loader utilizes the Kinome API to pull the original run images from the server. It

converts the tiff to the standard RBG color scheme and utilizes those values to brighten the

image to make them more visible. Additionally, a link to download the original high-quality

tiff is provided.

Fig 1. Kinome toolbox schematic. A schematic of the toolbox organization and analytic tools are shown. The three major components are the

Library, Server, and Client.

https://doi.org/10.1371/journal.pone.0202139.g001
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The home page loads in data, code, and styles by URL parameters. The data loading blocks

code loading and styles load asynchronously. Data is cached for 30 minutes by default, and up

to 90 days if it is determined to be unique mongo documents. Styles are cached for 90 days.

These in combination decrease revisit load time significantly. Additionally, once data is loaded

the page determines the data type present and displays a series of available functions. The

entire library can be explored at https://github.com/kinome/kinome_toolbox. Additionally, in

order to more fully explain the toolbox, there is a YouTube playlist that describes the basic use

of the tool available here: http://bit.kinomecore.com/?playlist. The kinomics toolbox will by

default display our public names database and a table to build comparison groups. To build up

the other pages or add samples to analytic groups, follow the links that appear below the table.

Or you can go here: http://bit.kinomecore.com/?p1_1.0.0 to see all the level 1.0.0 data used in

this manuscript and be provided links to visualize all other data levels.

At the time of writing this, the visualizations and analyses available for level one were: out-

lier detection, background normalization, and general visualization. For level two: reproduc-

ibility (by groups), measurement reproducibility (by sample), ANOVA (by groups), and

Heatmap (by samples, displays group identity). Level one data provides links to view and

download the original images for points of interest. Level 1 visualization displays a virtual

array, a sample, cycle and exposure time selector. The virtual array is colored by signal—sam-

ple to give relative signal strength. Clicking on a peptide in the virtual array will pull up specific

values for that peptide, display the peptide meta data, and provide a link to the image associ-

ated with the selected cycle/exposure combination. This visualization allows data inspection at

all levels and in combination with the meta data displayed in the main table, provides the meta

data needed to meet the majority of MIAME criteria.

Case study

The protein MARCKS has been implicated in GBM biology by our lab and others including

effects on proliferation, invasion, DNA damage repair, nuclear localization and signal trans-

duction cascades. The MARCKS effector domain (ED) is a critical region of the protein

allowing it to reversibly bind to phosphatidyl inositol (3,4) bisphosphate (PIP2), calcium-cal-

modulin (CaM), and actin while also serving as its nuclear localization signal. We generated

doxycycline-inducible MARCKS ED mutants in the U87 GBM cell line as described in Meth-

ods and S1 Fig. The four mutants were induced to overexpress and were kinomically profiled.

Using these isogenic lines, we will demonstrate the kinome toolbox functionality in the subse-

quent figures. We will show replicate grouping assignment, outlier detection, background nor-

malization, curve fitting with data parameterization, statistical testing with simple ANOVA

and hierarchical clustering for heatmap visualization. Video tutorials and URL’s for individual

figures are provided in the appropriate sections.

Data grouping and outlier detection. Each replicate of the four mutant lines were

assigned to Analysis Groups (Control or CT = Group 0; MARCKS wild-type overexpression

or MARCKS+ = Group 1; non-phosphorylatable MARCKS or NP MARCKS = Group 2; and

pseudophosphorylatable MARCKS or PP MARCKS = Group 3) under the data tab. Outliers

were then removed from the data using the Analysis tab as described in Methods. For linear

models 16s2
e ¼ 56:9441, 0.81% (3,092/ 378,970) of all data points exceed this error threshold

and 2.23% of fits (1,694 of 76,032). For non-linear models 16s2
e ¼ 262:3680, this represents

0.85% (3,060/361,798) of all data points and 4.17% of fits (721/17,280). Once filtered, this lead

to 0.74% (3,393/455,002, including mc) of points being determined to be outliers. An example

of an auto-flagged outlier for the ENOG_37_49 probe on Sample 631308612_3 is shown as red

dots on the Cycle v. Signal curve within the Data Visualization tool (Fig 2) where the signal
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Fig 2. Data grouping and outlier detection. A) shows the sample list screen under the Data tab. Drop down menu

allows for selecting samples to be analyzed as particular groups. The data levels can be selected using the links at the

bottom with corresponding descriptions. B) shows the Data Visualization tool under the Analyses Available tab. The

peptide ENOG_37_49 has been selected and peptide information, cycle number, exposure, data measurements and

curve fits are shown. Red dots on the fitted curve indicate spots that were auto-flagged as outliers using the stringent

cutoffs described in the Results section.

https://doi.org/10.1371/journal.pone.0202139.g002
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intensity exceeds the linear range of the camera. Removal of the outliers provides a well fit

curve (R2 = 0.99959). We believe these cutoffs are a reasonable starting point for future data

analysis.

