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Degradation Mechanism Detection 
in photovoltaic Backsheets by fully 
convolutional neural network
Binbin Zhang1, Joydan Grant2, Laura S. Bruckman  4, olga Wodo1,3 & Rahul Rai1*

Materials and devices age with time. Material aging and degradation has important implications 
for lifetime performance of materials and systems. While consensus exists that materials should be 
studied and designed for degradation, materials inspection during operation is typically performed 
manually by technicians. the manual inspection makes studies prone to errors and uncertainties due 
to human subjectivity. in this work, we focus on automating the process of degradation mechanism 
detection through the use of a fully convolutional deep neural network architecture (f-cnn). 
We demonstrate that f-cnn architecture allows for automated inspection of cracks in polymer 
backsheets from photovoltaic (pV) modules. the developed f-cnn architecture enabled an end-to-
end semantic inspection of the pV module backsheets by applying a contracting path of convolutional 
blocks (encoders) followed by an expansive path of decoding blocks (decoders). first, the hierarchy 
of contextual features is learned from the input images by encoders. next, these features are 
reconstructed to the pixel-level prediction of the input by decoders. the structure of the encoder and 
the decoder networks are thoroughly investigated for the multi-class pixel-level degradation type 
prediction for pV module backsheets. the developed f-cnn framework is validated by reporting 
degradation type prediction accuracy for the pixel level prediction at the level of 92.8%.

Photovoltaic (PV) energy has been growing in the global energy market and will continue to grow with 
an increase in durability and reliability and the subsequent reduction in cost1. PVs modules typically have a 
three-layer polymer laminate as the backsheet of the module to provide an environmental protective barrier for 
the PV cells. Additionally, the backsheet provides safety for the module due to the high dielectric breakdown 
strength of polyethylene terephthalate (PET), which is often used as a core layer in backsheets2. PV backsheets are 
susceptible to degradation from environmental stressors such as irradiance, temperature, pollution, and humid-
ity3–6. Various degradation mechanisms, such as delamination and crack formation in PV module backsheets, 
leads to the failure of the safety and environmental barrier provided by the backsheet requiring repair or replace-
ment7–9. The fundamental understanding of underlying degradation mechanisms and pathways is largely missing 
and hinders the ability to predict the lifetime of PV module backsheets.

Currently, manual field surveys by technicians has been the main method to identify backsheet degradation 
and failure10,11. Automated field surveys have emerged as an alternative for large scale commercial PV sites. These 
field surveys include techniques such as fluorescence, electroluminescence, photoluminescence, visual, and infra-
red imaging for the analysis of cell cracking, corrosion, and encapsulant degradation12–15. Although approaches to 
collect the data exists (e.g., via drones, airplanes, or by instruments that can be moved along racks), the progress 
has not been paralleled by the data analytic tools to automate degradation detection and analysis. Additionally, 
there has been little focus on automated methods to detect failure or degradation on the backsheets. Such an 
automated way to identify degradation mechanism would reduce the operation and maintenance of PV farms and 
provide insights into the degradation mechanisms of fielded backsheets. More importantly, a large amount of data 
collected and annotated during operation would accelerate the rate of establishing a reliable relationship between 
various environmental conditions and degradation rates of materials10,16,17.

The progress has been made in other applications, where various signals have also leveraged to detect defects 
in materials and structures. For example in steel beams, cracks have been identified from vibrational changes 
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by leveraging the wavelet analysis18. Mechanical impedance19 and ultrasounds have been also used to detect the 
internal defects20. The progress has been also made in the area of machine vision for defect detection21–24. For 
example, Koch et al.22 investigated decision trees and support vector machines (SVM) methods for the task of 
defect detection in concrete and asphalt civil infrastructure. In that approach, the fixed rules are used to select 
a subset of regions in the image for which handcrafted features are computed. However, handcrafted features 
require significant domain knowledge, effort, and often fine-tuning to adjust them to perform efficiently in a 
particular scenario. The alternative approach involves an automated feature development and is considered the 
key advantage of deep learning based approaches. These approaches learn discriminative representations from 
the data without the need for handcrafted features. The learned representations offer high effectiveness to perform 
the mapping between automated features and the output of interest. At the same time, it has been shown that 
the learned representation might be difficult to notice or deduce for domain experts or conventional supervised 
learning methods.

