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NDRG1 enhances the sensitivity of cetuximab by modulating
EGFR trafficking in colorectal cancer
Guang Yang 1,2,3, Ling Huang 1,2,3, Hongtao Jia1,2,3, Batuer Aikemu1,2, Sen Zhang1,2, Yanfei Shao1,2, Hiju Hong1,2,
Galiya Yesseyeva1,2, Chenxing Wang1,2, Shuchun Li1,2, Jing Sun 1,2✉, Minhua Zheng 1,2✉ and Junjun Ma 1,2✉

© The Author(s) 2021

N-myc downstream-regulated gene 1 (NDRG1) is a key regulator that interacts with many classic tumor signaling pathways,
including some molecules downstream of the epidermal growth factor receptor (EGFR). However, whether NDRG1 is involved in the
mechanism of resistance to cetuximab (CTX), the first monoclonal antibody targeting the EGFR has not been reported. Here, we
found that NDRG1 enhanced the sensitivity of CTX in colorectal cancer (CRC) cell lines. Afterwards, we determined the underlying
mechanism of this phenomenon. We demonstrated that NDRG1 inhibited the expression of EGFR; blocked EGFR phosphorylation
and reduced the EGFR distribution in the cell membrane, cytoplasm and nucleus. And then, NDRG1 suppressed the EGFR
downstream signaling: RAS/RAF/ERK and PI3k/AKT/mTOR pathways. Moreover, we discovered that NDRG1 attenuated the
endocytosis and degradation of EGFR induced by caveolin-1 (Cav1). Additionally, our findings were further observed in an animal
model and human tissues. Our results represent a potentially significant discovery that explains the mechanisms of NDRG1 in CTX
resistance. NDRG1 could be a promising biomarker to predict optimum responses to CTX, and a key target to enhance CTX activity
in the treatment of metastatic CRC (mCRC).

Oncogene (2021) 40:5993–6006; https://doi.org/10.1038/s41388-021-01962-8

INTRODUCTION
Colorectal cancer (CRC) is one of the most common malignancies
worldwide, with 1,880,725 new cases and 915,880 deaths in 2020,
and the increasing incidence has not been reversed in recent
years [1, 2]. Despite immense efforts to promote screening
strategies, a tremendous number of CRC patients are diagnosed at
an advanced stage.
Several clinical trials have demonstrated that patients with

unresectable metastatic colorectal cancer (mCRC) benefit from
targeted therapy, particularly the anti-epidermal growth factor
receptor (EGFR) antibody, cetuximab (CTX), which has been
reported to significantly improve progression-free survival (PFS)
and overall survival (OS) within the RAS/BRAF wild-type (wt) mCRC
population [3]. CTX, which is currently approved to treat mCRC
patients with RAS wt tumors due to the insensitivity of RAS
mutation tumors to CTX, has been included in the National
Comprehensive Cancer Network and European Society for Medical
Oncology guidelines based on the results of many clinical trials [4–6].
Among these trials, the CALGB/SWOG 80405 trial reported that in
KRAS wt tumors, the response rate to CTX treatment was 59.6%.
The FIRE-3 trial indicated that among the FOLFIRI plus CTX group,
the objective response rate was 65% in the KRAS wt subgroup and
13% in the KRAS mutation subgroup. However, more in-depth
analysis of these data revealed that KRAS wt CRC patients were
not fully sensitive to CTX treatment; furthermore, there were still
CTX-sensitive patients within the KRAS mutation group. This

suggests that in addition to RAS gene status, other molecular
mechanisms may be involved in the process of the primary and
acquired resistance to CTX. Therefore, it is necessary to further
identify more precise biomarkers to evaluate CTX sensitivity to
improve the therapeutic effect of individualized and comprehen-
sive mCRC treatment.
N-myc downstream-regulated gene 1 (NDRG1), the first of

