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Abstract
This research work introduces a new intelligent framework for infectious disease detection by exploring various emerging and
intelligent paradigms.We propose new deep learning architectures such as entity embedding networks, long-short termmemory,
and convolution neural networks, for accurately learning heterogeneous medical data in identifying disease infection. The multi-
agent system is also consolidated for increasing the autonomy behaviours of the proposed framework, where each agent can
easily share the derived learning outputs with the other agents in the system. Furthermore, evolutionary computation algorithms,
such as memetic algorithms, and bee swarm optimization controlled the exploration of the hyper-optimization parameter space of
the proposed framework. Intensive experimentation has been established on medical data. Strong results obtained confirm the
superiority of our framework against the solutions that are state of the art, in both detection rate, and runtime performance, where
the detection rate reaches 98% for handling real use cases.
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1 Introduction

Technologies for controlling, managing, and detecting infec-
tious diseases have shown potential interest in the last two
years, in particular since the beginning of the COVID-19 pan-
demic [11, 12]. This gives rise to the need to design and create
new intelligent systems for infection disease management in a
medical setting environment. Infectious disease intelligence is
becoming an interesting topic, in particular by taking

advantage of emerging topics in artificial intelligence [4,
23]. When looking into multi-agent systems, deep learning
networks, as well as evolutionary computation, these artificial
intelligence-based technologies are the most used in medical
applications [24, 29].

1.1 Motivations

Deep learning is the field of artificial intelligence, which con-
sists of complex neural architectures with a high number of
layers and parameters to be tuned. These architectures are
used not only for learning but also capable to extract relevant
features directly from massive amounts of data. An exciting
topic within deep learning is that of the analysis of medical
data, and in particular disease infections [32, 33]. For instance,
Wang et al. [32] developed a smart model for estimating the
infection rate from COVID-19 samples. It combines both su-
pervised and unsupervised learning strategies to achieve a 40
% improvement of detection speed. Wang et al. [33] analyzed
pathogen images confirmed COVID-19 cases with the typical
virus-based pneumonia while making use of learning through
transfer (transfer learning). The result shows the great benefits
obtained of using intelligent methods for COVID-19 diagno-
sis. In the novel realm of what is called distributed deep learn-
ing, we can also see examples that are largely investigated by
exploring different types of DL models in well-established
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medical environments [3, 37]. The overall goal of the deep
learning solutions, including distributed ones, is to identify
disease infections to guide the medical staff in reaching fair
and reasonable decisions in diagnosing different diseases. The
disease infection identification tolerates various limitations, in
particular the data heterogeneity where medical data may be
structured such as row data, unstructured such as time series
and/or complex data such as images data. This data diversity
led the learning process untrustworthy. To eliminate these
drawbacks, our work here is to investigate intelligent end-to-
end solutions that require the use of deep learning (DL) as well
as multi-agent systems (MAS).

Another important issue of existing infectious disease so-
lutions is the huge number of hyper-parameters provided by
the deep learning models. Randomly choosing these parame-
ters, drastically decreased the performance in the entire learn-
ing process. Besides, the parameter setting procedure of such
kind of framework is high time-consuming without any guar-
antee to reach reasonable convergence. Motivated by the suc-
cess of evolutionary computation (EC) in solving complex
problems [1], this research work incorporates the evolutionary
computation to tune the parameters of the HI2D framework.

1.2 Contributions

This research work is the initial work that will explore an in-
depth combination of multi-agent systems, evolutionary com-
putation as well as deep learning for disease detection. The
main contributions can be provided in the following list:

1. HI2D (Hybrid Intelligence Infectious Disease), a novel
new framework, is presented which adopts DL, MAS,
and EC for the infectious disease identification. Each
agent applies different deep learning architectures to learn
from the medical training data, the different infectious
diseases. The communication among the different agents
is established at each iteration of the framework for
knowledge sharing, reduction of the error learning rate.

2. We present a new adaptation of different deep learning
models for handling heterogeneous data (structured, un-
structured, and/or complex). The convolution NN, the
LSTM, as well as entity-embedding network architectures
are developed for handling row data, images, and time-
series data in a medical setting. An adaptation of the deep
learning models is ensured by different optimizations
such as batch normalization, and dropout mechanisms.