It is the unremitting success of deep learning techniques in image classification and object detection tasks 
that motivated researchers to explore the capabilities of such network for pixel-level labeling tasks, such as scene 
labeling25,26 and semantic segmentation27–29. Many different models have been proposed for semantic segmen-
tation30–33. The most successful state-of-art deep learning techniques for semantic segmentation spring from a 
common breakthrough: the fully convolutional neural network (F-CNN) by Long et al.29. This network is trained 
to learn hierarchies of features. The learned features are fused to achieve a non-linear, local-to-global feature 
representation that enables a pixel-wise inference. The F-CNN framework has shown a significant improvement 
in the segmentation accuracy over traditional methods on standard datasets like PASCAL VOC benchmark34.

Motivated by the excellent performance of F-CNN on segmentation tasks reported in the literature and 
inspired by the ideas of flexibility in segmentation networks, we adapted the F-CNN for the task of degradation 
type detection of PV backsheets. Specifically, we have customized a F-CNN for degradation mechanism type 
detection by altering the standard feature extraction and expansion structure of the F-CNN to improve the accu-
racy of results on PVs degradation mechanism type detection. While previous work has attempted to address 
vision problems generally, this paper is concerned with the development of a semantic segmentation method that 
can be used for automated PV module degradation mechanism detection, e.g., crack inspection. In this paper, 
we outline the essential system components of an automated inspection system of PVs. The automated computer 
vision is based upon a deep learning architecture that falls under the family of fully convolutional neural networks 
(F-CNNs). Validation test demonstrates the high speed and accuracy of the proposed F-CNN architecture. Our 
approach and networks are generic and can be used for segmentation and identification of other cracks types and 
inspection of other material systems.

Results and Discussion
In this work, the detection of degradation modes in backsheets is discussed. Different types of surface pat-
terns are observed in PV module backsheet films exposed to accelerated and real-world exposures (Klinke, et 
al.35). The all the degradation types are observed on the inner-layer (i.e., the sun-side layer in a PV module), 
which was not directly exposed to irradiance. Fig. 1 depicts three representative images the various catego-
ries of degradation. The observed patterns can be mainly grouped into six categories: no-cracking, parallel, 

Figure 1. Examples of representative PVs polymer backsheets with different categories of crack patterns: 
parallel cracks, mudflat, parallel cracks, transverse-branching, and longitudinal-branching cracks. Three 
original representative images are shown in the top row. Labelled and annotated images are repeated in the 
bottom row.
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delamination, transverse-branching, longitudinal-branching, and mudflat. The no-cracking region refers to 
the region with the absence of any types of cracks. The no-cracking regions are desirable, but do not belong to 
any defect mechanism pattern. The parallel cracks in Fig. 1 are oriented parallel in the vertical direction (or 
along Y-axis of the image). The large-scale loss of adhesion leads to pieces of the inner layer to fall off and in 
turn leads to the delamination regions as shown in Fig. 1. The transverse-branching cracks are crack patterns 
that are perpendicular to parallel cracks (horizontal direction or along the x-axis). If there are branches on the 
parallel cracks and the branches are in the same direction with the parallel cracks, the type of branch crack is 
annotated as longitudinal-branching. Finally, the cracks are labeled as mudflat cracks when the branches of the 
cracks are oriented in multiple directions. The examples of transverse-branching, longitudinal-branching, and 
mudflat are also shown in Fig. 1.

The data set consists of 34 varying resolution images of the inner-layer (sun side) of backsheet films exposed 
to two accelerated exposures with eight steps of 500 h and two real-world exposures with six steps of 2 months35. 
Samples were exposed with the air side of the backsheet films facing the irradiance source in two different ASTM 
G154-04 cycle four exposures36 using UVA-340 fluorescent ultraviolet lamps (wavelengths 280–400 nm) in Q-Lab 
QUV accelerated weathering testers. One exposure was a cyclic exposure of 8 h of 1.55 W/m2/nm at a 70 °C 
chamber temperature followed by 4 h of darkness and condensing humidity at 50 °C and the other without the 
dark condensing humidity step. Real-world exposures were conducted in Cleveland, Ohio between July 2, 2013, 
and October 7, 2014, on two-axis trackers in sample trays with and without irradiance concentration. The images 
were collected using PAX-it PAXcam camera in a photo lightbox. These samples and exposures are described in 
detail in Klinke et al.35.