several NDRG family members to be discovered, encodes a 43-KD
protein that can be activated by iron chelators [7]. Many recent
studies have demonstrated that NDRG1 is closely associated with
the development and progression of solid tumors, especially their
malignant invasion and metastasis [8, 9], and participates in the
regulation of some classical signaling pathways, such as the Ras/
Raf/ERK and PI3K/Akt/mTOR pathway [10, 11], which are also the
downstream targets of EGFR. However, the effect of NDRG1 on
EGFR targeted drug susceptibility has not yet been reported. In
addition, our previous study confirmed that NDRG1 could
promote Cav1 ubiquitylation in CRC cells [12], and Cav1-
mediated endocytosis was found to directly interact with diverse
molecules related to extracellular protein trafficking and signaling
transduction, including EGFR [13]. Naturally, we wondered
whether NDRG1 affects EGFR endocytosis by inhibiting Cav1, thus
modifying the sensitivity of CRC cells to CTX.
In this study, for the first time, we have shown that NDRG1

could enhance the sensitivity of CRC to CTX. Furthermore, we
revealed its underlying mechanism through (1) the regulation of
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EGFR expression, distribution, and phosphorylation and (2) the
regulation of EGFR endocytosis and degradation. This study may
provide a theoretical basis for finding new biomarkers to evaluate
of individualized treatment for mCRC.

RESULTS
NDRG1 enhanced CTX sensitivity in CRC cell lines
To identify the effect of NDRG1 on the response of CRC cells to
CTX, we first used data from the public GEO database. By
analyzing primary data from dataset GSE71210, in which
Affymetrix HG-U133A array was used to compare the expression
patterns of genes between parental DiFi CRC cells and CTX-
resistant (CR) DiFi5 cells, the result showed that NDRG1 was
obviously overexpressed in the CR cells (1.89-fold increase, p <
0.001) (Fig. 1A). In another database GSE5851, a significant
negative correlation between NDRG1 and EGFR mRNA expression
levels was observed in 80 CRC samples which received CTX
treatment (r=−0.381, p < 0.001) (Fig. 1B). In addition, our team
previously reported that the level of the phosphorylated NDRG1
protein (NDRG1-pT346) is significantly associated with EGFR,
EGFR-pY1068, and EGFR-pY1173 protein expression in gastric
cancer [14]. These results illustrated that NDRG1 might be
involved in regulating the expression of EGFR and then affecting
the sensitivity to CTX.
Next, we used the RKO and HCT116 cell lines to establish the

stable NDRG1-overexpression and NDRG1-knockdown clones, and
then tested their sensitivity to CTX by CCK-8 assay. In both the
RKO and HCT116 cell lines, the IC50 for CTX with NDRG1-
overexpression was significantly decreased compared with that
in the control group (RKO: 998.2 μg/ml vs 1182 μg/ml, p < 0.001;
HCT116: 657.5 μg/ml vs 824.9 μg/ml, p < 0.001). In contrast, a
major difference in IC50 values in response to CTX was observed
between NDRG1-knockdown and control cells (RKO: 1587 μg/ml
vs 1329 μg/ml, p < 0.001; HCT116: 1150 μg/ml vs 927.2 μg/ml, p <
0.001) (Fig. 1C, D). Furthermore, an apoptosis assay revealed that
when both cell lines were challenged with CTX, NDRG1-
overexpressing cells showed a significantly increased apoptotic
rate relative to that of the control group, and NDRG1-knockdown
cells were more insensitive to CTX than control cells (Fig. 1E, F).
These data revealed that the variation in NDRG1 levels had an
obvious effect on the sensitivity of CRC cells to CTX.

