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Abstract: Parkinson’s disease (PD) is a very common brain abnormality that affects people all over
the world. Early detection of such abnormality is critical in clinical diagnosis in order to prevent
disease progression. Electroencephalography (EEG) is one of the most important PD diagnostic tools
since this disease is linked to the brain. In this study, novel efficient common spatial pattern-based
approaches for detecting Parkinson’s disease in two cases, off–medication and on–medication, are
proposed. First, the EEG signals are preprocessed to remove major artifacts before spatial filtering
using a common spatial pattern. Several features are extracted from spatially filtered signals using
different metrics, namely, variance, band power, energy, and several types of entropy. Machine
learning techniques, namely, random forest, linear/quadratic discriminant analysis, support vector
machine, and k-nearest neighbor, are investigated to classify the extracted features. The impacts
of frequency bands, segment length, and reduction number on the results are also investigated in
this work. The proposed methods are tested using two EEG datasets: the SanDiego dataset (31
participants, 93 min) and the UNM dataset (54 participants, 54 min). The results show that the
proposed methods, particularly the combination of common spatial patterns and log energy entropy,
provide competitive results when compared to methods in the literature. The achieved results in
terms of classification accuracy, sensitivity, and specificity in the case of off-medication PD detection
are around 99%. In the case of on-medication PD, the results range from 95% to 98%. The results also
reveal that features extracted from the alpha and beta bands have the highest classification accuracy.

Keywords: common spatial pattern; discriminant analysis; electroencephalogram; entropy; k-nearest
neighbor; machine learning; Parkinson’s detection; random forest; support vector machines

1. Introduction

With age, the number of connections between brain cells reduces and the neurons
shrink. Nerve cells, unlike muscle, skin, and bone cells, cannot regenerate themselves.
Neurons die or become damaged as people age [1]. Parkinson’s disease (PD) is a neurode-
generative disease in which neurons in the substantia nigra of the brain become damaged.
These neurons are in charge of producing a substance known as dopamine. Dopamine is a
chemical that acts as a messenger between neurons in the brain. It assists the brain in send-
ing messages to various regions of the body in order for it to work properly, particularly
when it comes to body movements and speech delivery. PD symptoms appear when a high
number of dopaminergic neurons are destroyed or the quantity of dopamine in the brain is
abnormal [2]. According to the World Health Organization, around 10 million individuals
have been affected as a result of this disease [3,4]. PD becomes more common as people
get older, with people in their fifties and older being the most affected. Approximately
4% of people with PD are diagnosed before they reach the age of 50, and males are 1.5
times more likely than women to have the disease [5,6]. Early symptoms may be minor and
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difficult to notice, but as time passes, the signs and symptoms will become more noticeable.
Dyskinesia, fainting, exhaustion, tremor, rigidity, dystonia, hypomimia, constipation, loss
of taste or smell, and weight loss are some of the motor and non-motor symptoms of PD [6].
Because PD is currently incurable, it is essential to detect it early so that patients can take
the necessary preventative measures to manage it and carry out their regular activities
properly [6,7].

Parkinson’s disease manifests itself in a variety of ways for those who have it. Its
symptoms may not always appear in the same order. The most popular scales used to score
the disease and assess the phases of Parkinson’s disease are the Hoehn and Yahr (HY) rating
scale and the Unified Parkinson’s Disease Rating Scale (UPDRS) [8]. The HY scale classifies
Parkinson’s disease into five stages, ranging from no symptoms to the most dangerous
stage. Similarly, UPDRS categorizes PD into five categories, starting from zero, which
denotes normal, and progressing to the fourth, which denotes significant difficulties [6,9].

Even while the final diagnosis is always subject to the neurologist’s opinion and re-
view, any tool that helps them contrast their diagnosis is always welcome. As a result, there
is a growing demand for automated procedures that can aid in improving the accuracy
of PD diagnosis. Several approaches have been presented in this regard, with the major-
ity of them using voice signals [10–12], gait signals [13,14], handwriting signals [15,16],
MRI [17], and only a few employing electroencephalography (EEG). EEG is considered
to be one of the most important PD diagnostics tools. EEG technology can be used to
capture cerebral information in a real-world context because it is reasonably inexpensive
and portable. In addition, EEG records brain activity faster and for a longer amount of
time than other technologies. As a result, EEG analysis, along with machine learning
techniques, has already been employed in the detection of several neurological conditions,
including epilepsy, autism spectrum disorder, Alzheimer’s disease, schizophrenia, and
major depressive disorder [18–23]. However, the use of EEG to study PD has not been
fully investigated.

During Timed Up and Go Task studies, Ly et al. [24] reported a classification approach
based on EEG data for detecting turning freeze (TF) occurrences in six PD patients. For
feature extraction, time-frequency Stockwell transform techniques were applied. Inde-
pendent component analysis with entropy bound minimization was used to separate the
EEG sources. Bayesian Neural Networks were used to extract and classify the different
frequency-based features of selected independent components of EEG, which provided
86.2% accuracy for TF detection. Another study [25] discussed various ways of identifying
gait initiation failure (GIF), which is a sort of freezing of gait (FOG). In five PD patients with
FOG, wavelet transform was employed for feature extraction, after which GIF events were
classified using a support vector machine. With an accuracy of 86.3%, these approaches
were able to correctly identify GIF episodes. The study [26] described deep learning mod-
els for diagnosis derived from resting EEG data collected from patients with Rapid Eye
Movement Behavior Disorder. The authors utilized RNN-LSTM and five-layer CNN to
obtain classification accuracy of 81% and 79%, respectively.

Chaturvedi et al. [27] aimed to find out which quantitative EEG (QEEG) parameters
could best distinguish patients with PD from healthy individuals. For this purpose, 256-
channel EEG signals from 50 PD and 41 healthy controls (HC) were processed using
regression and machine learning methods. Betrouni et al. [28] studied the optimal QEEG
characteristics for detecting different levels of cognitive impairment in Parkinson’s disease.
Spectral power analysis was performed on the EEG recordings, and characterization models
were built and trained using support vector machines and k-nearest neighbors. The total
classification accuracies for the support vector machines and k-nearest methods were 84%
and 88%, respectively.

The studies discussed so far are either studies that focus on detecting Parkinson’s
disease by asking participants to perform mental or muscular tasks [24–26] or studies that
focus on finding out the best EEG parameters/characteristics for PD detection [27,28]. The
following studies are dedicated to the detection of PD patients from HC using resting-state
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EEG recordings. Starting with Yuvaraj et al. [29], they employed a higher-order spectra
(HOS) feature extractor to develop an automated diagnosis of Parkinson’s disease. The
bispectrum features were retrieved and their relevance was assessed. Decision tree, KNN,
Fuzzy-KNN, NB, Probabilistic neural network, and SVM are some of the classifiers that
produce accuracy ranging from 90.6% to 99.6%. The use of resting-state EEG signals to
detect Parkinson’s disease has also been investigated in [30]. In that study, a thirteen-layer
convolutional neural network (CNN) was proposed, achieving a classification accuracy
of 88.25%. For the categorization of on–medication PD (on–PD) vs. off–medication PD
(off–PD) patients, Shah S. A. A. et al. [31] developed a deep neural network architecture
termed the dynamical system generated hybrid network (DGHNet). They reported that
this network has a classification accuracy of 99.2%. Linear predictive coding (LPC) was
proposed by Md. Fahim Anjum et al. [32] to distinguish spectral EEG markers of Parkin-
son’s disease. The power spectral density (PSD) of EEG data was computed, then LPC
was employed for feature extraction. The resulting LPC vectors are used to identify two
separate hyperplanes, which are then used to distinguish PD patients from healthy controls
with an accuracy of 85.3%. Lee S. et al. [33] proposed a convolutional neural network
(CNN) and a recurrent neural network (RNN) with gated recurrent units (GRUs) for iden-
tifying resting-state EEG obtained from people with PD and HC in a recently published
study. Their proposed approach has a 99.2% classification accuracy. The wavelet transform
was proposed by Smith K. K. et al. [34] to decompose EEG signals into several subbands.
Statistical measurements were used to extract five features from these subbands, which
were then categorized using several machine learning techniques. The classification of
off-medication PD vs. HC and on-medication PD vs. HC using the least square support
vector machine yielded an accuracy of 96.13% and 97.65%, respectively.