Background normalization. As mentioned earlier, publications using this platform have

typically utilized a median signal minus immediate background for calculating peptide intensi-

ties. However, since our kinome toolbox handles the signal and background intensities sepa-

rately, we noted that the background itself is a function of the corresponding signal—in other

words, adjacent higher intensity spots will influence the background intensity. This creates a

situation where subtracting the background without normalization dampens the signal. Fig 3

depicts a single image before and after background correction. It can be seen that the correla-

tion between background and signal nearly disappears as a result of the correction. This also

has the effect of decreasing the background variance across the chip as can be seen in Fig 3

Fig 3. Background correction of a single array. One array image was chosen for visualization. Panel A and C represent the background

before normalization. Panel A shows the background values plotted against position. Panel C shows the spot intensity versus background

intensity and has a correlation of 0.9642 (p-val:<0.0001). Panels B and D represent the background after normalization. Panel B is

background plotted against position. Panel D is spot intensity versus background intensity and has a correlation of 0.2272 (p-val: 0.0062).

These figures can be generated for every image presented here at http://bit.kinomecore.com/?fig3.

https://doi.org/10.1371/journal.pone.0202139.g003
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panel B. We will assess the differences between these approaches in the Reproducibility section

below.

Data parameterization. Treating background and signal separately lead to very successful

fitting. Linear (Post Wash) signals averaged an R2 of 0.9985 ± 0.030 and kinetic (Cycle)

signals averaged an R2 of 0.9903 ± 0.012. Background signals averaged an R2 of 0.9985 for

linear fits and 0.9833 for kinetic fits. Corrected background (b̂) signals averaged an R2 of

0.9988 for linear fits and 0.9922 for kinetic fits. ce was calculated for all parameters of potential

interest, all these values are displayed in the client side tool, key ones include: 1.0610 for ls100

(m(s), m(b)), 1.0047 for ls100ðmðsÞ; mðb̂ÞÞ, 1.0478 for ls100(vi,�(s), vi,�(b)), and 1.0019 for

ls100ðvi;�ðsÞ; vi;�ðb̂ÞÞ. We will assess the differences between these approaches in the Reproduc-

ibility and Clustering sections.

Reproducibility. One of the challenges in the field of kinomic peptide arrays relates to

accuracy determination across arrays because there is no accepted “background” kinase activ-

ity for comparison as opposed to the transcriptomic "housekeeping gene" that is traditionally

used for array normalization. As such, we use technical reproducibility as a proxy to determine

the accuracy of the data and data manipulations. Here we propose an additional, more funda-

mental measurement, vi,� as the standard to compare individual vi,e to assess measurement

accuracy.

Measurement reproducibility. We will look at measurement reproducibility with two

goals in mind. (1): Determine the added value of capturing multiple images (by varying camera

exposure time) rather than the standard single exposure (50 msec) during the kinetic phase.

(2): Determine the effectiveness of background correction in producing consistent (i.e,

improved Spearman correlations) results across image series.

1. The correlation of the kinetic parameters vi,e for various exposure times, e, to the more

robust vi,� is shown in Fig 4. In the shorter exposure times, the noise introduced is in the

low signal tail, while the longer exposure times have noise in the higher signal range. For

example, when comparing the vi,10 for all samples to vi,� we get a Pearson’s r = 0.9981 and

Spearman’s ρ = 0.9097. With the lower rank correlation being caused by low resolution of

the lower signals. However, for vi,200 versus vi,� we see the opposite with Pearson’s r = 0.9807

and Spearman’s ρ = 0.9995. The rank correlation increases to further separate signals, how-

ever, the high data points become more erratic. Taken together this indicates that the cycle

slope (vi,�) may provide additional information not fully captured with a single exposure

time.

2. To determine how background normalization affects the reproducibility of measurements

at the standard 50ms exposure time for kinetic studies, we want to compare the correlation

of ls(vi,50 (s), vi,50,b(b)) and ls(vi,� (s), vi,�,b(b)) to the correlation of lsðvi;50ðsÞ; vi;50;b̂ðb̂ÞÞ to

lsðvi;�ðsÞ; vi;�;b̂ðb̂ÞÞ. We can see the results of this in Fig 4 where both measures of correlation

improve when utilizing the background normalization. The change in Pearson’s R repre-

sents a significant difference (p-val: < 0.0001 Fisher). Interestingly the difference increases

for lower exposure times with the b̂ outperforming b, however for higher exposure times

this pattern switches, favoring the uncorrected b. Taken together these observations suggest

multiple time points and background correction may help distinguish lower signal spots.