NDRG1 reduced EGFR protein expression in CRC cell lines
After confirming that NDRG1 could impact CTX sensitivity, we
aimed to reveal the underlying mechanisms of this phenomenon.
CTX specifically binds with EGFR expressed on the tumor cell
membrane and competitively blocks EGF and other ligands,
subsequently inhibiting downstream signals. Therefore, EGFR is
the primary regulator of CTX sensitivity. First, qPCR was conducted
to elucidate whether NDRG1 could regulate EGFR at the mRNA
level. In comparison to the corresponding control groups, neither
the NDRG1-overexpressing or NDRG1-silenced subsets of RKO or
HCT116 cells showed a significant change in EGFR mRNA
expression (Fig. 2A). Then, immunoblotting was performed to
investigate the relationship between NDRG1 and EGFR, phos-
phorylated EGFR (p-EGFR) at the protein level. EGFR and p-EGFR at
Y1068 and Y1086 expression was negatively associated with
NDRG1 expression in both cell lines (Fig. 2B).
The expression of EGFR and p-EGFR in both cell lines was

further investigated via immunofluorescence (IF). When NDRG1
was exogenously overexpressed, the level of these two proteins
at the cell membrane was remarkably decreased. Conversely, in
NDRG1-silenced RKO and HCT116 cells, larger amounts of EGFR
accumulated at the membrane comparing with those in the
control cells and the expression of p-EGFR also increased in
HCT116 knockdown cells. While in RKO cells, NDRG1-knockdown
did not have an evident effect on the p-EGFR expression (Fig. 2C,

D and Supplementary Fig. 1a–d). Detection of the expression of
EGFR and p-EGFR on cell membrane by flow cytometry was also
verified the tendency in NDRG1 overexpressed and knocked
down cells, respectively (Supplementary Fig. 1e). These data
suggested that NDRG1 did not regulate EGFR at the mRNA level
but inhibited its protein expression, especially on the cell
membrane.

NDRG1 inhibited the phosphorylation of EGFR and
downstream signaling molecules
Autophosphorylation of EGFR, the primary transformation that
occurs after ligand induction, is a key characteristic of EGFR
activation and signaling [15]. EGFR phosphorylation at Y1068 and
Y1086 was examined in the current study and found to be directly
involved in activating the RAS and PI3K pathways [16]. After
overnight starvation, the cells were simulated by EGF (10 ng/ml)
and immunoblotting was repeated, which showed that the
tendency of NDRG1 to inhibit expression of p-EGFR at Y1068
and Y1086 was unchanged (data not shown).
We further detected the activation of representative markers

involved in the RAS and PI3K pathways by the two proteins above.
In both cell lines, RAS, p-Raf1, ERK1, p-Akt1, mTOR, and p-mTOR
were found to be negatively regulated by NDRG1. Only the
expression of the p-ERK1 protein in RKO cells was positively
regulated by NDRG1 and the expression of Raf1 and Akt1 was not
affected in HCT116 cells (Fig. 3A and Supplementary Fig. 2a).
Together, these data demonstrated that in both RKO and

HCT116 cells, NDRG1 not only suppressed total EGFR protein
expression, but also inhibited EGFR phosphorylation at Y1068 and
Y1086. In addition, even though the modulatory effect of NDRG1
were not exactly the same in two cells, NDRG1 had an inhibitory
effect on downstream signaling pathways.

NDRG1 inhibited the EGFR distribution in subcellular
organelles
To better define whether NDRG1 impacts the EGFR distribution,
we performed subcellular fractionation analysis to examine the
expression of this protein in the membrane, cytoplasm, and
nucleus (Fig. 3B, C). The results showed a slightly reduction in
EGFR expression in these subcellular organelles after NDRG1 was
overexpressed in both RKO and HCT116 cells. When NDRG1 was
silenced, the expression of EGFR in the membrane and cytoplasm
in HCT116 cells was increased. In addition, obviously accumulation
of EGFR in the membrane, cytoplasm and nucleus were observed
in both NDRG1-knockdown cells from the confocal photograph
(Fig. 3D, E). When combined, these results suggest that NDRG1
inhibits the distribution of EGFR in subcellular structures in some
CRC cell lines.