Although the detection of PD patients in the resting state is more comfortable for
elderly people, there are a limited number of studies [29–34] that were dedicated to that.
For comparison purposes, Table 1 summarizes these studies with their proposed feature ex-
traction and classification methods and corresponding results. However, it should be noted
that at least three different datasets were used in these studies: the Malaysian dataset, pub-
lic UNM dataset, and public SanDiego dataset, making the comparison difficult. Looking
first at the classification accuracy results for these studies in the table, it can be noted that
the results of the studies are varying and some of them have high classification accuracy. By
looking again at the table, some of these studies [30,31,33] used deep learning techniques,
which could provide high classification accuracy, but these techniques require a long train-
ing period and a big dataset as well, which makes them unsuitable for implementation in
reality. From Table 1, it can also be seen that some studies, such as [32], suggested the use
of uncomplicated methods, but on the other hand, the simplicity had a negative impact on
the accuracy of classification.

Table 1. Summaries of methods of previous studies and their results.

Reference FE Methods Classifier(s) Dataset Classification
Accuracy (%)

[29], 2018 Higher-order
spectra (HOS)

DT, KNN,
FKNN, NB,
PNN, SVM

Malaysian
dataset 90.6–99.6

[30], 2020 —- 13 layer CNN Malaysian
dataset 88.25

[31], 2020 —- CNN+LSTM UNM dataset 99.2

[32], 2020 PSD Hyperplanes UNM dataset 85.4

[33], 2021 – CNN+RNN Own dataset 99.2

[34], 2021 WT+statistical
measures SVM SanDiego

dataset 96.13
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The aim of the present study is to address these gaps found in previous studies by
presenting uncomplicated feature extraction and classification methods while maintaining
high classification accuracy and validating them using two public datasets (UNM and
SanDiego datasets). It is worth mentioning that the classification accuracy is influenced
not just by the classifier utilized but also by the signal’s preprocessing and the method of
extracting features. In our recent study [35], a CSP-based diagnostic method for identifying
epilepsy and ASDs was developed, and the results were promising. These results motivated
us to investigate if the CSP approach may yield good biomarkers of PD patients’ resting-
state EEGs, allowing them to be distinguished from those of healthy people.

Accordingly, in the present study, novel, simple, and effective CSP-based methods are
proposed for the detection of PD in two conditions, namely, off–medication PD vs. HC
and on–medication PD vs. HC. To the best of our knowledge, we are the first group to
present CSP-based methods for the detection of PD. Unlike traditional CSP-variance, CSP
is combined with various methods to improve classification accuracy, including energy and
band power (BP). In addition, unlike [35], CSP is also combined with log energy entropy,
norm entropy, sure entropy, and Shannon entropy, to provide good biomarkers for PD
EEGs. Several linear/nonlinear classifiers are applied to classify the resulting PD features
from normal ones. The effects of the frequency band, reduction number, and segment
length on classification accuracy are also being investigated.

The rest of this paper is laid out as follows. Section 2 describes the used EEG data
and the following EEG signal-processing methods: preprocessing, feature extraction, and
classification techniques. The rest of this paper is laid out as follows. Section 3 contains the
results as well as a discussion. In Section 4, the conclusion is presented, as well as potential
future work options.

2. Methods

The proposed methods for processing EEG signals are described in this section, which
includes data description, preprocessing, feature extraction, and classification methods.
Figure 1 provides a high-level overview of the different stages through which EEGs from
Parkinson’s patients and healthy people are analyzed and then classified. The raw EEG sig-
nals are read first, then preprocessed to remove artifacts before being band-pass filtered to
find the frequency band of interest. The filtered EEG signals are split into non-overlapping
segments with an equal time duration. Each segment is spatially filtered using CSP, after
which the PD/HC features are extracted using a variety of metrics including variance, band
power, energy, log energy entropy, norm entropy, threshold entropy, sure entropy, and
Shannon entropy. Finally, to distinguish off/on PD features from HC ones, various classi-
fiers such as random forest (RF), linear discriminant analysis (LDA), quadratic discriminant
analysis (QDA), support vector machine (SVM), and k-nearest neighbors (KNN) are used
(HC). The subsections that follow go over each stage of the block diagram in further detail.

2.1. Data Description and Pre-Processing

In this study, the proposed methods are tested using two public EEG datasets. The
first dataset is from the University of San Diego, California [36]. This dataset is referred
to as the “SanDiego dataset.” The subjects of this dataset were asked to sit comfortably
and relax their eyes by fixating on a cross on a screen during data collection. There are
two groups in the dataset. The EEGs of 16 healthy subjects with a mean age of 63.5 ± 9.6
standard deviation years, 9 females and 7 males, make up the first group. The EEGs of
15 PD patients, 8 females and 7 males, with a mean age of 63.2 ± 8.2 standard deviation
years, make up the second group. As determined by the Mini-Mental State Exam and the
North American Adult Reading Test, the right-handedness, gender, age, and cognition
of the PD patients were quite similar to those of the HC. All of the patients had mild
to severe Parkinson’s disease (Hoehn and Yahr scale II and III), with an average disease
duration of 4.5 to 3.5 years. To get information on EEG on and off medication, data from PD
patients was obtained on two separate days. For the on-medication session, the participants
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brought their usual medication regimen with them to the recording session. The patients
had been taking their medications for about 12 h when they agreed to participate in the
off-medication session. The healthy subjects only volunteered once. Using a 32-channel
Biosemi Active Two EEG system, EEG signals were recorded for at least 3 min at a sampling
frequency of 512 Hz. In addition to the 32 EEG channels, each recording has eight EXG
channels. The preprocessing was conducted in Matlab using EEGLAB by removing the
mean of each channel and re-referencing all of the data to the common average (excluding
excessively noisy electrodes). To reduce low-frequency drift, high pass filtering at 0.5 Hz
was applied. Eye blinks and movements, muscle activity, electrical noise, and other sorts
of noise were manually examined and removed. This dataset’s specifics, including signal
capture and preprocessing, are detailed in [37].
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The second set of data comes from a study conducted by the University of New
Mexico (UNM; Albuquerque, NM, USA). For simplicity, in the present study, this dataset is
referred to as the UNM dataset. This dataset contains the EEGs of 27 Parkinson’s disease
patients and 27 healthy subjects of equal gender (17 females and 10 males). The mean
age plus standard deviation for the PD group is 69.52 ± 8.56 years, while the mean age
plus standard deviation for the HC group is 69.52 ± 9.27 years. In terms of age and sex,
control subjects and PD patients were demographically matched, and no variations in
education or premorbid IQ were discovered. The PD group visited the lab twice, seven
days apart, the first time while on medication and the second time after a 15-h overnight
withdrawal from their individual dopaminergic pharmacological prescriptions. As a result,
the data set includes information from 27 Parkinson’s disease patients who were on and
off therapy. Data were collected for two minutes for each patient and control group; first,
they were instructed to keep their eyes closed for one minute, and then they were asked
to record for another minute with their eyes open. For a total of 68 channels, sintered
Ag/AgCl electrodes were used for 64 EEG channels, 65 VEOG channels, and 65–67 XYZ
accelerometer channels on hand (variable L or R). The sampling rate was 500 samples per
second. The Brain Vision data collection system was used with an online CPz reference
and an AFz terminal grounded. The paper [38] goes into greater detail about how the data
was gathered. Table 2 provides a summary of both the SanDiego and the UNM datasets.