Technical reproducibility. We further addressed the utility of background normalization

and multiple camera exposures in the kinetic studies by focusing on 3 questions related to

technical reproducibility. (1) Does background normalization improve the reproducibility of
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linear, post wash slope, m, or the kinetic initial velocity parameter, vi,50? (2) Does using ls(�) to

account for the background improve the reproducibility of kinetic or post wash key parame-

ters (m,vi,50) over ls100(�)? (3) Does vi,� improve the reproducibility of kinetic parameterization

over vi,50? The correlations used to discuss these questions are shown in Table 1.

All four investigation groups show similar results for questions (1) and (2). The background

corrected ls(�) has the highest correlation throughout, significantly outperforming the next

highest for both vi,�, and m, but not for vi,50 (p-val: 0.6965, 2 tail Fisher approximation). While

this is reasonably clear, the pairwise comparisons are murkier. Depending on the equation

Fig 4. Measurement reproducibility for kinetic parameterization. In panels A-C, kinetic curves created by images

series of varying exposure times (vi,e) are compared to the more robust vi,�. The data presented is 144 peptides for all 12

samples discussed in Methods. Panel A is a 10 ms exposure time and has a Pearson’s r = 0.9981 and a Spearman’s ρ =

0.9097. Panel B is a 50 ms exposure time and has a Pearson’s r = 0.9989 and a Spearman’s ρ = 0.9920. Panel C is a 200

ms exposure time and has a Pearson’s r = 0.9807 and a Spearman’s ρ = 0.9995. Panels D compares ls(vi,50 (s), vi,50,b(b))

to ls(vi,� (s), vi,�,b(b)) and has a Pearson’s r = 0.9887 and a Spearman’s ρ = 0.9279. Panels E compares lsðvi;50ðsÞ; vi;50;b̂ ðb̂ÞÞ
to lsðvi;�ðsÞ; vi;�;b̂ ðb̂ÞÞ and has a Pearson’s r = 0.9941; Spearman’s ρ = 0.9681. These figures and all similar variations can

be further investigated and explored at http://bit.kinomecore.com/?fig4a for b and at http://bit.kinomecore.com/?fig4b

for b̂.

https://doi.org/10.1371/journal.pone.0202139.g004

Table 1. Reproducibility of background corrected technical replicates. The correlation of the parameters for 144 peptides across 4 sets of 3 technical replicates (3,456

points). These and similar comparisons can be visualized for background normalized data: http://bit.kinomecore.com/?tab1a and for non-normalized: http://bit.

kinomecore.com/?tab1b.

Equation Signal Parameters Spearman Correlation Equation Signal Parameters Spearman Correlation

ls100(�) m,b 0.99075� ls(�) m,b 0.99018

ls100(�) m,b̂ 0.98768 ls(�) m,b̂ 0.99240�

ls100(�) vi,50 b 0.97973 ls(�) vi,50, b 0.96991

ls100(�) vi,50, b̂ 0.98192 ls(�) vi,50, b̂ 0.98246

ls100(�) vi,�,b 0.97477 ls(�) vi,�,b 0.97817 ��

ls100(�) vi,�, b̂ 0.97430 ls(�) vi,�, b̂ 0.98334 ��

�, �� p-val < 0.0001 by 2 tail Fisher approximation.

https://doi.org/10.1371/journal.pone.0202139.t001
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group the older methodologies actually will outperform the newer ones when comparing ls100

(�, b) to ls100ð�; b̂Þ, for instance, both m and vi,� have higher values without background correc-

tion (p-val:<0.0001 and 0.7872 respectively). Similarly, the older method of ls100(�, b) outper-

forms the newer ls(�, b) in two cases. This indicates that the combination of cycle slope with

background correction provides a slight improvement in correlations over standard methods

while incorporating only one of the new parameters (cycle slope or background correction)

had minimal impact.

(2) Based on these data alone, the added value of the multiple kinetic exposure images is

questionable. Two of the four pairwise comparisons favor using vi,50, (ls100(�, b), ls100ð�; b̂Þ p-

vals<0.001), and two favor using vi,� (ls(�, b), lsð�; b̂Þ p-val < 0.0001, p-val = 0.5). As such, the

benefit of multiple kinetic exposures may be limited to select experiments such as those with a)

high signal spots that will remain in the linear range of the camera for a larger portion of the

kinetic phase of the assay or b) low signal spots that may have modestly enhanced resolution.