NDRG1 affected the sensitivity of CRC cells to CTX by
regulating EGFR expression
To further verify the mechanism by which NDRG1 enhanced
sensitivity to CTX by regulating EGFR expression, EGFR-
overexpression plasmids and EGFR-siRNA as well as the corre-
sponding negative controls were transfected into NDRG1-
overexpression and NDRG1-knockdown cells, respectively, after
which the drug sensitivity was tested by CCK-8 assay. The
transfection efficiency was testified by immunoblotting (Supple-
mentary Fig. 3a, b). Then, in comparison to the negative control
cells, the NDRG1-overexpression cells after EGFR-overexpression
plasmids transfection turned to insensitive to CTX (IC50: 1559 μg/
ml vs 913.4 μg/ml in RKO cells, p < 0.001 and 814.0 μg/ml vs
554.4 μg/ml in HCT116 cells, p < 0.001) (Fig. 3F). And the
transfection of EGFR-siRNA restored the change in CTX resistance
induced by downregulating NDRG1 (IC50: 957.4 μg/ml vs 1128 μg/
ml in RKO cells, p < 0.001 and 999.4 μg/ml vs 1249 in HCT116 cells,
p < 0.001) (Fig. 3G).
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Taken together, these results suggested that NDRG1 increased
CTX sensitivity by suppressing EGFR expression in RKO and
HCT116 cells.

Knockdown of NDRG1 markedly accelerated the endocytosis
of EGFR
First, western blotting was performed to test the relationship
between NDRG1 and Cav1 in RKO and HCT116 cells. The results

indicated that NDRG1 negatively regulated the expression of
Cav1 in clones in which NDRG1 was either overexpressed or
knocked down (Fig. 4A, B). Then, IF was conducted to observe
the process of EGFR endocytosis in NDRG1-silenced cells and
the negative control. After stimulation with EGF (50 ng/ml),
NDRG1-silenced RKO cells started to endocytose a small
amount of EGFR. After 5 min, EGFR internalization was obviously
accelerated, and exceeded that of the control cells until 30 min
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after stimulation (Fig. 4C and Supplementary Fig. 4a, b). In
HCT116 cells, EGFR endocytosis in NDRG1-silenced cells was
accelerated relative to that in the control group from
the beginning of the experiment (Fig. 4D and Supplementary
Fig. 4c, d).

Surface biotinylation experiment was conducted to further
confirm this process. Upon EGF stimulation, EGFR was strongly
internalized for 0–30min in NDRG1-knockdown RKO cells, but
EGFR endocytosis was greatly delayed in control cells by 15 min
(Fig. 4E). In HCT116 cells, the rate of EGFR internalization of the
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control group was significantly lower than that of NDRG1-
knockdown group and had even decreased after 15 min (Fig.
4F). This phenomenon might be accounted for by the recycling of
already present EGFR at that time.
Overall, these results agreed with our previous assumption that

the inhibition of NDRG1 expression would increase the extent and
rate of EGFR endocytosis.

Knockdown of NDRG1 promoted the endocytosis of EGFR by
upregulating Cav1
Several pathways have so far been confirmed to mediate the
endocytosis of EGFR [17–19]. To demonstrate the impact of
NDRG1 on EGFR endocytosis through its interaction with Cav1,
Cav1-siRNA and the vector were transfected into NDRG1-
knockdown RKO and HCT116 knockdown cells (Supplementary
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Fig. 3c). Through IF imaging and quantification of the data, EGFR
endocytosis in both NDRG1-knockdown cells was significantly
delayed after Cav1-siRNA transfection compared with that in the
control cells (Fig. 5A, B and Supplementary Fig. 5a, b). Consistent
with our IF results, biotinylation assay also showed that the
endocytic activities in both NDRG1-knockdown cell lines trans-
fected with Cav1-siRNA following the addition of EGF were
significantly inhibited relative to those in control cells (Fig. 5C, D
and Supplementary Fig. 5c, d).
Taken together, these results suggested that Cav1 played an

important role in increasing EGFR endocytosis in NDRG1-
knockdown cells.