In this study, certain superfluous channels were eliminated from the SanDiego and
UNM datasets. The 8 EXG channels (non-EEG channels) were removed from the SanDiego
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dataset. As a result, each individual has only 32 EEG channels, as shown in Figure 2.
The VEOG channel and the XYZ accelerometer have also been removed from the UNM
dataset. Figure 3 depicts electrode maps and EEG power spectral density (on a logarithmic
scale) for off–PD, on–PD, and HC EEGs. The electrode map is shown for three distinct
arbitrary frequencies: 6, 10, and 22 Hz. In general, the power density of the low-frequency
spectrum is higher than that of the high-frequency spectrum. Different power spectral
density patterns can be seen when comparing the three maps.

For further preprocessing, the EEG signals are divided into M segments with a size
of (ch× N), where ch denotes the number of channels and N specifies the number of EEG
samples per channel in a given time interval T. The segmented signals are then filtered
with a fifth-order band-pass Butterworth filter to remove the interference and noise caused
by the electrodes and magnetic fields. The choice of the segmentation time interval T and
the frequency band of the filter will be investigated later in this paper.

Table 2. Summary of information about datasets used in this study.

Dataset
Name

PD Patients Information HC Patients Information

Total
No.

Age
(mean ± st)

State(s) Total
No.

Age
(mean ± st)

State(s)

Off On Open
Eyes

Close
Eyes

Open
Eyes

Close
Eyes

SanDiego 15 63.20 ± 8.20 Yes Yes Yes No 16 63.50 ± 9.60 Yes No
UNM 27 69.52 ± 8.66 Yes Yes Yes Yes 27 69.52 ± 9.27 Yes Yes

For SanDiego, the recording length for each person in each state is 3 min, while it is 1 min in UNM.
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2.2. Common Spatial Pattern

For discriminating between the off/on PD class and HC class, the CSP algorithm is
employed as a spatial filter that leads to peak variances [39]. For simplicity, in what follows,
these two classes will be denoted by PD and HC, respectively. A set of CSP filters make up
the projection matrix WCSP, which is computed only once using the entire training dataset.
This is done by first calculating the normalized spatial covariance for both classes as follows

CPD =
EPDEPD

′

trace(EPDEPD ′)
and CHC =

EHCEHC
′

trace(EHCEHC
′)

(1)

where EPD and EHC denote the EEG segments under two conditions (PD and HC) of size
ch× N, where ch denotes the number of channels and N denotes the number of samples
per channel in each segment. E′ is the transpose of E, and trace(EE′) is the sum of the
diagonal elements of EE′. Then, the averaged normalized covariances CPD and CHC are
calculated by averaging all of the segments of each class. The overall composite spatial
covariance is given by

CC = CPD + CHC (2)

This covariance matrix is factorized into eigenvalues and eigenvectors as follows

CC = UCλCU′C (3)

where UC is the matrix of the eigenvectors and λC is the diagonal matrix of the eigenvalues
arranged in descending order. Subsequently, the whitening transformation P is obtained
by computing

P =
√

λ−1
C U′C (4)

This is used to transform the covariance matrices of the two classes into

SPD = P CPD P′ and SHC = P CHC P′ (5)

The sum of the eigenvalues of SPD and SHC should be an identity matrix, and SPD
and SHC should have the same eigenvectors, i.e.,

SPD = B λPDB′ (6)

SHC = B λHCB′ (7)

λPD + λHC = I (8)

where B is any orthonormal matrix that satisfies

B′(SPD + SHC)B = I (9)

The eigenvector corresponding to the largest eigenvalue for SPD have the smallest
eigenvalues for SHC, and vice versa. This demonstrates that the maximization of the
eigenvalues of one class at a specific point corresponds to the minimization of the eigenval-
ues of the other class at the same point. Thus, the covariance between the two classes is
successfully maximized. The projection matrix WCSP is defined by

WCSP = P′B = [ w1 w2 . . . wch−1 wch] ∈ Rch×ch (10)

which is composed of a set of CSP filters. The first CSP filter w1 corresponds to the maximum
variance of PD class while the last CSP filter wch provides the maximum variance of HC
class. For dimensionality reduction, only the first and last m filters will be used, such that
WCSP is redefined as follows

WCSP = [ w1 w2 . . . wm wch−m+1 wch−m+2 . . . wch] ∈ Rd×ch (11)
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where d = 2m is the reduction number. The reduction number is the number by which the
channels should be reduced. The process of feature extraction starts by filtering each EEG
segment using WCSP to obtain the filtered segment S is given by

S = W2m×ch
CSP e(t)ch×N = [s1(n) s2(n) . . . sd(n)]

′ ∈ R2m×N (12)

2.3. Feature Extraction (FE)

In conventional CSP, the variance measurement is used to calculate the feature vectors
f = ( f1, f2, f3, . . . , f2m)

′ for each segment as follows

f j(var) = log

[
var
[
sj(n)

]
∑2m

j=1 var
[
sj(n)

]] , j = 1, 2, . . . , 2m (13)

In the present study, the use of several additional metrics, namely, band power, energy,
and entropy are investigated. The features based on band power and energy are given by

Band power (BP) [40]

f j(BP) = log
[

1
N ∑ N

n=1
∣∣sj(n)

∣∣2] (14)

Energy (Eng) [40]

f j(Eng) = ∑ N
n=1
∣∣sj(n)

∣∣2 (15)

Entropy is a metric that is commonly used for evaluating the complexity, regularity,
and statistical quantification of time series. Multiple studies have shown that entropy
may be used to analyze and establish biomarkers for a number of diseases, including
epilepsy [41], attention deficit hyperactivity disorder [42], and autism [43]. This motivates
us to look at using entropy as a method for identifying Parkinson’s disease. In the present
study, instead of computing entropy directly from EEG data, it is proposed to compute it
from the spatially filtered segment S2m×N , which may aid in the development of appropriate
biomarkers for PD identification.

Several types of entropy are investigated in this work: Shannon entropy, norm entropy,
threshold entropy, sure entropy, and log energy entropy. These metrics are defined as
follows. If k is the number of unique values in the discrete signal sj(n) and xi is the
probability frequency of the ith unique value, then the entropy features f j are given by:

Threshold entropy (ThEn) [44]

f j(ThEn) = #{i such that |xi| > α} (16)

where ThEn is the number of time instants for which the signal is greater than a threshold
α. The threshold is set to 0.2 based on trial-and-error to obtain the best accuracy.
Norm entropy (NoEn) [44]

f j(NoEn) = ∑ k
i=1|xi|p (17)

where p is the power of the entropy and must be such that 1 ≤ p. In this study, it is selected
to be 1.1.
Sure entropy (SuEn) [44]

f j(SuEn) = k− #{i such that |xi| ≤ q}+ ∑ imin
(

x2
i , q2

)
(18)

where q is the threshold value, and usually > 2. In the present study, it is selected to be 3.
Log energy entropy (LogEn) [44]

f j(LogEn) = ∑ k
i=1log|xi|2 (19)
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Shannon entropy (ShEn) [44]

f j(ShEn) = ∑ k
i=1|xi|2log|xi|2 (20)

A feature vector f of length d is extracted from each EEG segment by filtering it
using CSP and then computing one of the above metrics. The size of the resulting feature
matrix is M× d, where M denotes the number of segments and d denotes the reduction
number. Later on, the effects of M and d on the classification accuracy of PD vs. HC are
investigated. In the following subsection, the classification methods and cross-validation
stages are described.

2.4. Classification and Problem Formulations

In this study, a number of commonly used classification approaches to distinguish
between PD and HC features are applied: bagging-based RF, LDA, QDA, quadratic kernel-
based SVM, and KNN (kn = 3). The goal is to compare them and see which one produces the
best outcomes in terms of off–PD/on–PD against HC classification. A detailed description
of these classification methods can be found in [45–48].