The PV image dataset is annotated by human experts from Case Western Reserve University. Specifically, 
all images in the dataset are labeled manually. The image annotation tool LabelMe37 was used for labeling 
purposes. The tool allows users to annotate a class by clicking along the boundary of the desired class and indi-
cating its identity. In Fig. 1, the raw dataset images are depicted in the first row. The second-row images cor-
respond to the manually annotated images of various crack regions using LabelMe. The annotated images are 
considered as ground truth labels of the raw images. As a result of annotation, the six categories are identified. 
The categories include no-cracking, parallel, delamination, transverse-branching, longitudinal-branching, and 
mudflat. These categories and are encoded as class labels 1, 2, 3, 4, 5, and 6, respectively. The remaining region 
of the image (not belonging to the first six classes) is considered as a background and assigned a different class 
category (class 0). Therefore, there are in total of seven classes (N = 7). The images obtained from the backsheet 
film study are of different resolution. Furthermore, the initial dataset size of 34 images may be insufficient to 
train the F-CNN model. Therefore, the initial sets of annotated images are split into image blocks. Examples 
of the image block are depicted in the first row of Fig. 1. Following this strategy, the initial set of 34 images is 
processed to generate 286 image block samples. Each image block sample is 320 pixels wide and 480 pixels high 
(320 × 480). The 286 image block samples are considered the input dataset, I, for the analysis. For training and 
evaluation of the model, the dataset I is shuffled and randomly split into three non-overlapping sets, namely a 
training set ITrain (170 examples), a validation set IVald (73 examples), and a test set ITest (43 examples), respec-
tively. To avoid variations between the training set and the test set, the label-preserving transformation was 
applied after splitting, specifically horizontal and vertical mirroring for the training set for inflating the size of 
the training dataset.

The annotated dataset is used to train the F-CNN networks. The architecture of the final F-CNN is determined 
through empirical studies, as generic design rules for constructing CNN are still elusive. Specifically, our archi-
tecture is developed by varying the encoding and decoding configuration. In this sense, this paper makes two 
contributions. First, several architectures of F-CNN are investigated. Next, the accuracy of the final architecture 
is discussed in the context of the application of interest. In the next two subsections, the corresponding results 
are discussed.

Design of f-cnn for detection of backsheet degradation types. The proposed network consists of 
an encoding part and a decoding part. In the encoding part, high level abstract features maps or representations 
are extracted from input images. The extraction is achieved through applying a series of convolutional and pool-
ing layers. In the decoding part, the abstract features are gradually reconstructed to the pixel-level prediction of 
the input images. The reconstruction is accomplished through relaying the intermittent feature representations 
from encoding part to decoding part through concatenation layers. The network architecture of the F-CNN for 
degradation mechanism detection in backsheets is illustrated in Fig. 2. Two structures of the F-CNN architecture: 
encoder and decoder are detailed below. Table 1 summarizes a nomenclature used.

Encoder structures. The convolutional layer (CONV layer) is the basic building block of a deep neural network 
model. The CONV layer performs two-dimensional convolution of the input image using a set of filters W, gen-
erating a set of feature maps h. Mathematically, the operation is expressed as follows:

= ∗ +h W X b

where b denotes the bias of the filter, and ‘*’ represents the convolution operation.
Activation function (ReLU layer): A non-linear activation function handles the non-linearities of the mapping 

between input and output. In general, the Rectified Linear Unit (ReLU(h) = max (0, h)) is used as the neuron acti-
vation function, as it performs well with respect to runtime and generation error38. This function is added after 
each convolutions layer.

Pooling layer (POOL layer): The POOL layer receives feature maps and resizes them into smaller maps. The 
most favorable POOL layer choice is max-pooling, where each map is subsampled with the maximum value over 
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np × np adjacent regions. Max-pooling is performed as it introduces small invariance to translation and distortion 
and leads to faster convergence and better generalization39,40.

Decoder structures. Upsampling layer (UPSAMPLING): Upsampling is a procedure to connect coarse outputs 
to dense pixels through interpolation. F-CNN-based architectures make use of learnable upsampling filters to 
upsample feature maps. The upsampling kernels are learned through the usage of transposed convolution (decon-
volution)41, in which zero paddings and stride are specified to increase the size of feature maps instead. Figure 3 
illustrates the upsampling process through the deconvolutional layer.

Figure 2. Overview of the F-CNN model for autonomous recognition of degradation mechanism.
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Feature fusion: Fusion is an element of F-CNN that enables the addition of context information to a fully 
convolutional architecture. As demonstrated in Fig. 3, the upsampled feature maps generated by the deconvolu-
tional layer are added elementwise to the corresponding feature maps generated by the convolutional layer in the 
encoder.