Because the cell lines utilized in this case, study are isogenic, we expect a fairly large amount

of kinomic overlap. As such, we repeated the reproducibility calculations using 10 rounds

of random sampling to create 4 groups of three ‘pseudo-technical replicates’ to generate a

baseline level of reproducibility. For lsðm; b̂Þ we have 0.968±0.007, for lsðvi;50; b̂Þ we have

0.956±0.007 and for lsðvi;�; b̂Þ we have 0.949±0.010. These values all indicate that the technical

reproducibility is indeed higher for actual technical replicates than it is for random sample

groups. Additionally, the fact that the baseline level reproducibility for lsðvi;�; b̂Þ is lower than

that of lsðvi;50; b̂Þ suggests we may be getting benefits from the multiple exposure times not

immediately obvious from Table 1.

Differential display tools (ANOVA and hierarchical clustering heatmap). In addition

to the tools described above, that focused on determining data quality we created two tools for

visualizing differences between sample groups, an ANOVA display, and a Heatmap with hier-

archal clustering to find the most related samples. Based on the results above, we will focus on

lsðm; b̂Þ and lsðvi;�; b̂Þ. We begin by applying one-way ANOVAs to each peptide separately for

lsðm; b̂Þ then for lsðvi;�; b̂Þ. Table 2 lists the 5 most category deterministic peptides found in this

manner for each dataset. These are expressed and ranked by the F-statistic and not p-value due

to the fact that the reporting of a p-value would inflate the interpretation of these differences,

as they do not account for a number of prior distributions or multiple testing errors. It is inter-

esting to note that despite the relationship between the measurements, the kinetic and end

level data provide a slightly different top 5 peptides.

Table 2. List of the top 5 differentially phosphorylated peptides as determined by one-way ANOVA f-statistic. Ranks are indicated in parenthesis. These values and

many more can be visually inspected at http://bit.kinomecore.com/?tab2.

Peptide F-statistic (rank), lsðm; b̂Þ F-statistic (rank), lsðvi;�; b̂Þ Sequence Source Uniprot ID

src8_chick_492_504 44.3447 (7) 83.0656 (1) YQAEENTYDEYEN Q01406

efs_246_258 77.6595 (1) 22.7558 (8) GGTDEGIYDVPLL O43281

paxi_24_36 61.6226 (4) 20.8223 (10) FLSEETPYSYPTG P49023

pgfrb_572_584 73.8763 (2) 36.1151 (3) VSSDGHEYIYVDP P09619

enog_37_49 49.8139 (5) 25.9734 (6) SGASTGIYEALEL P09104

frk_380_392 67.0898 (3) 42.2960 (2) KVDNEDIYESRHE P42685

pgfrb_1002_1014 21.7951 (18) 34.7926 (4) LDTSSVLYTAVQP P09619

cdk2_8_20 12.0567 (29) 28.3214 (5) EKIGEGTYGVVYK P24941

https://doi.org/10.1371/journal.pone.0202139.t002
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One of the most common ways to visualize and utilize microarray data, such as PamChip

data, is as a heatmap with a clustering algorithm. In general, this is performed to identify

groupings that may share characteristics such as a molecular subtype or susceptibility to a par-

ticular kinase inhibitor. Fig 5 is a heatmap and two-way hierarchical cluster (using Euclidian

distances and average-linkage clustering) for both lsðm; b̂Þ and lsðvi;�; b̂Þ separately. Despite the

isogenicity of the 12 samples, clustering based off both curve fitting equations separate the

groups well with lsðvi;�; b̂Þ actually creating “perfect” clustering (i.e., each technical replicate for

a given analysis group clustered closest to the other replicates in the same group). While other

parameter and equation groupings produce similar results, no other parameter combination

tested reproduces this “perfect” clustering. This separation lends further credence to the poten-

tial utility of vi,� in future experiments.

Recommendations

Kinetic curve capture. The multiple image capture does not significantly change the

reproducibility of data, however, it does help clarify low signal spot and allows high signal

spots to remain measurable for longer. Additionally, the clustering for the technical replicates

based on the lsðvi;�; b̂Þ outperforms all other clustering methods. While this is a small sample

set, there does seem to be potential in using multiple exposure times, and we believe the results

here justify further investigation and use.

Background normalization and correction. The new techniques presented here clearly

increased the reproducibility of the data and provided better clarity data. Going forward it

is clear that an additional level of data is needed to further simplify the downstream analysis.