3. We proposed new evolutionary computation algorithms
based on the memetic algorithm, and the bees swarm op-
timization for intelligently exploring the configuration
space of the different hyper-parameters values. This
hyper-parameters optimization procedure allows better
convergence of the proposed framework in learning the
infection disease medical data.

4. Extensive experiments were carried out for showing the
applicability of the HI2D framework. Our in-depth exper-
imental results indicate that the HI2D outperformed other
well-known infectious disease detection algorithms in
terms of detection accuracy and runtime simultaneously.

1.3 Paper outline

Paper organization is then shown as follows. Section 2 gives
an in depth related work study in infectious disease technolo-
gies. Section 3 then presents a detailed explanation of the
HI2D methodology. A performance evaluation of the HI2D
framework is provided in Section 4. Section 5 discusses the
main outcomes of applying the proposed framework on med-
ical data, and the possible future directions of this research
work. To conclude, Section 6 ends the paper.

2 Related works: A literature review

Here, the main body of the related literature is briefly discuss-
ed in deep medical learning and infectious disease
intelligence.

2.1 Deep medical learning

Nicolau et al. [22] evaluated and reviewed a variety of solu-
tions that are both interactive as well as medical learning-
based in the domain of surgical oncology, highlighting each
system’s strengths and weaknesses. Additionally, it discusses
the potential use of computer vision (CV) techniques in the
domain of surgical oncology. Chien et al. [36] devised an in-
depth expanded alignment-based approach for use with data
from image surgery. To create the head surface knowledge,
the Red/Green/Blue-Depth data is utilized as well as point
clouds. A group of Hololens captures alignment after it is
optimized, allowing for simultaneous visualization of a surgi-
cal medical image as well as the head surface in a VR (virtual
reality) environment. Sanchez et al. [9] created a methodology
where medical images can be 3D reconstructed and visual-
ized. It created fully automated end-2-end solutions to view
medically gathered data using augmented and virtual reality.
The process is completely automated and does not require
medical team involvement. This specific project was tried on
medical professionals for validation and solicit feedback on
how to improve it.

Niu et al. [17] developed a deep understanding of adver-
sarial attacks that could potentially occur on medical images
and the ability to both detect and generate them. Medical
training images that are used in the training of deep neural
network classifiers were experimented with. A gradient oper-
ator is administered for the extraction of the perturbation
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features. To be able to identify and detect these perturbations,
these features used in perturbation are included in the image
test set. Muller et al. [20] gave an in-depth deep learning
medical picture segmentation framework written in Python.
Many data augmentation techniques were used, for example,
colour augmentations, as well as spatial augmentation, were
administered in the framework, as well as the well-known
overly efficient U-Net algorithm that can be used exclusively
in medical picture segmentation. Taghanaki et al. [31] con-
ducted a review of existing solutions in the realm of image
segmentation from medical sources and also created a novel
taxonomy for existing solutions. Their taxonomy was able to
encompass things at the level of architecture, as well as the
type of user data, the type of loss functions that were used,
sequence models that were used, and finally method’s level of
supervision. Additionally, the taxonomy itself also included
an in-depth examination of each algorithm’s category-created
overall sub-groups for all algorithms within the taxonomy
itself.

Gupta et al. [10] created a DL-based hierarchical multi-
agent network that was able to successfully group all
system-based end-user queries, then integrates them to solve
the problem of answer prediction. In the domain of question
answering visually, Gupta proposed a technique that segregat-
ed questions. The model for question answering is then inte-
grated into the hierarchical deep multi-modal neural network
that can predict answers. In addition, Chai et al. [7] developed
a deep probabilistic model for representing uncertainty in the
management of multiple medical data sources. After formu-
lating the multi-source learning problem, Bayesian DL can be
used for the extraction of uncertain features that could be
potentially useful in the detection of glaucoma.