There is no unique approach to design the encoder and decoder architectures. In this paper, various designs 
are explored to deliver the highest validation accuracy and yield low generalization error for new data. Regardless 
of the details of the architecture, the parameters of the network are determined via the training process.

Training process. Once the architecture is decided, the final step is to train the model using the dataset. In 
this paper, the aim is to map the input image to the set of classes. Specifically, the goal is to determine the com-
plex end-to-end mapping function that transforms the input image from measurement {Xi} to its corresponding 
multi-class image {Yi}. The output multi-class image consists of pixels annotated with the degradation category 
(0–6).

The network parameters are iteratively updated using backpropagation42,43 to minimize the loss. The categor-
ical cross-entropy loss44 is applied for evaluating the output error. The output error is obtained by computing the 
deviation (error) of the network outcome Yi with the desired ground-truth ′Y{ }i . The cross-entropy loss is defined 
as:

∑= − ′Loss Y Ylog( )i i

where Yi is a function of the input image {Xi} and the network parameters (i.e., W and b). The Adam optimization 
method is used45 as it offers faster convergence than the standard stochastic gradient descent method.

The training process heavily depends on the amount of data available. In many materials science problems, the 
cost of generating data is high, and various strategies are needed to address this issue. In our problem, there are 
two significant challenges. First of all, we augment our dataset by splitting the collected datasets into the image 
blocks as described in the introduction of the Results Section. This operation allowed to increase the size of the 
dataset by the factor of 8. Another challenge stems from the unbalanced data towards some classes of cracks. In 
our dataset, seven classes are represented by significantly different numbers of pixels per region. Finally, when-
ever the data is limited the overfitting may occur hampering the generalizability of the F-CNN. The details of two 
strategies to address the above issues are detailed below.

Nomenclature

CONV: nf @ nx × ny, s = D Convolution layer with the number of filters nf, filter size nx × ny, and stride D used

POOL: np × np, s = D Max pooling layer with filter size np × np and stride D

Drop: λ Dropout, with drop probability λ

EPOCH Number of passes over the dataset during training

LR Learning rate used during training

UPSAMPLING: nf @ nx × ny, 
s = D Upsampling layer with the number of filters nf, filter size nx × ny, and stride D used

N Total number of classes

Feature fusion

Table 1. Nomenclature used to describe the network architecture and parameters used during the experiments.

Figure 3. Upsampling layer and feature fusion.
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Data balancing strategy. The unbalanced data used in the training can cause the learning algorithm to become 
biased towards the dominating class46. In order to balance the different class frequencies and thus their contribu-
tion to the loss function, we introduce weighting coefficients η for each semantic class. The coefficient is defined 
as:

α =
∑ =

− p
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− pi
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1  is the total pixel count over all 
classes. The loss function is updated accordingly:

η= ×Loss Lossweighted

In this way, the importance of sparse classes (in terms of the pixel areas) is corrected.

Regularization strategy. Our network architecture is relatively deep, and the availability of data is limited, regu-
larization needs to be used to mitigate the generalization test error of the algorithm47. Among the variety of reg-
ularization techniques available, we applied L2 regularization and dropout. L2 regularization applies a penalty on 
large network parameters and forces them to be relatively small48. Dropout refers to a technique where a fraction 
of randomly selected activations are ignored during training. It helps to reduce overfitting by not allowing the 
model to be heavily dependent on the output of one or a few neurons. According to Srivastava et al.49, Gaussian 
dropout could perform better than the classical Bernoulli dropout. The use of Gaussian dropout equivalent to 
adding a Gaussian distributed random variable with zero mean and standard deviation. The Gaussian dropout is 
defined as follows:

λ
λ

λ=
−

∈Drop
1

, (0, 1)

where λ is the drop probability.
In our proposed architectures, we utilized L2 regularization and Gaussian dropout regularization strategies. 

The L2 regularization is applied after each activation function. Dropout is added after the last two convolution 
layers. As shown in Fig. 2, λ = 0.5 is added after the convolutional layers which have 1024 kernels.