The primary goal of this research is to detect Parkinson’s disease in individuals who
are in an off-medication state and to distinguish them from those in the healthy control
group. Due to the variety of data sets and conditions under which they were obtained,
several classification problem formulations are considered and summarized in Table 3.

Table 3. Summary of the addressed classification problem formulations in the present study.

Classification Problem Used Dataset Problem Description

Open-eyes off–PD vs. HC SanDiego and UNM When the eyes are open, differentiate off–medication PD patients
from the healthy control group

Open-eyes on–PD vs. HC SanDiego and UNM When the eyes are open, differentiate on–medication PD patients
from the healthy control group.

Open-eyes off–PD vs. on-PD SanDiego and UNM When the eyes are open, differentiate off–medication PD patients
from on–medication PD patients.

Close-eyes off–PD vs. HC UNM When the eyes are closed, differentiate off–medication PD
patients from the healthy control group.

Close-eyes on–PD vs. HC UNM When the eyes are closed, differentiate on–medication PD
patients from the healthy control group.

Close-eyes off–PD vs. on–PD UNM When the eyes are closed, differentiate off–medication PD
patients from on–medication PD patients.

2.5. Performance Evaluation

In this study, several methods to evaluate the performance of the developed classifica-
tion models are used: classification accuracy, sensitivity, specificity, F-score, and receiver
operating characteristic (ROC) curve. The classification accuracy (CA) is given by

CA =
Ncorrect

Ntotal
× 100% (21)

where Ntotal denotes the total number of feature vectors to be classified, and Ncorrect denotes
the number of feature vectors that are correct. For binary classification, the following
formula can also be used to calculate accuracy in terms of the number of positive and
negative predictions:

CA =
TP + TN

TP + TN + FP + FN
× 100% (22)

where TP = #True Positives, FP = #False Positives, TN = #True Negatives, and FN = #False
Negatives. The sensitivity also called recall or true positive rate (TPR), indicates the ability of
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a classification model to correctly identify patients with the disease. On the other hand, the
specificity, also called the true negative rate (TNR), indicates the ability of a classification
model to correctly identify people without the disease. The sensitivity and specificity are
defined by [49]:

Sensitivity =
TP

TP + FN
× 100% (23)

Speci f icity =
TN

TN + FP
× 100% (24)

The Precision metric quantifies the number of correct positive predictions made. In
this study, the F-score is adopted since it provides a way to combine both precision and
sensitivity into a single measure. F-score is defined as follows

F-score = 2× Precision× Sensitivity
Precision + Sensitivity

× 100% (25)

where Precision is calculated as

Precision =
TP

TP + FP
× 100 (26)

In addition to the above performance metrics, the ROC curve is also evaluated. The
ROC curve is a graphical illustration of how a test’s TPR (sensitivity) and FPR (1-specificity)
differ from one another. The AUC (area under the ROC curve) is a commonly used metric
for assessing the detection performance. Good classifiers are characterized by AUC values
that are close to 1. More information on ROC-AUC curves can be found in [50].

A k-fold cross-validation technique is implemented to obtain a reliable performance
evaluation for the proposed classification models. k = 10 is utilized in all of our experi-
ments, which divides the dataset into ten equal subsets, one for validation (test) and the
other nine for training [51]. The technique of cross-validation is repeated ten times (10-fold)
by changing the test and training subsets. Equations (21)–(26) are used to evaluate the
classification performance at each round. Each performance measure is averaged over the
ten rounds to produce a single classification measure.

Figure 4 depicts the stages in which Parkinson’s patients’ and healthy people’s EEGs
are processed during the training and test phases. As previously discussed, the data
are initially separated into two parts: 90% of the data for training and 10% for testing.
The training phase starts with BPF filtering of the training data. The filtered signals are
then split into M equal segments, each with a size of ch× N. The number of segments is
proportional to the length of each segment: the longer the segment, the lower the M, and
vice versa. After dividing the signals, CSP is performed to all of the segments (including
PD and HC) acquired using Equation (1) through Equation (10) to produce the projection
matrix Wch×ch, which contains a set of CSP filters. The dimensionality of this matrix is
then reduced by picking the first and last m filters to obtain the projection matrix Wd×ch,
as described in Equation (11). Wd×ch is then used to filter (multiply) each segment, as
described in Equation (12). As a result, the size of each filtered segment is d × N. The
next step is to create one feature vector f from each filtered segment, where the number
of feature vectors is equal to the number of segments M. The number of elements in each
feature vector is d: f = ( f1, f2, f3, . . . , fd)

′. The elements of this vector are calculated using
variance, energy, BP, or entropy according to Equations (13)–(20). The final step in the
training phase is to train a classifier (RF, LDA, QDA, SVM, or KNN) using the feature
vectors derived from the previous step. This concludes the training phase. In the testing
phase, the test data subset is filtered with the same BPF and segmented in the same way as
the training data. The difference here is that the CSP filters and its projection matrix are not
recomputed. Instead, the same Wd×ch matrix created during the training phase is reused in
the testing phase. The feature vectors are then created in a similar fashion to the training
phase. The final step in the testing phase is to classify the test feature vectors using the
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classifiers that have been trained in the training phase to predict whether it belongs to PD
or HC. The classification performance is then computed using Equations (21)–(26), with the
cross-validation technique.
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3. Results and Discussion

To verify the methods proposed here, two datasets from two different sources are used:
SanDiego and UNM datasets. Because the datasets contain different states and conditions,
as well as the diversity of the proposed methods, the results are presented in two separate
subsections: SanDiego dataset-based results and UNM dataset-based results.

3.1. SanDiego Dataset Results

With this dataset, three classification problems are addressed: off-medication patients
versus the healthy control group, on-medication patients versus the healthy control group, and
off-medication patients versus on-medication patients, when the eyes are open.

3.1.1. Off–Medication PD vs. Healthy Control

As the main problem for PD testing, the classification results of off–medication PD
patients against a healthy control group are provided and discussed in this part. Each
channel’s signal is fed into a 0.5–32 Hz BPF before being split into 606 non-overlapping
10-s segments (M = 606). A total of 300 segments are acquired from PD patients, while
306 segments are obtained from HC patients. Each segment is transformed into a feature
vector of length 32 (d = 32) using the proposed FE methods. This results in a feature matrix
with a length of 606 × 32 that is then sent to the KNN classifier. The eight FE methods are
listed in Tables 4 and 5 together with their corresponding classification accuracy, sensitivity,
specificity, and F-score results. Table 5 presents the findings for features extracted from
CSP filtered signals, whereas Table 4 shows the results when CSP is not applied. For
each feature extraction method, ten outcome values (classification accuracy, sensitivity,
specificity, and F-value) are generated using 10-fold cross-validation. For each method, the
average performance of the ten values is calculated, along with their standard deviation
(mean ± st). The results show a great improvement when CSP is applied. When adopting
CSP, the average classification accuracy of the ShEn technique, for example, rises from
75.27% to 91.91%. The CSP+Var and CSP+LogEn methods produce the best performance,
with average classification accuracies of 96.37% and 94.22%, respectively. Other methods,
such as CSP+Eng, CSP+LBP, and CSP+NoEn, have a classification accuracy of above 93%.
In comparison to Table 4, the standard deviation values in Table 5 have been reduced.
Table 5 shows that the CSP+ThEn and CSP+SuEn feature extraction methods have the
worst performance. As a result, neither of these methods will be further investigated.
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Table 4. Classification results of off–PD vs. HC using KNN classifier (without CSP).