Fig 5. 2-way hierarchal clustering of technical replicates as visualized by heatmap. Panel A is based on lsðm; b̂Þ and

panel B is based on lsðvi;�; b̂Þ. The cluster diagram does not represent the distance between branches, only the branch

points of a hierarchal clustering model based on Euclidean distance with average-linkage clustering. Yellow is the

highest signal peptides, blue is the lowest. The peptide order varies between the two panels and are based on an

identical hierarchal clustering. These figures and several more can be inspected at http://bit.kinomecore.com/?fig5.

https://doi.org/10.1371/journal.pone.0202139.g005
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Based on the technical reproducibility results, and the lack of an experiment-specific correc-

tion factor (ce), we recommend utilizing both background correction in conjunction with

ls(�).

Discussion

Directly investigating the kinome gives us a fundamental picture of cellular regulation that

would be hard, if not impossible, to access from solely genomic and transcriptomic informa-

tion. Kinome arrays such as the PamChip offer a unique look at cellular kinase activity in the

form of measuring the activity of entire kinomes on a series of known kinase targets. Where

other kinome arrays offer only end level data, the PamChip provides a measure for kinetic

data in the form of segmented image capture over the course of a reaction. This allows changes

in the rate of phosphorylation to be investigated and is most commonly used to compare early

reaction rates in the presence of ex vivo kinase inhibitors[11,17].

The field of kinomics is still relatively nascent, and modern reviews still discuss the need for

standardization of data formats and analytical techniques [9,23]. To this end we present a

number of new ideas and methods for the PamChip microarray:

1. A standardized data format

Our JSON format is extensible enough to fit MIAME recommendations[24] while working

to address the self-critique[25] of MIAME. JSON parsers exist for numerous programming

languages and JSON objects provide the framework for all web programming.

2. A pre-processing pathway

Prior to this work, investigators directly fit either median signal or median signal-back-

ground for parameterization, we propose treating these separately. Additionally, we include

an automated method for the removal of outliers and a proposed background normaliza-

tion technique. Our work shows a benefit to these additional steps.

3. A public data repository and tools to create your own

A MongoDB database is the basis of our public data repository. The server that powers it is

a minimal Cross Origin Resource Sharing (CORS) enabled JSON document server. We

have included the data produced for this study and intend to add more data in the future.

We provide the server code and a series of tools to populate the database. With a reasonable

knowledge of network management, this can be set up in just a few steps and can be set up

at any institution.

4. An extensible visualization toolbox for multilevel array data.

A major limitation for PamChip data analysis is the complexity of this data structure. We

provide tools for visualization of various data levels. Additionally, by allowing developers to

access a series of basic functions for interacting with data we have created a system that can

greatly ease software development. This creates an ecosystem for web programmers to

quickly begin an analysis with minimal knowledge of the data structure.

As discussed in methods, the kinomics toolbox provides an SDK for interacting program-

matically with the data. An author on this paper created several of the tools described here

with no prior knowledge of the data, only access to the provided SDK and a few conversations

about how the data works. This was performed without any knowledge of the data model aside

from meta data storage. We believe this process of tool development led to a more useful SKD

and indicates the development potential. Going forward we will increase the default packages

available to provide more thorough and robust data analyses.
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S1 Fig. Schematic of mutations made to MARCKS Non-Phospho (NP) and MARCKS

Pseudo-Phospho (PP) proteins.

(PNG)

S2 Fig. Flowchart of analytical steps. This compares the analytical steps proposed here to pre-

vious analytic steps. Additionally, this describes the relationship of the different data levels to

one another.

(PNG)

S3 Fig. Schematic of names documents as stored in MongoDB and as utilized by the

kinomics toolbox. For more information visit the full documentation site for the database:

https://app.swaggerhub.com/apis/adussaq/KINOME/1.0.0.

(PNG)

S4 Fig. Schematic of level 1 data documents as stored in MongoDB and as utilized by the

kinomics toolbox. For more information visit the full documentation site for the database:

https://app.swaggerhub.com/apis/adussaq/KINOME/1.0.0.

(PNG)

S5 Fig. Schematic of level 2 data documents as stored in MongoDB and as utilized by the

kinomics toolbox. For more information visit the full documentation site for the database:

https://app.swaggerhub.com/apis/adussaq/KINOME/1.0.0.

(PNG)

S1 Table. List of major data levels utilized in the implementation of the code and data-

bases.

(PDF)

S1 Dataset. JSON Lvl 1.0.0 case study data. The level 1.0.0 dataset is available as JSON object.

(JSON)
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