2.2 Infectious disease intelligence

Hawaz et al. [21] developed an intelligent pattern mining-
based method for identifying COVID diseases. The medical
data are first transformed into the transactional database,
where pattern mining is applied to study the correlation be-
tween different medical sequences. The prediction model is
then trained to predict the behaviour of the new genome se-
quences. Lai et al. [32] proposed the use of intelligent models
for automatic assessment of images to provide an informed
estimation of the illusory COVID-19 infection rate. Both seg-
mentation and classification tasks are considered, resulting in
a 30 to 40 percent gain in detection time. Jain et al. [14] used
three deep learning models to detect COVID-19 on chest ra-
diographs. Data augmentation is first performed to enrich the
training data and thus increase the learning performance. In
addition, the deep architectures Inception V3, Xception, and
ResNeXt are implemented for the use case of detecting
COVID-19.

Chae et al. [6] investigated a new deep learning solution for
infectious diseases. Two different models were proposed to
deal with huge amounts of data: learning with long-term short-
term memory and autoregressive integrated moving average.
Moreover, an ensemble-based solution is integrated with con-
textual information obtained from social network analysis to
enhance the performance of the proposed system. Wang et al.
[33] analyzed 1, 065 pathogen images and confirmed
COVID-19 cases with typical viral pneumonia using transfer
learning. According to the result, it shows the benefit of using
intelligent methods for COVID-19 diagnosis. Ahuja et al. [2]
used four deep learning models ResNet18, ResNet50,
ResNet101, and SqueezeNet to automatically identify
COVID-19 from scan sections of the lungs CT. It used transfer
learning in which the pre-trained models are considered in the
learning phase.

Wong et al. [34] discussed the use of data management and
artificial intelligence for data-driven infectious disease. This
combination allows the healthcare services, and medical
teams to reduce the risk of infection, and better for diagnosis.
Hirano et al. [13] developed a model for infection disease
classification using deep learning. It concentrated on three
types of medical image classification: skin cancer classifica-
tion using photographic images, referable diabetic retinopathy
classification using X-ray chest images, and pneumonia clas-
sification using X-ray chest images. Transfer learning is used
to derive the deep neural network models from various med-
ical image diagnosis models. Additionally, the adversarial de-
fence is considered by evaluating the deep neural network’s
increased robustness to both non-targeted and targeted attacks.
Jamshidi et al. [15] deal with heterogeneous medical data,
both structured and unstructured data sources. It proposed
the use of generative adversarial networks, extreme learning
machines, and long-term memory to improve COVID-19 dis-
ease diagnosis and treatment.

Singh et al. [30] developed a deep learning model for
disease and pest infection detection in a coconut tree.
The images are first segmented using the k-means algo-
rithm. The convolution neural network used the segment-
ed images as input for disease prediction. Sedik et al.
[27] combines the convolution neural network with the
long short-term network and developed an intelligent
deep learning solution for COVID-19 detection. They
also contributed to collecting medical data and designed
new medical data, which integrates the computed tomog-
raphy and the X-ray images in normal and COVID-19
cases . Sha lbaf e t a l . [28] used 15 pre- t ra ined
convolutional neural networks based on inception,
ResNet, and DenseNet architectures to automatically
identify the COVID-19. They also developed an ensem-
ble model based on the first 15 models using the major-
ity voting strategy for further boosting the identification
process.
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2.3 Discussion

As can be seen from the above brief literature review, there
has been a lot of research in the field of deep learning for
medical applications. These methods explore learning mech-
anisms to create automated models for intelligent exploration
the infectious disease. These techniques have a long way to go
in the medical field, where such efforts are required in a vari-
ety of ways. In comparison, we propose the first dedicated
complete framework in this paper that integrates deep learn-
ing, multi-agent systems, and evolutionary computation to
achieve mature solutions for infection disease.

3 HI2D: Hybrid intelligence infectious disease

3.1 Principle

We begin here with the key elements of the HI2D (Hybrid
Intelligence Infectious Disease). As shown in Fig. 1, HI2D is
the combination of various smart methods for solving infec-
tious disease challenges. Deep architectures such as long-term
short memory (LSTM), Entity-Embedding Deep Learning
(EEDL), and Convolution Neural Network (CNN) are
adopted for handling the infectious disease. Heterogeneous
medical data can be stored in different representations.
LSTM is used to handle time-series data, EEDL is used to
deal with structured and categorical data, and CNN is used
for exploring medical image data. To accurately execute the
HI2D in an edge-computing environment, the multi-agent sys-
tem is investigated, where each agent can benefit from the
environment by using the reinforcement learning paradigm.