FE Methods
Accuracy (%) Sensitivity (%) Specificity (%) F-Score (%)

mean ± st mean ± st mean ± st mean ± st

Variance 78.21 ± 5.89 78.43 ± 5.81 78.41 ± 6.96 77.73 ± 6.41
Energy 86.63 ± 4.23 84.07 ± 4.66 90.14 ± 6.32 86.97 ± 4.22
LBP 86.64 ± 3.39 84.17 ± 4.81 89.97 ± 4.21 87.02 ± 3.19
LogEn 85.96 ± 4.69 83.78 ± 4.33 88.71 ± 6.47 86.22 ± 4.58
ShEn 75.27 ± 5.52 75.31 ± 6.61 75.58 ± 5.47 75.02 ± 5.38
ThEn 54.13 ± 8.82 53.38 ± 7.77 55.20 ± 10.45 58.54 ± 7.02
SuEn 79.36 ± 4.82 76.75 ± 4.76 82.93 ± 6.25 80.08 ± 4.73
NoEn 84.66 ± 1.89 83.56 ± 3.69 86.45 ± 4.12 84.76 ± 2.02

Table 5. Classification results of off–PD vs. HC using KNN classifier (with CSP).

FE Methods
Accuracy (%) Sensitivity (%) Specificity (%) F-Score (%)

mean ± st mean ± st mean ± st mean ± st

CSP+Var 96.37 ± 3.18 96.80 ± 4.42 96.16 ± 3.21 96.34 ± 3.15
CSP+Eng 93.23 ± 2.53 91.21 ± 3.27 95.57 ± 2.74 93.34 ± 2.43
CSP+LBP 93.90 ± 2.19 92.11 ± 3.18 95.96 ± 2.65 93.97 ± 2.15
CSP+LogEn 94.22 ± 2.96 93.65 ± 4.11 95.27 ± 4.95 94.19 ± 3.01
CSP+ShEn 91.91 ± 4.72 92.40 ± 7.00 91.92 ± 3.95 91.90 ± 4.53
CSP+ThEn 49.67 ± 2.40 49.53 ± 1.37 59.81 ± 24.68 64.78 ± 2.42
CSP+SuEn 50.49 ± 5.45 50.17 ± 4.77 50.76 ± 6.59 53.55 ± 4.63
CSP+NoEn 93.39 ± 3.31 92.78 ± 5.25 94.45 ± 3.53 93.44 ± 3.18

For further examination, four more classification algorithms are used in addition to
KNN. Figure 5 compares the classification accuracy of RF, LDA, QDA, and SVM techniques
applied to features extracted using all of the proposed methods. With all the FE methods,
the KNN and RF classifiers achieve the highest classification accuracy and lowest standard
deviation. Figure 6 presents ROC curves and AUC for the five classifiers. The KNN and
RF classifiers have the highest AUC for all FE methods, whereas the LDA, QDA, and SVM
have the lowest AUC. These results indicate that KNN consistently outperforms the other
classifiers in terms of AUC, ROC, and accuracy.
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Investigation of Frequency Bands

EEG signals have a frequency range of 0 to 100 Hz, which is typically decomposed
into five sub-bands: delta (<4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and
gamma (>30 Hz). In this subsection, the aim is to find the sub-bands that lead to the
highest PD classification performance. The gamma range has been eliminated from this
study due to artifacts that may adversely affect the classification accuracy. Figure 7 depicts
the classification accuracy when applying all of the proposed methods to different EEG
sub-bands. According to the results shown in the figure (dark blue and yellow), in the
highest subsection, our accuracies are acquired from beta and alpha. Because important
information may not be concentrated in a single sub-band, the effect of combining two or
more sub-bands on the classification performance is also being investigated. It can be seen
from Table 6 that the frequency bands formed from both alpha and beta sub-bands lead
to the highest classification accuracy. It is important to mention here that the CSP+LogEn
method leads to higher classification accuracies compared to other FE methods. According
to the results, the highest accuracy is obtained when the EEG signals are filtered using a
10–30-Hz band-pass filter.
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Table 6. Effect of frequency bands on classification accuracy using KNN (off–PD vs. HC).

Frequency
Band

FE Method

CSP+Var CSP+Eng CSP+LBP CSP+LogEn CSP+ShEn CSP+NoEn

4–13 Hz 96.86 ± 2.55 96.52 ± 2.99 96.54 ± 3.13 98.18 ± 1.23 95.54 ± 2.10 98.18 ± 1.81
4–30 Hz 97.36 ± 2.09 96.20 ± 2.21 97.36 ± 2.10 98.02 ± 1.86 96.87 ± 1.79 97.86 ± 1.91
8–30 Hz 97.67 ± 1.58 97.04 ± 2.01 97.36 ± 1.77 98.85 ± 1.74 96.71 ± 1.54 97.20 ± 1.90
10–30 Hz 98.02 ± 1.51 98.02 ± 1.70 96.87 ± 2.12 99.34 ± 1.15 95.54 ± 3.22 97.17 ± 2.59
12–30 Hz 98.34 ± 1.57 97.85 ± 1.58 97.53 ± 3.03 99.17 ± 1.16 96.69 ± 2.47 98.18 ± 2.11
8–32 Hz 97.53 ± 1.39 96.54 ± 3.07 96.87 ± 2.50 98.68 ± 1.30 95.39 ± 2.65 97.68 ± 2.50
10–32 Hz 98.18 ± 1.65 97.52 ± 2.48 97.69 ± 1.60 98.85 ± 1.56 96.05 ± 2.59 98.69 ± 1.51
12–32 Hz 98.02 ± 1.30 97.36 ± 1.60 97.17 ± 2.58 98.36 ± 1.73 97.52 ± 1.94 98.52 ± 1.44
14–32 Hz 98.35 ± 1.09 97.52 ± 1.95 97.36 ± 1.96 98.84 ± 1.76 97.68 ± 2.50 98.35 ± 1.35
15–32 Hz 98.68 ± 1.05 96.86 ± 1.99 97.03 ± 1.87 98.18 ± 1.66 97.20 ± 2.33 97.03 ± 2.44
10–25 Hz 97.19 ± 1.77 96.70 ± 1.35 97.52 ± 2.11 98.18 ± 1.45 95.87 ± 2.85 97.69 ± 2.49
8–25 Hz 97.36 ± 1.77 97.02 ± 2.45 97.52 ± 1.61 98.52 ± 1.21 96.20 ± 2.61 97.19 ± 2.59

Investigation of Reduction Number

As previously discussed, the dimensionality of the ch× ch CSP projection matrix is
reduced by picking only the first m and last m CSP filters resulting in a matrix WCSP with
reduced dimension d× ch, where the reduction number d is equal to d = 2m. Complexity
can be minimized by reducing this number since the size of feature vectors is equal to d.
On the other hand, choosing a very small d may lead to poor classification performance.
Figure 8 presents the classification accuracies of off–PD versus HC signals filtered at 8–
30 Hz with various d values. It is clear from the figure that the results are influenced
greatly by the choice of d. In the case of the CSP+Var+KNN method, as the value of d
increases from 2 to 10, the classification accuracy curve starts to significantly increase from
66% to 96.38% and then stabilizes or slightly increases after that. Similarly, in the case of
CSP+LogEn+KNN, the classification accuracy curve begins to increase significantly from
77% to 98.35% at d = 10 and then stabilizes or increases slightly thereafter. The optimal
value of d, which leads to the highest classification accuracy, depends on several factors
such as frequency band, FE method, classifier type, and others. In Figure 8, the highest
classification accuracies for CSP+Var and CSP+LogEn are 98.19% and 99.17% obtained at
d = 30 and d = 24, respectively, with the KNN classifier.
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Investigation of Segment Length (SL)

Thus far, all of the signals have been split into 10-s segments. In this section, the
effect of the segment length on the classification results is investigated. Because the
highest classification accuracy is obtained by the CSP+LogEn FE method, it is used in this
investigation. The BPF is also set to 10–30 Hz throughout all experiments. Table 7 presents
the effect of the segment length along with the reduction number on the KNN classification
performance. The table contains 72 outcomes, where the segment length is increased from
2 to 12 s while d is increased from 10 to 32. Decreasing the segment length leads to an
increase in the number of segments M resulting in a larger number of feature vectors that
are introduced to the classifier for training and validation. For example, the number of
segments M equals 3032 when the segment length is 2 s while M decreases to 505 when
the segment length increases to 12 s. According to the results in Table 7, there is a small
improvement in the classification accuracy with decreasing segment length, especially at
higher values of d. For example, at d = 32, average classification accuracy is increased
from 98.42% to 99.41% when segment length decreased from 12 to 2 s. At a segment
length of 2 s and d = 30, the highest classification accuracy of 99.47% is obtained by a
combination of CSP+LogEn+KNN. At a segment length of 2 s and d = 32, Table 8 shows
the classification performance of RF, QDA, SVM, and KNN. The table demonstrates that
the KNN classifier still outperforms the other classifiers, in terms of classification accuracy,
sensitivity, specificity, and F-score.