Knockdown of NDRG1 promoted the degradation of EGFR by
upregulating Cav1
After endocytosis, the modulation of receptor degradation is
essential for proper EGFR signaling. Thus, the impact of NDRG1 on
EGFR degradation was further explored. NDRG1-knockdown RKO
and HCT116 cells and the corresponding control cells were
examined to determine the EGFR degradation. In RKO cells, the
suppression of NDRG1 expression induced a dramatic increase in

EGFR degradation over the first 6 h (degradative rate: 84.5% vs
68.5%, p < 0.05) (Fig. 6A), which gradually plateaued and was even
slightly slower than that in the control cells. In HCT116 cells, 77.0%
of EGFR was degraded after 4 h, compared with the degradation
rate of 43.4%, in the relative control cells (Fig. 6B, p < 0.05). Next,
the destruction of EGFR was re-examined after the transfection of
Cav1-siRNA and vector in both cell lines. The degradation of some
EGFR was rescued after the inhibition of Cav1 (Fig. 6C, D).
Together, these results illustrated that the inhibition of NDRG1

in CRC cells significantly accelerated the degradation of EGFR,
which was internalized into cells through Cav1-mediated
endocytosis.

Interruption of Cav1 in NDRG1-knockdown cells reversed
resistance to CTX
The constructed cell clones described above were confronted with
sustained challenge with CTX at different concentrations. After
Cav1 was suppressed, the IC50 in both cell lines was remarkably
declined in comparison with those in negative control cells
(985.6 μg/ml vs 1098 μg/ml in RKO cells, p < 0.001; and 1088 μg/ml
vs 1311 μg/ml in HCT116 cells, p < 0.001) (Fig. 6E, F).
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Knockdown of NDRG1 markedly impedes the sensitivity of
CTX in vivo
GFP-luciferase-labeled NDRG1-knockdown cells and the corre-
sponding control cells were injected into mice to establish tumor
xenografts. Then, the mice were randomly divided into four
groups and treated with CTX or placebo. From the biolumines-
cence images, we observed that the tumor xenografts grew
remarkably larger in the NDRG1-knockdown group than in the
control group (Fig. 7A–C). Although tumor growth was partially
limited by CTX in NDRG1-knockdown cells, this tendency of
increased growth was not dramatically reversed. In contrast, the
control group treated with the drug was more sensitive to CTX, as
indicated by the arrest of tumor growth over the whole
experimental period (Fig. 7A–C). Similarly, after treatment, the
average tumor weight of the control group was significantly
smaller than that of the NDRG1-knockdown group (196 ± 145mg
vs 573 ± 96mg, p < 0.01) (Fig. 7D). In addition, IHC analysis of

these samples was also conducted to examine cell apoptosis
(caspase-3 staining), and detect NDRG1, EGFR, p-EGFR, and Cav1.
The images showed that CTX enhanced cell apoptosis in the
control group (Fig. 7E). Obvious and deep staining for EGFR, p-
EGFR, and Cav1 was observed in NDRG1-knockdown tumors, but
the staining was weaker in control tumors (Fig. 7F).

NDRG1 expression is negatively related with EGFR expression
and promoted the sensitivity of human CRC tissues to CTX
Determination of the expression of NDRG1, EGFR, and Cav1 by IHC
assay showed a significant inverse correlation between NDRG1 and
EGFR (R=−0.528, p < 0.001) and NDRG1 and Cav1 (R=−0.322,
p= 0.016) (Fig. 8A and Table 1). Nearly half of the patients (32/65)
were rectal cancer cases, whereas the location was not associated
with NDRG1 expression. Among the high NDRG1 expression group,
61.3% (19/31) of cases showed sensitivity to CTX treatment,
whereas only 35.3% (12/34) cases in the low NDRG1 expression
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group (R=−0.280, p= 0.023). Beyond that, EGFR and Cav1 were
failed to predict the sensitivity to CTX (Table 1).
In addition, Kaplan–Meier analysis revealed that patients in the low

NDRG1 expression group had significantly poor OS than those in the
high NDRG1 expression group (Fig. 8B). Moreover, high NDRG1
expression was associated with a longer PFS (Fig. 8C). These
meaningful differences were not observed when the samples were
divided into groups according to EGFR and Cav1 expression (Fig. 8B,
C). Further analysis with a combination of NDRG1 and Cav1 showed
there was not obvious difference in OS and PFS between each group,
but subgroup analyses revealed that compared with NDRG1-low/
Cav1-high group, NDRG1-high/Cav1-low group tended to have a
longer PFS (p= 0.025) (Fig. 8D). These findings suggested that
patients with high NDRG1 levels could benefit from CTX treatment,
and that NDRG1 combined with Cav1 might function as an indicator
to evaluate CTX sensitivity.