As deep learning provides a high number of parameters to
be tuned, for some architectures it reaches million of parame-
ters, the evolutionary computation is involved for finding the
optimal parameters in real-time processing. In the next parts of
this section, we focus on the components of H2ID.

3.2 Deep learning

Different types of medical data can be collected from sensors
in an edge-computing environment. In this research work, we
explore three different deep learning architectures to learn
from time series, categorical, structural, and image data.

1. LSTM [16]: Time series data is fed into this architecture.
It is a collection of values from various periods. The net-
work consists of many layers, each with a large number of
neurons. In each layer, all neurons have the same weights,
i.e., all neurons in the ith layer share the weights with the
iþ 1th. The input layer neurons are linked to the medical
time series data such that each point value in the time
series is associated with a single neuron in the input layer.
The output data from this layer is weighted equally with
that of the neurons in the final output layer. The target is to
minimize the discrepancy between the output of the net-
work and the actual data. To obtainOi

j, we use the activa-

tion function on the ith neuron in the jth layer. When the
outputs of all neurons in a layer are combined, a normal-
ization method should be performed. First, the weight
values of all neurons in the network are set to zero, and
the process begins. Each time series of injected medical
data is used to estimate the output data and determine the
error. With each new layer of the network, the weights are

Fig. 1 HI2D Framework
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recalculated. Once the entire set of medical time series
data has been processed, the process is repeated.

2. Entity-Embedding DL [5]: An entity-embedded DL ar-
chitecture is proposed for dealing with structured medical
data. The structure is first represented in a vector of fea-
tures using embeddings. Before being connected to the
output layer, the feature vectors are connected to two oth-
er layers that are fully connected. We compressed the
structured data to a feature vector using a bag of words
solution. The number of visual words used to represent
the data space is first calculated from the data. The inter-
section of the words and the data in each row is calculated,
resulting in a matrix namedDW. It consists of d rows, and
w columns, in which d represents the number of all sam-
ples, and w represents the number of words. Each element
(i, j) in DW shows the presence/absence of the ith data in
the jth word.

3. Convolution (NN) Neural Network [19]: To deal with
medical image data, we propose the use of a convolutional
network architecture. In computer vision applications such
as object identification and recognition, CNNs are a com-
mon type of deep architecture. Both time series and text data
have benefited from the versatility of this technique in recent
years. CNNs are based on the principle of using
convolutional filters to extract features from matrix data.
Convolutional filters use a set of weights on the matrix data
of each pixel to create a new image. Back-propagation
methods are used to reveal and fine-tune these weights.

Additionally, the batch normalization and dropout, well-
known operators, for deep learning models are used in the
training to increase the accuracy of the proposed framework.
The batch normalization helps in faster converge of the net-
work, where the Dropout is a regulator which helps avoid
overfitting. Both mechanisms are crucial for the network to
get good accuracy. The detailed description is as follows:

1. Batch Normalization: We used the batch normalization
strategy in all deep networks proposed in this research work
for efficiently training a high number of layers. This allows a
better convergence of the learning process, with a few
epochs. The batch normalization is performed after each
convolution layer in CNN. It is applied to the hidden states
of the LSTM network, and the Embedding-based network.

2. Dropout: It is a strategy to avoid over-fitting during the
training process. It randomly skips the outputs of the neurons
of the hidden layers at each wights updating phase. In the
inference stage, it is straightforward to converge the predic-
tions, by propagating a deep networkwith a small number of
weights.