Table 7. The effect of segment length and reduction number on KNN classification accuracy based on
CSP+LogEn FE method.

Reduction Number
Segment Length (Number of Segments M)

2 s (3032) 4 s (1516) 6 s (1010) 8 s (758) 10 s (606) 12 s (505)

10 98.02 ± 1.28 98.55 ± 0.87 97.62 ± 1.34 97.76 ± 1.53 98.02 ± 1.52 97.82 ± 2.37
12 98.71 ± 0.69 98.61 ± 0.79 98.91 ± 0.87 98.03 ± 1.27 98.84 ± 1.12 97.82 ± 2.57
14 98.88 ± 0.61 99.04 ± 0.54 98.81 ± 1.30 98.68 ± 1.38 99.01 ± 1.16 97.22 ± 2.14
16 98.98 ± 0.69 99.14 ± 0.88 98.51 ± 1.07 98.69 ± 1.07 98.35 ± 1.34 98.42 ± 1.80
18 99.04 ± 0.69 99.34 ± 0.70 98.91 ± 1.19 98.94 ± 1.05 98.84 ± 1.36 98.81 ± 1.03
20 98.94 ± 0.66 99.41 ± 0.85 98.71 ± 1.05 98.95 ± 0.83 99.01 ± 1.16 99.21 ± 1.37
22 99.18 ± 0.61 99.08 ± 0.83 98.71 ± 1.15 98.81 ± 1.31 98.84 ± 1.76 97.81 ± 2.19
24 99.14 ± 0.35 99.27 ± 0.66 98.91 ± 1.19 98.68 ± 1.25 98.84 ± 1.12 98.22 ± 1.46
26 99.08 ± 0.73 99.14 ± 0.77 98.61 ± 1.42 99.07 ± 0.89 98.85 ± 1.56 99.01 ± 1.04
28 99.41 ± 0.43 99.14 ± 0.54 98.51 ± 0.96 99.21 ± 0.93 98.68 ± 1.04 99.20 ± 1.03
30 99.47 ± 0.35 99.01 ± 0.47 98.91 ± 0.73 98.55 ± 1.16 98.19 ± 1.63 99.00 ± 1.41
32 99.41 ± 0.43 99.08 ± 0.77 98.22 ± 1.46 98.55 ± 1.58 99.17 ± 1.18 98.42 ± 2.03

Table 8. Classification results of off–PD vs. HC based on CSP+LogEn (10–30 Hz, SL = 2 s and d = 32).

Classifier
Accuracy (%) Sensitivity (%) Specificity (%) F-Score (%)

mean ± st mean ± st mean ± st mean ± st

RF 97.59 ± 0.96 96.96 ± 1.99 98.30 ± 1.10 97.59 ± 0.94
QDA 98.58 ± 0.97 98.29 ± 1.50 98.88 ± 0.70 98.58 ± 0.97
SVM 99.04 ± 0.61 99.14 ± 1.03 98.97 ± 0.85 98.03 ± 0.62
KNN 99.41 ± 0.43 99.47 ± 0.80 99.35 ± 0.74 99.40 ± 0.44

3.1.2. On–Medication PD vs. Health Control

This subsection presents and discusses the classification performance results of the
on-medication patients vs. the healthy control group. For the purpose of consistency and to
facilitate comparisons with the results of Section 3.1.1 (off–medication PD vs. health control),
the reduction number is set to 32, frequency band to alpha and beta, and segment length
to 10 s. The number of segments retrieved from on-medication patients is 270, whereas
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the healthy control group has 306 segments. As a result, there are a total of 603 feature
vectors. Table 9 shows the same eight feature extraction methods that were used in Table 5
and their classification accuracy, sensitivity, specificity, and F-score as obtained with the
KNN classifier. Similarly, the average performance and standard deviation are presented
for each method. Table 9 shows that CSP+Var and CSP+LogEn FE methods achieve the
best performance with an average classification of 92.87% and 92.85%, respectively. These
two methods are the most effective for distinguishing between EEGs of on–PD patients and
EEGs of the healthy control group. The results of these FE methods are bolded in Table 9.
Similar to off–PD vs. HC classification, CSP+ThEn and CSP+SuEn FE methods provide low
classification accuracy and high standard deviation. Consequently, these two methods are
also excluded from further investigation.

Table 9. Classification results of on–PD vs. HC using KNN classifier.

FE Methods
Accuracy (%) Sensitivity (%) Specificity (%) F-Score (%)

mean ± st mean ± st mean ± st mean ± st

CSP+Var 92.87 ± 2.32 92.02 ± 4.11 94.23 ± 4.55 92.83 ± 2.40
CSP+Eng 89.54 ± 4.24 87.47 ± 6.71 87.47 ± 6.71 92.45 ± 3.95
CSP+LBP 90.21 ± 1.85 89.88 ± 6.31 91.92 ± 5.41 90.16 ± 1.76
CSP+LogEn 92.85 ± 2.65 92.22 ± 5.72 94.33 ± 3.93 92.87 ± 2.48
CSP+ShEn 90.55 ± 3.43 88.95 ± 2.76 92.34 ± 4.98 90.54 ± 3.49
CSP+ThEn 51.58 ± 4.08 50.44 ± 2.31 61.83 ± 31.55 65.34 ± 3.47
CSP+SuEn 57.36 ± 5.36 56.66 ± 5.31 58.11 ± 5.47 58.12 ± 4.25
CSP+NoEn 91.03 ± 3.35 89.68 ± 4.01 92.88 ± 5.27 91.00 ± 3.54

Figure 9 shows the average classification accuracy using RF, QDA, SVM, and KNN.
Unlike Figure 5, there is no specific classifier that outperforms other classifiers in perfor-
mance across all FE methods. For example, KNN outperforms other classifiers with the
CSP+Var FE method, QDA is the best when coupled with the CSP+LogEn method, and
SVM outperforms the rest with the CSP+Eng/LBP method. Figure 10 shows ROC curves
along with AUC for the four classifiers. Except for CSP+LogEn, the KNN and RF classifiers
deliver the highest AUC over all FE methods. In the case of CSP+LogEn, SVM and QDA
achieve the highest AUC.
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Figure 9. Average classification accuracy (on–PD vs. HC) using LDA, SVM, KNN, and LR.

In terms of the frequency band, Figure 11 shows the classification accuracy for all
proposed methods when applied to different EEG sub-bands. Similar to off–PD vs. HC
classification, the features extracted from the beta band are classified more precisely than
others. Alpha and theta bands come in the second rank. Features extracted from the
delta band lead to the worst classification accuracy. As result, the delta band is excluded
from further investigation. Table 10 shows the KNN classification performance of features
extracted from several frequency bands. It can also be noted from the table that the presence
of the beta band within any wider frequency band improves the classification performance.
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For example, the features extracted from the 4–30 Hz frequency band are more accurately
classified than those extracted from 4–13 Hz. Over all frequency bands, it can be seen that
QDA and SVM classifiers deliver higher classification accuracy than KNN, especially with
the CSP+LogEn FE method.
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Table 10. The effect of frequency bands on classification accuracy using KNN (on–PD vs. HC).