Evaluation strategy. To assess the performance of different architectures, we computed several metrics50:

 1. Pixel Accuracy: it is a metric computing a ratio between the amount of correctly classified pixels and the 
total number of pixels.
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 2. Mean Intersection over Union (meanIU): it measures the intersection over the union of the labeled seg-
ments for each class and reports the average. It computes the ratio between the number of true positives 
(intersection) and the sum of true positives, false negatives, and false positives (union).
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 3. Per-class accuracy: this is simply the proportion of correctly labeled pixels on a per-class basis. The 
perClassAcc for class i is defined as:

=
∑ =

−perClassAcc
p
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ii

j
N

ij0
1

where N is the number of classes, pij is the number of pixels of class i inferred to belong to class j, pii represents true 
positives (the number of pixels correctly classified), pij represents false positives (the number of pixels incorrectly 
classified) and pji represents false negatives (the number of pixels which are wrongly not classified), respectively.

Empirical studies to identify the F-CNN architecture. In this paper, we study different encoder and decoder archi-
tectures to identify the final architecture which results in the highest validation accuracy and yields low generali-
zation error for new data. We vary details of encoder and decoder structure independently. We first investigate the 
encoder structure as it plays a crucial role in learning distinctive features from the input dataset. Encoder struc-
ture has a strong effect on the computational performance of F-CNN. To develop an encoder architecture on the 
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task of crack inspection, we evaluated the proposed F-CNN model P and two other models. The architecture of 
the two models (Model A and B) are as shown in Fig. 4. In the three different architectures, the number of CONV 
layers were changed. Models A, B, and P used 6, 13, and 16 layers of CONV, respectively. The last convolution 
layer is added to facilitate the prediction of the decoder to the N categories.

The accuracy and loss plots for model A, B, and proposed Model P are presented in Fig. 5. The evaluation 
results on test data are listed in Table 2. The time shown in the table is the training and validation time. It was 
observed that the test accuracy is better for complex models. A possible reason for the better performance of the 
complex model could be attributed to the complexity of features. As the complexity of crack features increases, the 
encoder structure needs to include more number of convolutional layers to extract the abstract contextual features 

Figure 4. Model A and Model B architectures.
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from input images for the following pixel-level prediction. It is worth noting that as the accuracy increases, the 
computing time also increases since more number of parameters are trained in the system. Therefore, we did not 
enhance the complexity of the model beyond this design. The accuracy and loss plots also demonstrate that the 
training and validation accuracy of Model P climbs faster than Model A and B. Thus, the Model P was chosen for 
further improvement of our system.

Decoder structure development. Apart from the importance of encoder part of the architecture which produces 
low-resolution image representations or feature maps, the role of decoder part is also significant as it maps those 
low-resolution images to the pixel-wise predictions for segmentation. Two more different decoder structures, i.e., 
Model C and D in Fig. 6, are investigated in our experiment. The variation between Model C, D, and our proposed 
Model P is on the number of upsampling layers and feature fusion times. In model C, we upsampled the last con-
volution layer, fused the feature information with the fourth pooling payer feature maps, and then upsampled to 
the size of the input image for pixel prediction. While in model D, more intermittent feature representations from 
encoding part learned from the input images are concatenated into the decoding part for inference. The accuracy 
and loss plots for training and validation dataset are presented in Fig. 5. The test result is listed in Table 2. Our 
results indicate that Model P is predominant in both the test accuracy and training time. Therefore, model P is 
chosen as our final model.

The above studies resulted in the final architecture of F-CNN shown in Fig. 2. The F-CNN contains 16 
stacked convolution layers and two feature fusion and three upsampling layers. Each convolution layer is fol-
lowed by ReLU activation function. The architecture has roughly 41.4 million parameters to be estimated. Such a 

Figure 5. Accuracy and loss plots as a function of epochs for several models.

Model Pixel Accuracy Mean IU Time (h:m:s)

A 45.5% 17.8% 6:47:56

B 62.6% 20.2% 10:58:38

C 61.0% 22.4% 23:38:36

D 53.3% 21.5% 25:01:49

P 79.6% 49.7% 15:28:10

Table 2. Performance metric for five investigated architectures. Three accuracy metrics were measured after 50 
epochs with learning rate LR = 0.001.

https://doi.org/10.1038/s41598-019-52550-6
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high-dimensional model is prone to overfitting taking into account the relatively small datasets under considera-
tion. To mitigate overfitting, we applied data augmentation during data preparation, L2 regularization after each 
convolution layer and Gaussian dropout on last two convolution layers during training. Finally, in the decoding 
part, we fused the feature information extracted from the last convolution layer with feature maps obtained after 
the third and fourth pooling layer for image prediction.