3.3 Multi-agents systems

The tuple < A;S;U;R > . A defines a multiagent system.
There are A agents in total, and each of them is considered a
separate Markov decision process in this context. There is a
finite set of environmental states represented by S , a set of
actions represented byU, and a reward function represented by
R. The strategies inA specify how each agent should behave
given the current state and how it shouldmake decisions about
those actions. For example, in prediction, the goal of each
agent is to find an optimal strategy that maximizes the speci-
fied objective function, e.g., the number of correctly predicted
objects. The following sections detail the various components
of our multi-agent system:

1. Environment: The environment is a collection of data-
bases containing a massive amount of data from smart
sensor devices. This enables the environment to generate
specific states for the agent’s training and to estimate the
optimal actions to take.

2. State: Each agent’s next action is determined by the de-
cisions made in earlier phases. As a result, each agent’s
state is composed of two components: a collection of pre-
vious actions and the current data to be processed. The
number of observations in the database is used to deter-
mine the size of the state space S.

3. Action: It is the assignment of each observation in the
database’s decision-making behaviour. For instance, in a
prediction task, it is the assignment of each object’s class.

4. Reward: Determining an appropriate reward function is
critical. It enables each agent inA to learn more effective-
ly. We used data that contained ground truth to create a
reward for the agent’s actions. The following is the defi-
nition of the reward function:

R Ai;U ið Þ ¼ 1; if Ai U i;Oj
� � ¼ L Oj

� �
;

0; otherwise;

�
ð1Þ

where AiðUj;OjÞ shows the decision of the agent Ai
whether the observation Oj has correct action. Besides,
the LðOjÞ represents the ground-truth of the observation
Oj.

So each agentAi starts by scanning the observations of the ith

smart sensor. It then computes the first and subsequent obser-
vations for the ith intelligent sensor. A reward function for this
choice is constructed using the ground truth for the first ob-
servation. This procedure is performed for each observation of
the ith intelligent sensor. This results in a collection of local
choices, denoted LDi, for each agent Ai.
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3.4 Hyper-parameters optimization

We use an evolutionary-based mechanism for hyper-
parameter optimization to ensure optimal performance. We
proposed different algorithms based on a Memetic
Algorithm (MA), and Bees Swarm Optimization (BSO).
These evolutionary computation techniques were chosen for
this purpose because of their well-known balance of intensifi-
cation and diversification, both of which are critical in this
setting. Next, a detailed explanation of MA and BSO is given
for solving our hyper-parameters optimization problem.

Let HP ¼ fHP1;HP2; ;HPrg be the set of the hyper-
parameters in which r represents the number of hyper-
parameters in the developed HI2D. For eachHPi, it represents
a set of the potential values of the hyper-parameter. The con-
figuration space C is then defined according to the set of all
potential configurations in which each configuration is the
vector by keeping the possible values of all the hyper-
parameters in HP . For hyper-parameters optimization, it fo-
cuses on deriving the optimal configuration that can provide
the best accuracy result. The configuration space’s size is de-
termined by the number of all possible values for the hyper-
parameters, as specified in Eq. 2.

jCj ¼ Qr

i¼1
jHPij ð2Þ

The size of the configuration space is very huge, thus it takes a
high computational cost to find the solutions. For example, if
1, 000 possible values are considered for epoch parameter,
100 possible value is considered for the error rate and 100
possible values is the number of the agents in the designed
model, thus it requires 10 million configurations in the search
space; it is not suitable by applying the exhaustive search
methods. Evolutionary computation approaches are employed
to address this problem. The main components of our solution
are described as follows.

3.4.1 Population initialization

We attempt to distribute pop size which is the initial popula-
tion. This initial population should be evenly distributed in C,
which is the configuration space. This even distribution tech-
nique is allowed for the proper exploration of every of the
many different configurations which tend to cover most re-
gions within C. We first must generate the initial population
and maintain the diversity. This process itself is begun by
randomly generating one individual that is represented by a
single C configuration. Starting with this individual, we then
can generate an additional pop size� 1, where every new

individual should be different than the individuals generated.
We can make use of a distance measure between two back-to-
back configurations to determine the dissimilarity using the
individuals generated in those configurations.P, shown as the
initial population, should, in turn, be able to maximize the
diversification function shown in Eq. 3.

DiversifyðPÞ ¼ P
pop size

i¼1

P
pop size

j¼1
DistanceðCi; CjÞ; ð3Þ

where DistanceðCi; CjÞ is the distance between the configura-

tions of the ith, and jth individuals, respectively.