Frequency
Band

Method

CSP+Var +KNN CSP+Eng
+SVM

CSP+LogEn
+QDA

CSP+LogEn
+SVM

CSP+LogEn
+KNN

4–13 Hz 91.54 ± 3.08 91.04 ± 5.20 92.87 ± 3.69 93.20 ± 2.53 92.20 ± 2.95
4–30 Hz 92.37 ± 2.50 92.36 ± 3.16 95.20 ± 2.63 95.70 ± 1.94 93.20 ± 1.42
8–30 Hz 93.05 ± 2.53 91.56 ± 3.97 94.36 ± 1.94 94.70 ± 2.18 92.21 ± 2.93

10–30 Hz 92.87 ± 1.77 92.38 ± 2.81 94.53 ± 3.02 94.52 ± 2.49 92.21 ± 3.32
12–30 Hz 92.70 ± 2.75 92.53 ± 3.37 95.36 ± 2.90 94.53 ± 1.91 92.88 ± 2.89
8–32 Hz 91.55 ± 3.44 92.37 ± 4.32 94.54 ± 1.87 94.86 ± 1.97 92.88 ± 2.04

10–32 Hz 92.04 ± 3.40 92.37 ± 4.24 95.35 ± 2.92 94.20 ± 3.08 92.19 ± 3.64
12–32 Hz 92.20 ± 2.49 93.22 ± 4.32 95.20 ± 1.97 94.53 ± 2.93 93.54 ± 2.74
14–32 Hz 92.54 ± 3.41 92.54 ± 1.15 95.28 ± 2.97 94.37 ± 2.20 93.04 ± 2.79
15–30 Hz 91.39 ± 3.15 91.88 ± 3.99 95.18 ± 1.88 94.67 ± 2.76 93.85 ± 1.81
10–25 Hz 92.04 ± 1.90 93.87 ± 1.74 95.52 ± 2.36 94.52 ± 2.62 92.20 ± 2.72
8–25 Hz 92.05 ± 3.27 92.85 ± 1.63 95.35 ± 3.03 95.17 ± 2.18 92.51 ± 3.56

Next, the effect of changing the segment length for the on–PD vs. HC classification
problem is considered. The BPF is set to 10–32 Hz for this investigation. Table 11 shows
the classification results of features extracted by the CSP+LogEn method and classified by
RF, QDA, SVM, and KNN. Results show that the effect of changing the segment length
in this classification problem is small. For example, when decreasing the segment length
from 12 s to 2 s, the accuracy changes from 91.46% to 92.25 and 93.24% to 93.38% for RF
and KNN, respectively. At a segment length of 8 s, CSP+LogEn+SVM delivers the highest
classification accuracy of 95.76%.

Table 11. The effect of segment length on the classification performance of on–PD vs. HC.

Classifier
Segment Length (Number of Segments)

2 s (3020) 4 s (1510) 6 s (1006) 8 s (755) 10 s (603) 12 s (503)

RF 92.25 ± 0.86 92.51 ± 2.46 92.14 ± 2.85 91.53 ± 3.99 91.53 ± 4.54 91.46 ± 5.14
QDA 93.54 ± 1.70 95.03 ± 1.72 94.32 ± 3.56 95.63 ± 2.99 95.19 ± 2.15 95.24 ± 3.12
SVM 95.00 ± 0.94 94.63 ± 2.64 94.32 ± 3.13 95.76 ± 2.56 94.53 ± 2.59 95.03 ± 2.14
KNN 93.38 ± 0.81 93.84 ± 2.25 93.43 ± 3.21 93.38 ± 3.35 92.87 ± 2.70 93.25 ± 3.41

3.1.3. Off–PD vs. On–PD

In this section, the classification performance results of off-medication versus on-
medication patients are discussed. The purpose of this classification is to assess the ef-
fectiveness of the methods proposed in this study. Table 12 shows KNN classification
performance with the following settings: 13–30 Hz, d = 32, and a segment length of 2 s.
The number of segments extracted is 2988 segments. It can be seen that, similar to off–PD
vs. HC and on–PD vs. HC, the CSP+LogEn FE method outperforms other methods with an
average classification accuracy of 97.52% and a standard deviation of 0.95.

Table 12. Classification results of off–PD vs. on–PD using KNN classifier.

FE Methods
Accuracy (%) Sensitivity (%) Specificity (%) F-Score (%)

mean ± st mean ± st mean ± st mean ± st

CSP+Var 97.02 ± 1.06 97.59 ± 1.49 96.50 ± 1.50 97.02 ± 1.07
CSP+Eng 97.09 ± 0.79 97.46 ± 0.97 96.75 ± 1.19 97.09 ± 0.80
CSP+LBP 96.99 ± 0.44 96.95 ± 0.90 97.06 ± 1.15 97.00 ± 0.45
CSP+LogEn 97.52 ± 0.95 97.92 ± 1.01 97.14 ± 1.22 97.52 ± 0.95
CSP+ShEn 94.85 ± 1.28 96.32 ± 1.65 93.53 ± 2.16 94.78 ± 1.34
CSP+NoEn 96.15 ± 1.00 96.81 ± 2.04 95.58 ± 1.19 96.15 ± 0.96
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3.2. UNM-Based Results

The proposed methods are also tested and validated using the UNM dataset in this
section. Based on our findings using the SanDiego dataset, the frequency band is set to
10–30 Hz, the reduction number to 32 and the segment length to 2 s for all UNM-based
experiments. CSP+Var, CSP+Eng, CSP+LBP, and CSP+LogEn FE methods are used with
two states: open-eyes and close-eyes.

In the case of off–medication PD versus healthy control classification, the total number
of the feature vectors is: 1620 (810 PD + 810 HC) for the open-eyes state and 1593 (810
PD + 783 HC) for the closed-eyes state. Table 13 includes the results of off–medication PD
patients versus health control group classification using FR, SVM, and KNN classifiers.
Two observations can be made from this table. The first is that the CSP+LogEn method
achieves the highest classification accuracy, either in the case of open eyes or closed eyes,
compared to the other FE methods. The highest classification accuracy of off–PD versus HC
with the open-eyes state is 99.01%, which is obtained by the CSP+LogEn+KNN approach.
In the case of the close-eyes state, 98.81% is the highest classification accuracy obtained by
the same approach. The second observation is that there is not a big difference in the values
of classification accuracy in both cases: the open-eyes and the closed-eyes states.

In the case of on–medication PD versus healthy control classification, the total number
of the feature vectors is: 1650 (840 PD + 810 HC) for the open-eyes state and 1623 (840
PD + 783 HC) for the closed-eyes state. Table 14 includes the results of on–medication PD
patients versus health control group classification. The highest classification accuracy of
on-PD against HC with open eyes is 98.85%, obtained by both the CSP+Var+KNN and the
CSP+LogEn+KNN approaches. In the case of the close-eyes state, the highest classification
accuracy is 98.77% achieved by the CSP+LogEn+KNN approach. Like off–PD vs. HC, there
is not a big difference in classification performance in both open-eyes and close-eyes states.

For further investigation and validation of the proposed methods, on–medication PD
versus off–medication PD classification is also performed. The total number of feature
vectors is 1650 (810 off–PD + 840 on–PD) for open eyes and 1593 (810 off–PD + 840 on–PD)
for closed eyes. The results of this classification are presented in Table 15. As it can be seen
from the table, our proposed methods achieve good performance.

Table 13. Classification results of off–PD vs. HC (UNM dataset).