DISCUSSION
CTX (ErbituxTM) has presented evident antitumor activity in clinical
treatment, particularly in the mCRC cases [4, 20]. However, similar
to other antitumor drugs, CTX is subject to both intrinsic and
acquired resistance. Therefore, understanding the molecular
mechanisms of CTX resistance is urgent and will undoubtedly
improve the effectiveness of this therapeutic drug. In this study,
for the first time, we found that NDRG1 can affect the sensitivity to
CTX by modulating many processes in EGFR trafficking.
The current most notable predictive biomarker of the response

to CTX is the mutational status of the KRAS gene [21]. Therefore,
the RAS wt and RAS mutant cell lines RKO and HCT116,
respectively, were chosen to examine their sensitivity to CTX.
The results showed that the NDRG1 enhanced the sensitivity of
both cell lines to CTX. It indicated that regardless of KRAS, NDRG1
is involved in a novel mechanism at the foundation of CTX
responsiveness. Interestingly, this result was not consistent with
previous bioinformatic data (Fig. 1A). Combined with the result
that NDRG1 could not affect the expression of EGFR at mRNA level
(Fig. 2A), we speculated that NDRG1 may regulate EGFR protein

translation and/or post-translational modifications and conse-
quently alter the sensitivity of CRC cells to CTX.
CTX competitively blocks natural ligand binding, prevents EGFR

activation and self-phosphorylation, and suppresses downstream
signaling [22, 23]. Thus, the revision of these processes may cause
resistance. Our study demonstrated that NDRG1 significantly
suppressed both the levels and membrane localization of the
receptor in CRC cells. Additionally, NDRG1 remarkably inhibited the
levels of EGFR phosphorylated at the Y1068 and Y1086 sites with or
without EGF incubation. Moreover, NDRG1 inhibited the two RAS/
RAF/ERK and PI3K/AKT/mTOR axes, which are signal downstream of
EGFR that play an important role in CTX resistance [24].
In addition to plasma membrane EGFR signaling, the abnormal

subcellular localization of EGFR was identified as a mechanism
involved in the resistance to CTX. Studies have demonstrated that
CTX treatment can promote the nuclear localization of EGFR,
whereas elevated levels of nuclear EGFR were found in CTX-
resistance non-small-cell lung cancer cells [25]. Our study
illustrated that NDRG1 could significantly reduce EGFR localized
in membrane, cytoplasm, and nucleus. This result implied that
NDRG1 might be involved in the process of EGFR transportation
into the nucleus and further affect sensitivity to anti-EGFR drugs.
Additionally, although most EGFR signaling is thought to occur

at the plasma membrane [26, 27], many studies have proved that
endosomes are involved in EGFR-mediated signals, suggesting the
presence of distinct pathways requiring EGFR endocytosis [28, 29].
Moreover, one major destination for EGFR trafficked after
internalization is the lysosomal degradation. Sorting in this
process is fundamental to the regulation of EGFR signaling as
well. Menezes et al. reported that NDRG1 could inhibit EGFR and
facilitate its lysosomal processing and degradation by increasing
the levels of mitogen-inducible gene 6 [30]. Interestingly, our
result suggested that NDRG1-knockdown promoted the inter-
nalization and degradation of EGFR in CRC cells which seemingly
contradicted our previous results and was not consistent with the
study above. The EGFR internalization is a complex process that
involves many mechanisms, and different routes have different
effects on EGFR fate and signaling [31, 32]. At all physiological EGF

Table 1. The relationship between NDRG1 expression and EGFR, Cav1, the sensitivity to CTX in this study.