3.4.2 Crossover

Each of the current population’s two individuals goes through
the following steps to generate new offspring:

– From 1 to r, we generate a random series of crossing
points, each of which we divide into two parts, the left
and right.

– The left side of the original is duplicated on the left side of
the first descendant and the right side of the original is
duplicated on the right side of the second descendant.

– In the second generation, the left side of the second indi-
vidual is inherited by the second generation, while the
right side is inherited by the first generation.

3.4.3 Mutation

The process of mutation encourages the pursuit of diversity.
We use a strategy where the value of a single parameter is
randomly changed in each existing configuration. The muta-
tion point is randomly generated and can have a value between
1 and r depending on the algorithm. At each iteration of the
crossover operation, the crossover operator changes the value
of the mutation point in the resulting offspring.

3.4.4 Local search

The local search operator is to find things in your environment
by starting with an individual and working outward from
there. When you change any of the hyperparameter values in
the current configuration, a new area is created for you to work
in. For the selected number of iterations, this process is repeat-
ed for each member of the population.
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3.4.5 Fitness function

HI2D’s objective is to maximize infectious disease detection.
Thus, we utilize the following function to assess individuals
inside populations:

FitnessðCiÞ ¼ DetectionHI2DðCiÞ ð4Þ

Note that,

– The configuration of the population’s ith individual is
represented by Ci .

– DetectionHI2DðCiÞ shows the detection ratio of the HI2D
framework by using the Ci.

Based on these operations, we proposed the following hyper-
parameter optimization algorithms.

3.4.6 Memetic algorithm

To begin, the initial population size, defined as pop size, is
generated randomly. Following that, each individual is con-
structed using population initialization. Following that, local
search operators, mutation, and crossover are used to generate
configurations fromC. To ensure a stable population size, each
individual is evaluated using the fitness function, with an em-
phasis on retaining the first high-quality pop size individuals.
At this point, all others are removed. This process is then
repeated indefinitely until the maximum number of iterations
has been reached. Note that this algorithm is based on the

genetic algorithm. The local search process is added in order
to improve the exploration process.

3.4.7 Bees swarm optimization algorithm

Excellent features are discovered through the use of an initial bee
that settles on a beneficial configuration. Using this initial con-
figuration, a subset of configurations known as the SearchArea
of the larger search space is determined. This is accomplished
through the use of Eq. 3. Each bee uses a configuration from the
SearchArea as a starting point. Once the local search processing
is complete, each bee will communicate the configuration they
believe is the best to all other neighbouring bees. This procedure
is completed with the assistance of a table of Dance. During the
subsequent iterations, one of the configurations fromDancewill
be designated as the reference configuration. To ensure that the
specified number of cyclic iterations occurs, a taboo list of pre-
vious reference configurations is created. Each reference config-
uration is chosen based on its quality. We can also state that if
and only if the actual swarm in its entirety is able to see the
reference configurations are actually not gaining any improve-
ment after some period, then a process for criteria diversification
can be used in avoidance of becoming computationally trapped
in local optimumwhich in reality provides no global benefit. Our
taboo list can then be used for the generation of diversification
criteria to be able to locate the reference configuration of themost
distant past from our current stuck one. Our algorithm finally will
terminate when and only when an optimal configuration is
reached or in turn when some maximum number of iterations
occurs.
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Algorithm 1 presents the pseudo-code of the H2ID algo-
rithm. The algorithm starts by collecting the infectious disease
data from medical sensors. For each data, we check its type, if
it is time series, the long short term memory model is created,
if it is categorical, the entity embedded deep learning is creat-
ed, and if it is an image, the convolution neural network is
created. The hyper-optimization process is then performed to
identify the optimized model for the data at hand. The local
decision of each agent is determined by applying the rein-
forcement learning process. This is applied to each agent in
the system. The algorithm returns the global decision which
will be the concatenation of local decisions of the agents.