Classification Accuracy (mean ± st)

RF SVM KNN

FE Methods Close Eyes Open Eyes Close Eyes Open Eyes Close Eyes Open Eyes

CSP+Var 96.23 ± 1.85 96.54 ± 1.02 97.17 ± 1.43 97.35 ± 0.92 98.24 ± 0.77 98.52 ± 0.88
CSP+Eng 96.99 ± 1.95 96.73 ± 0.72 97.05 ± 1.19 97.41 ± 2.05 98.12 ± 1.19 98.02 ± 1.04
CSP+LBP 96.61 ± 1.19 97.04 ± 1.53 96.92 ± 1.43 96.85 ± 1.68 98.05 ± 1.00 98.40 ± 0.83
CSP+LogEn 97.18 ± 1.19 98.02 ± 0.96 98.12 ± 1.11 98.58 ± 1.01 98.81 ± 1.00 99.01 ± 0.93

Table 14. Classification results of on–PD vs. HC (UNM dataset).

Classification Accuracy (mean ± st)

RF SVM KNN

FE Methods Close Eyes Open Eyes Close Eyes Open Eyes Close Eyes Open Eyes

CSP+Var 96.80 ± 1.45 96.91 ± 1.29 97.10 ± 1.27 98.12 ± 1.26 98.58 ± 0.87 98.85 ± 0.97
CSP+Eng 97.35 ± 1.54 97.58 ± 1.25 97.66 ± 1.59 97.76 ± 1.11 98.33 ± 1.13 98.18 ± 0.57
CSP+LBP 97.66 ± 1.19 97.45 ± 1.21 97.10 ± 0.97 97.58 ± 1.59 98.21 ± 0.79 98.42 ± 1.28
CSP+LogEn 97.29 ± 0.83 98.00 ± 0.57 97.54 ± 1.33 98.12 ± 0.73 98.77 ± 0.71 98.85 ± 0.54
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Table 15. Classification results of off–PD vs. on–PD (UNM dataset).

Classification Accuracy (mean ± st)

RF SVM KNN

FE Methods Close Eyes Open Eyes Close Eyes Open Eyes Close Eyes Open Eyes

CSP+Var 95.82 ± 1.75 94.73 ± 1.57 97.88 ± 0.96 96.61 ± 1.28 98.36 ± 1.11 98.61 ± 0.50
CSP+Eng 96.67 ± 0.91 95.94 ± 1.40 97.52 ± 1.01 95.27 ± 1.61 98.79 ± 1.03 98.18 ± 0.70
CSP+LBP 97.27 ± 0.77 95.88 ± 1.14 97.88 ± 1.04 95.09 ± 2.70 98.79 ± 1.07 98.24 ± 0.60
CSP+LogEn 95.88 ± 1.53 94.61 ± 2.48 97.82 ± 1.04 96.73 ± 1.22 98.97 ± 0.70 98.73 ± 0.78

Finally, the significance of this study can be evaluated by comparing the outcomes
of the proposed methods to those of earlier studies. Table 16 compares our results to
those of prior studies on Parkinson’s disease detection in the resting state. As seen in
the table, the proposed methods in the present study achieve good performance using
computationally efficient methods compared with other methods in the previous studies.
The main advantages of our methods can be summarized as follows:

• The proposed methods are simple and computationally efficient, making their hard-
ware implementation easier and faster in reality.

• The proposed methods are robust as they have been developed using a ten-fold CV.
• The proposed methods achieved good classification accuracy as it has been validated

using two datasets from two different sources.
• To the best of our knowledge, we are the first group to present CSP-based methods for

the detection of PD.

Table 16. Comparisons of our results with the results of previous studies (resting-state).

Reference FE Methods Classifier(s) Dataset Classification Type Classification
Accuracy (%)

Yuvaraj, R. et al.
(2018)

Higher-order spectra
(HOS)

DT, KNN, FKNN,
NB, PNN, SVM

Malaysian
dataset Off–PD vs. HC 90.6–99.6

Oh, S. L. et al. (2020) —- 13 layer CNN Malaysian dataset Off–PD vs. HC 88.25

Shah S. A. et al.
(2020) —- CNN+LSTM UNM dataset Off–PD vs. On–PD 99.2

Fahim A. et al. (2020) PSD Hyperplanes UNM dataset Off–PD vs. HC 85.3

Lee S. et al. (2021) – CNN+RNN Own dataset Off–PD vs. HC 99.2

Smith K. K. et al.
(2021)

WT+statistical
measures SVM SanDiego dataset Off–PD vs. HC

On–PD vs. HC
96.13
97.65

Present study CSP+LogEn KNN UNM dataset
(Close/open)

Off–PD vs. on–PD
On–PD vs. HC
Off–PD vs. HC

98.73/98.97
98.77/98.85
98.81/99.01

CSP+LogEn
KNN
SVM
KNN

SanDiego dataset
Off–PD vs. on–PD

On–PD vs. HC
Off–PD vs. HC

97.52
95.76
99.41

4. Limitations and Future Studies

Although the proposed methods are uncomplicated and perform well, there are some
issues that need to be discussed.

• Channel selection: In the present study, all the signals coming from all channels are
used, and CSP is applied to spatially filter the signals and reduce the number of
features by decreasing the value of d. Selecting channels that contain only information
important for the detection of Parkinson’s disease before applying signal processing
was not exposed in this study. Future studies should be directed to using heuristic
optimization methods to investigate the minimum number of channels that yield the
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maximum classification accuracy. PD detection using a few channels will be more
practical and easier to use.

• Classification robustness: k-fold cross-validation is one of the most important tech-
niques that are used to validate classification robustness. This technique was employed
in all of the previous studies, shown in Table 16. In the present study, like in previ-
ous studies, k-fold cross-validation is also used to evaluate our proposed methods
and compare their results with previous studies’ results. One of the disadvantages
of this technique is that it may lead to the classification biasing problem resulting
from data leakage. Therefore, future work includes the use of leave-one subject-out
cross-validation along with k-fold.

• Source of data: One of the shortcomings of these types of studies is the use of different
datasets, which makes the comparison of studies’ results unfair. It should specify a
standard for evaluating the methods that are proposed by the researchers, including
using public datasets. In the present study, two public datasets are used in order to
compare the results of this study with those that used the same datasets. The authors
also plan to test and confirm the proposed methods for additional brain disorders like
autism and Alzheimer’s disease.

5. Conclusions

In recent years, EEG signal-analysis techniques have been used to diagnose brain
abnormalities. This study focuses on the detection of Parkinson’s disease (PD) through the
analysis and processing of EEG signals. Here, efficient common spatial pattern (CSP)-based
methods for detecting Parkinson’s disease in two cases, namely, off/on–medication PD vs.
healthy control group, are introduced. The extraction of the features from spatially filtered
signals using different metrics, namely, band power, energy, and several types of entropies,
is proposed, and the obtained results are compared with those of conventional CSP.

This study also looks at how frequency bands and reduction numbers influence clas-
sification performance. Several classification algorithms are investigated to classify the
extracted features. Two EEG datasets are used to evaluate the proposed methods: the
SanDiego dataset (31 participants, 93 min) and the UNM dataset (54 subjects, 54 min). Re-
sults demonstrate that the combination of CSP and log energy entropy outperforms other
FE methods, including conventional CSP. When compared to methods in the literature, the
results show that the proposed method is able to achieve comparable classification perfor-
mance. The results in terms of classification accuracy, sensitivity, specificity, and F-score for
off–medication PD detection are 99.41%, 99.47%, 99.35%, and 99.40%, respectively. In the
case of on–medication PD, performance results range from 95% to 98%. The findings also
show that features extracted from the alpha and beta bands provide a higher classification
accuracy. Figure 12 depicts a diagram of the entire procedure that produced the best results.
These strategies produce outcomes that are encouraging and comparable to those found in
earlier studies. In addition, our proposed method is completely portable and can be used
in real-time PD diagnosis using EEG signals.
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