Varibale N NDRG1 p value N Response to CTX p value

High-expression Low-expression Sensitive Resistant

Age 0.325 0.325

≤60 39 20 19 39 20 19

>60 26 11 15 26 11 15

Sex 0.146 0.017

Male 43 18 25 43 16 27

Female 22 13 9 22 15 7

Tumor location 0.054 0.361

Colon 33 12 21 34 15 19

Rectum 32 19 13 31 16 15

EGFR <0.001 0.168

High-expression 26 4 22 26 10 16

Low-expression 39 27 12 39 21 18

Cav1 56a 0.016 56a 0.391

High-expression 29 19 10 29 15 14

Low-expression 27 9 18 27 12 15

Response to CTX 0.032

Sensitive 31 19 12

Resistant 34 12 22
aNine sample tissues were unsufficient to perform IHC.
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concentrations, the EGFR is internalized mainly through clathrin-
mediated endocytosis (CME) [33], but clathrin-independent
endocytosis including raft/caveolar endocytosis (RCE) also plays
important roles, especially at high EGF doses (>10 ng/ml) [34]. The
outcome for EGFR trafficking is dependent on the ratio of CME to
RCE. We speculated that NDRG1-knockdown promoted the
accumulation of Cav1, especially on the cell membrane, which
was also confirmed by the colocalization of EGFR and Cav1
(Supplementary Fig. 4a–d). And then high concentration of EGF
induced accelerating the internalization of EGFR by RCE.
Furthermore, evidence suggests that the dysregulation of EGFR

internalization and degradation contributes to CTX resistance
[35, 36]. Our results demonstrated the inhibition of Cav1 obviously
decreased these effects and restored the sensitivity of NDRG1-
knockdown cells to CTX. Therefore, based on our previous research
[12], for the first time, we propose that NDRG1 attenuates EGFR
internalization and degradation by promoting Cav1 ubiquitylation,
and further enhances the sensitivity to CTX in CRC cells.
NDRG1 enhanced sensitivity to CTX and it was found to be

negatively regulated with the expression of EGFR and Cav1 in an
animal model and human tissues as well. We also found other
than EGFR and Cav1, the level of NDRG1 expression was a better
predictor of the prognosis and effectiveness of CTX treatment.
However, the p value approached 0.05, indicating that the
function of NDRG1 needs to be further confirmed in larger CRC
sample, and combined with other molecular markers may improve
its clinical significance. In addition, together with NDRG1 and Cav1
for the prediction of PFS is limited. More clinical trials need to be
conducted to confirm their function. Another deficiency of the
study is that only the KRAS wt patients were enrolled and most
patients received the combined medication due to the current
indications of CTX use. The influence made by other antitumor
medicines could not be excluded. The function of NDRG1 in
patients with KRAS mutation remains to be further authenticated.
In conclusion, our results demonstrated that NDRG1 enhances the

sensitivity to CTX by inhibiting EGFR expression, phosphorylation,
distribution, endocytosis, degradation, and downstream signaling
(Supplementary Fig. 3b). Our results help to fulfill the mechanisms of
CTX resistance and NDRG1 could be a potential biomarker to predict
optimum responses to CTX in the treatment of metastatic CRC.

MATERIAL AND METHODS
Antibodies and regents
CTX was purchased from Merck (Darmstadt, Germany). The primary and
secondary antibodies were listed in Supplementary material and methods file.

Cell culture and transfection
The RKO and HCT116 human CRC cell lines were purchased from the
American Type Culture Collection, and both cell lines were authenticated
by short tandem repeat profiling. Stable NDRG1-overexpression and
knockdown clones were established as described previously [37]. All the
cells were cultured in RPMI-1640 medium (Gibco, Grand Island, NY, USA)
supplemented with 10% fetal bovine serum (Gibco) and 1% penicillin-
streptomycin (New Cell & Molecular Biotech, Suzhou, China) at 37 °C in 5%
CO2. EGFR-overexpression plasmids and small interfering RNA (siRNA) for
EGFR and Cav1 were purchased from GenePharma (Shanghai, China).
Transient transfection was performed as previously described [36].
Sequences of siRNA used were showed in the Supplementary file.