4 Performance evaluation

To validate the use of the proposed HI2D framework, exten-
sive tests were undertaken on well-known medical databases.
The experiments were conducted on a desktop computer
equipped with an Intel i7 processor and 16 GB of main mem-
ory. Python was used to implement all algorithms. The
runtime evaluation is measured in mile-seconds, and the ac-
curacy is measured by the ratio between the corrected detected
infections and the number of all infections.

4.1 Data description

We used three medical databases with different data represen-
tations raw data, time series, and images1. A detailed descrip-
tion of the data is given as follows,

1. Respiratory Sound Data: It is a raw data collection, in-
cludes annotated recordings of different patients. These
recordings contain different respiratory cycles of crackles,
wheezes and both crackles and wheezes. The data set
includes both clean and noisy recordings of respiratory
sounds that simulate real-world conditions [26].

2. Real-time COVID-19 Data: This is a COVID-19 time
series documenting verified cases, reported deaths, and
reported recoveries. Data were combined on a country-
by-country basis. It is collected by Gaurav Dutta2. It con-
tains time-series data on the number of people worldwide
who have become infected with COVID-19, including i)
confirmed, tested cases of coronavirus infection, ii) the
number of people who died from coronavirus during their
illness, and iii) the number of people who recovered.

3. Corn Leaf Infection Data: It is image collection to get an
understanding of the cornfield and collect the corn leaf
data that were partially infected by pests like Fall
Armyworm. It is collected by Acharya3 to help the agri-
culture sector by making some systems that can help
farmers using artificial intelligence.

4.2 Parameters settings

The first tests have the objective to tune the parameters of the
main components of the H2ID framework. Numerous exper-
iments have been conducted with varying numbers of agents,
and the number of generations/iterations, of the hyper-
optimization algorithms. Fig. 2 shows the CPU time, and the
detection accuracy of the H2ID framework by varying with
the number of agents from 2 to 20 and using the three different
data described above. The result reveals that by increasing the
number of agents, we gain benefit from both runtime and
detection accuracy. According to the figure, the number of
agents should be set to 20. The result also reveals that by
varying the number of generations of the Memetic algorithm,
and the number of iterations, of the BSO algorithm from 10 to
100, an improvement in terms of accuracy is observed.
According to Fig. 3, the hyper-parameter optimization algo-
rithm should be set to BSO for Respiratory Sound, and

1 https://www.kaggle.com/

2 https://www.kaggle.com/gauravduttakiit/covid-19
3 Acharya, R. (October 2020) Corn Leaf Infection Dataset, Version 1.
Retrieved October 2020 from https://www.kaggle.com/qramkrishna/corn-
leaf-infection-dataset

Fig. 2 The running time and the
detected accuracy of the proposed
solution with different number of
agents
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COVID-19 data, and it should be set to a memetic algorithm
for Corn Leaf data. Also, the number of generations/iterations
should be set to 80. The next experiments seek to validate the
applicability of the proposed H2ID framework for identifying
disease infectious. To reach this conclusion, several compar-
isons have been made with the state-of-the-art algorithms
(InceptionResNet [30], and DenseNet [28]). We first measure
the runtime performance and then determine the quality per-
formance. The results will be shown in the following.

4.3 Runtime performance

Fig. 4 shows the runtime of the H2ID, InceptionResNet, and
DenseNet using different data (Respiratory sound data,
Covid-19, and Corn leaf data). By stretching the data used in
the experiments, from10%to100%, the computational time of
algorithms increases from 10 ms to 30 ms. Counterpart, H2ID
surpasses the baseline solutions in all cases. H2ID runtime
does not exceed 15 ms for handling the entire data, however,
the baseline solutions go up to 30 ms in processing the same
portion of data. These results are mainly reached thanks to the
efficient design of the H2ID, where distributed deep learning
is performed efficiently. Indeed, communication is used
among the different agents in the system to share the relevant
outputs and then quickly converge to the optimal result.