The final architecture is evaluated for 200 epochs to obtain an estimate of its generalization performance. The 
run time for the training process and 200 epochs is 62 hours. The final model accuracy and loss plots are pre-
sented in Fig. 7. The plots depict the performance climbs till around 125 epochs and then plateaus. Although a 
little overfitting is observed in the last 50 epochs, the trained model is acceptable for the classification task at hand.

Detection of the degradation mechanism. The evaluation results on test data demonstrate good perfor-
mance as shown in Table 3. The final pixel-level prediction accuracy achieved by the trained model is 92.8% with 
mean IU of 72.5%. Table 3 also lists the per-class accuracy for class 0: background. The background class has been 
introduced to handle inaccuracies of the manual annotation. The accuracy for this class is relatively low, however, 
it does not affect the overall performance of the model.

Figure 6. Model C and Model D architectures.
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Detailed results corresponding to the inspection of degradation mechanism in example PV backsheets are 
depicted in Fig. 8. Three columns in Fig. 8 depict examples of test images, corresponding manually labeled image, 
and predicted outputs using the trained Model P, respectively. Test images are selected to demonstrate various 
types of mechanisms that are marked in the legend at the bottom of the figure. The different colors in the second 
and third columns indicate different crack classes as shown in the color bar in Fig. 8. For example, the test image 
in the first raw simultaneously exhibits four cracking mechanisms (parallel cracking, delamination, transverse 
and longitudinal branching cracking). The F-CNN model correctly labeled all mechanisms regardless of different 
size of individual classes. The predicted crack types and their locations are in good correspondence to the man-
ually labeled classes. All examples depicted in this figure consistently demonstrate the good performance of our 
model.

In summary, in this work, the utility and efficacy of a fully convolutional neural network architecture for 
degradation mechanism type detection of PV backsheets has been demonstrated. One of the main contributions 
of the paper is the development of a F-CNN model that has demonstrated excellent performance in the task of 
identifying different types of degradation mechanisms in PV backsheets. The pixel level prediction accuracy of 
the developed F-CNN model is close to 92.8% and the test time per image is 2.1 second. The presented results 
demonstrate the applicability of the fully-convolutional network in defect detection domain. The proposed archi-
tecture is developed by varying the encoding and decoding configuration.

In our framework, we focus on developing a system that can provide high prediction accuracy. Therefore, the 
evaluation metrics are placed more emphasis than the execution speed in our system. The execution time is also 
provided as a reference for further improvement of the system.

The developed F-CNN approach is generic and can be adapted to the broad class of segmentation tasks 
in materials science. Our approach could replace such a manual annotation performed by the microscopy 
expert to annotate micrographs, or at least suggest the initial annotations. In this sense, our model has an 
application to any material system, as long as sufficient data is available for model training. The micrograph 
could also be automatically annotated with the underlying mechanisms, or series of micrographs could 
be used to construct the entire phase diagram. The initial successes of machine learning in these areas 
have been recently reported. For example, the micrograph of ultra-high carbon steel has been classified 
using machine learning51. In the same material system - dual phase steel - the damage mechanism has been 
detected using deep learning52. Finally, machine learning has been recently leveraged to construct the phase 
diagram of low carbon steel53.

Figure 7. The accuracy and loss plots for our proposed Model P.

Class Per-Class Accuracy

0. Background 47.1%

1. No-cracking 96.4%

2. Parallel 94.8%

3. Delamination 89.7%

4. Transversal-branching 72.6%

5. Longitudinal-branching 89.7%

6. Mudflat 91.2%

Pixel Accuracy: 92.8% Mean IU: 72.5%

Table 3. Class accuracy of final architecture of the network.
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Method
F-CNN was developed using Theano (version 1.0.2) and Keras (version 2.2.0). Keras is high-level neural networks 
application programming interface to enable fast experimentation. Specifically, Keras supports prototyping vari-
ous convolution neural network architectures. Theano is one of the backend engines for mathematical expression 
evaluation involving multi-dimensional arrays. The code was developed in Python 2.7.13 and is available on 
github (https://github.com/Binbin16/Degradation-Mechanism-Detection-By-FCNN). All the experiments in the 
presented work were conducted on a Linux OS with 12 × 2.66 GHz Intel Xeon X5650 processor cores and 2× 
Nvidia M2050 Tesla GPUs.

Figure 8. Six examples of crack inspection task performed on the test images (left column) using the trained Model P. 
The different colors in the middle and right column images indicate different crack classes listed in the legend below.
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