RNA isolation and quantitative real-time PCR (qPCR)
Total RNA isolation and qPCR were performed as described previously [12].
The primer sequences were showed in the Supplementary material and
methods file.

Western blotting, cell viability assay, and apoptosis assay
Immunoblot analysis, cell viability assay, and apoptosis assay were
performed as previously described [38]. Subcellular fractionation and
protein extraction were carried out by using a subcellular protein

fractionation kit according to the manufacturer’s instructions (#78840;
Thermo Scientific, Waltham, MA, USA).

Flow cytometry to detect the protein on cell membrane
Cells were harvested and washed in cold PBS, then incubated in block
buffer for 60min. Next, cells were incubated with primary and second
antibodies sequentially for 30min in the dark. Finally, fully re-suspend the
cells by PBS and analyzed by flow cytometry.

Immunofluorescence and the quantification of receptor
endocytosis
Indirect IF microscopy was carried out as described previously [37]. The
images were examined and captured using a confocal microscope (Leica
TCS SP8, Wetzlar, Germany). The detailed procedures of the quantification
were described in the Supplementary material and methods file.

Cell surface biotinylation assay to examine receptor
internalization
A protocol modified from Nishimura and Sasaki was used to examine the
internalization of cell surface EGFR [39]. The details were described in the
Supplementary material and methods file.

Ligand-induced EGFR internalization and degradation
To examine the degradation of EGFR, we used a modified protocol from
Itziar Pinilla-Macua and Alexander Sorkin [40]. The details were described
in the Supplementary material and methods file.

Clinical characteristics and tissue samples
Specimens taken from a total of 65 patients who received CTX treatment and
underwent biopsy or operation were used in this study. Prior patient consent
and approval from the Ethics Committee of Ruijin Hospital were obtained.
Objective response was evaluated using the modified RECIST criteria [41].
Those cases with complete or partial response, stable disease more than
6 months and acquired resistance were categorized as CTX-sensitive group.
The patients were followed up every 3–6 months after treatment.

Immunohistochemical staining
All the formalin-fixed, paraffin-embedded tumor tissue sections were
acquired from the Pathology Department of Ruijin Hospital. Immunohis-
tochemical (IHC) staining was performed according to standard proce-
dures. A semi-quantitative method was utilized to score each slide by two
independent pathologists according to the German semi-quantitative
scoring system [12, 42], with a score >7 indicating high expression.

Xenograft model
Twenty four-week-old BALB/c nude female mice (body weight: 16–20 g)
were purchased from Vitral River Laboratories (Beijing, China) and housed
in a specific pathogen-free environment. A total of 2 × 106 RKO cells
including NDRG1-knockdown and relative control cells were subcuta-
neously injected into the mouse right flank of each mouse to establish
tumor xenografts. Once the tumors reached an approximate volume of
150mm3, the mice were randomly divided into four groups with balanced
tumor volumes, every group contained four mice. An intraperitoneal
injection of PBS or 1.5 mg of CTX/injection was administered every 3 days,
and tumor size was measured every 7 days. The treatment was not blind to
the investigator. After a tumor diameter of 20mm was reached, all the
mice were sacrificed, and the tumors were collected for further IHC
staining. All the experimental procedures had been approved by the
Shanghai Medical Experimental Animal Care Commission.

Statistical analysis
All data are presented as the means ± standard deviations and were
calculated with SPSS 22 software and GraphPad Prism 7. Two-sided
unpaired Student’s t test, the χ2-test, two-way ANOVA, the Kaplan–Meier
method and the log-rank test were used to analyze the data. Differences
with a p values < 0.05 were considered statistically significant.

DATA AVAILABILITY
The Gene Expression Omnibus (GEO) accession numbers for the data used in this
paper are GSE71210 and GSE5851. The analysis of GSE71210 profiles was performed

G. Yang et al.

6004

Oncogene (2021) 40:5993 – 6006



through R package. The analysis of GSE5851 profiles was performed via the R2
Genomics Analysis and Visualization Platform (http://r2.amc.nl).
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