4.4 Detection accuracy

Fig. 5 shows the detection accuracy of the H2ID,
InceptionResNet, and DenseNet using different data
(Respiratory sound data, COVID-19, and Corn leaf data).
While varying the data used as input, from 10% to 100%, an
improvement in terms of the detection accuracy of all algo-
rithms is shown from 70 to 90. Also, H2ID outperforms the
baseline solutions whatever the scenario running in the exper-
iment. H2ID accuracy reaches 97% in terms of corrected
detection of infectious disease in processing the whole data,
nevertheless, the accuracy of the two other solutions never
reaches 93% of corrected detection infectious disease. This
success is explained by the coherent development of the pro-
posed deep learning solutions in the H2ID, where different
optimizations are developed including avoiding over-fitting
with dropout layers, training a high number of layers using
the batch normalization, and the accurate hyper-optimization
setting by deploying evolutionary computation algorithms.

4.5 H2ID Vs advanced infectious disease detection
solutions

The final experiments aim to compare the performance of
H2ID solutions with advanced infectious disease detection

Fig. 3 The detected accuracy of the proposed solution with different generations/iterations of the hyper-optimization strategy

Fig. 4 Runtime performance comparison of the H2ID and the existing infection disease intelligence detection
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solutions. We used Xception [14] and SqueezeNet [2] for
infectious disease detection. Table 1 shows both the runtime
inmilliseconds and the detection accuracy of H2ID, Xception,
and SqueezeNet using different data (breath sound data,
Covid-19, and corn leaf data). The results show the superiority
of H2ID compared to the other two solutions in terms of
detection accuracy in all cases. Moreover, it is very competi-
tive with SqueezeNet in terms of runtime. This performance
can be explained by the fact that SqueezeNet is an optimized
deep learning architecture that is very well suited for use in
mobile devices, but the quality of this architecture is not as
good. In contrast, our solution performs well in terms of both
runtime and accuracy.

5 Future direction

This section presents the main outcomes of the application of
the developed framework on medical data. We also suggest
some future directions for improving the developed
framework.

1. The efficient combination between the deep learning tech-
nologies, and the intelligent agents results in high accura-
cy performances. The runtime performance is still an issue
for handling medical data in real-time. Combining
metaheuristics and exact solutions [8] may be a good di-
rection to improve both accuracy and runtime
performance.

2. The proposed framework is successfully applied on de-
tecting infectious diseases. It improved the existing base-
line methods for infectious disease detection. It will be
very interesting to see the results of the proposed frame-
work on other medical domain applications such as brain
tumour detection [35], surgery [25] and medical pattern
recognition [18].

3. The proposed framework suffers from the output interpre-
tation. It is based on black-box models that do not implic-
itly explain the execution path of the output generation.
When deployed in healthcare settings, practitioners of ma-
chine learning systems need to understand howwe arrived
at a specific outcome and must trust it and its reliability.
The emerging field of XAI (eXplainable Artificial
Intelligence) addresses this need and offers several
methods to provide some level of explanation to deep
learning AI solutions. From a future perspective, we plan
to integrate the XAI techniques in the proposed frame-
work. This allows for giving a better interpretation of
the developed framework.

6 Conclusion

This paper proposed a new intelligent framework for infection
disease detection by incorporating emerging intelligent com-
ponents. Deep learning architectures such as convolution neu-
ral networks, long-short term memory networks, and entity

Fig. 5 Accuracy performance comparison of the H2ID and the existing infection disease intelligence detection

Table 1 H2ID Vs. Advanced
infectious disease detection
solutions

Dataset H2ID Xception SqueezeNet

CPU Accuracy (%) CPU Accuracy (%) CPU Accuracy (%)

Respiratory Sound Data 12 95 17 91 13 88

Real-time COVID-19 Data 10 96 14 90 11 82

Corn Leaf Infection Data 17 94 21 93 16 85
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embedding networks are adopted to learn both structured and
unstructured medical data. A multi-agent system is also inte-
grated into the suggested framework to increase intelligence,
where each agent shares the learning results with the other
agents in the system. Also, the evolutionary computation al-
gorithms, such as memetic algorithm, and bees swarm optimi-
zation are conducted to smartly explore the configuration
space of the possible combination of the hyper-parameter
values. To demonstrate the applicability of the proposed
framework, intensive experiments have been carried out on
medical data. The results plainly show the effectiveness of
our methodology against the baseline solutions.
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