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After more than 2 decades of intense effort, the synuclein 
(Syn) proteins, particularly α-Syn (α-Syn), remain a focal point 
for research because of their strong link to the genetics and 
pathology of Parkinson disease (PD). Despite their abundance 
both in the brain and in the literature, the Syn proteins continue 
to elude a concise description of their normal and pathological 
functions. Among proposed functions is a role for Syn proteins 
as regulators of membrane protein trafficking. In our most recent 
work, we have continued our examination of the involvement of 
the 3 family members α-Syn, β-Syn (β-Syn), and gamma-Syn 
(γ-Syn) in regulated trafficking of the dopamine transporter 
(DAT) in both cellular and animal models of Syn protein 
overexpression.1,2 Trafficking of DAT and other monoamine 
transporters of norepinephrine (NET) and serotonin (SERT) has 
been linked to the Syn proteins for over a decade.3 Nonetheless, 
knowledge gaps exist concerning the details of the trafficking 
mechanism as well as the broader effects of the Syn proteins on 
DAT and the other transporters.

Syn protein modulation of DAT: an alternative mechanism
Previous evidence supported a functional relationship 

between Syn proteins and the monoamine transporters that 
was dependent on direct protein–protein interactions.3 In 

several earlier studies, modulation of transporter trafficking 
was mediated by cytoskeletal tethering, with the Syn proteins 
acting as a link between DAT, NET, or SERT and the actin- 
or microtubule-based cytoskeleton (Fig.  1C-1D). Our new 
findings, however, suggest that Syn protein modulation of DAT 
can be accomplished through this direct mechanism as well as 
the indirect effects of the Syn proteins on endoplasmic reticulum 
(ER) and Golgi function (Fig. 1A-1B) that lead to accumulation 
of DAT within the biosynthetic compartment.1 The existence of 
these parallel mechanisms may be critical to understanding the 
relationship between Syn proteins and DAT in the brain. While 
modulation of NET in the brain by α-Syn and γ-Syn has been 
modeled successfully,4 the in vivo effects of α-Syn on DAT have 
been more difficult to identify. Though there is some evidence of 
DAT trafficking deficits in α-Syn KO mice,5 many contradictory 
findings have emerged from this model.6-8 More broadly, work in 
double KO9,10 and triple KO11 mice has thus far failed to provide 
evidence that Syn proteins influence DAT trafficking. Age-
dependent deficits in the TKO mice, however, do demonstrate 
that Syn proteins are critical for normal brain function,12 and 
suggest that significant functional overlap exists between α-Syn, 
β-Syn, and γ-Syn. Nonetheless, as the Syn proteins appear to 
have broad but subtle effects on many components of the synapse 
and cell soma, it is very likely that the absence of effects in these 
KO models is due to compensatory or competing mechanisms 
that merit further exploration.

DAT as a link between Syn proteins and ER pathology
Even if the evidence for a direct interaction in vivo is limited, 

it is clear that a relationship exists between the Syn proteins 
and the cellular processes that produce and distribute DAT. 
Dopaminergic lesions result in the loss of DAT terminals through 
degeneration, but there are additional losses in DAT function 
that result from a simultaneous reduction of DAT export, leading 
to its accumulation in the ER–Golgi compartment.13 Also, the 
ratio of glycosylated to non-glycosylated DAT is elevated in 
the dopaminergic neuronal populations most affected in PD,14 
suggesting that trafficking of DAT in the neurons comprising 
the nigrostriatal pathway is especially dependent on efficient ER 
and Golgi function. Furthermore, pathological excess of α-Syn 
can trigger ER stress in rats,15 and similar effects have also been 
reported recently in a mouse model of synucleinopathy.16,17 These 
findings show that the Syn proteins are involved in both the normal 
function of the dopaminergic ER and the ER-based pathology 
that develops during dopaminergic neurodegeneration.18
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More than two decades of work have yet to conclusively 
determine the physiological role of the synuclein proteins, even 
though these abundant brain constituents are participants in a 
broad array of cellular processes. Among proposed physiological 
roles is a functional interaction between the synuclein proteins 
and monoamine transporters contributing to transporter 
trafficking through direct protein–protein interactions. Recent 
work shows that an antagonistic effect of the synuclein proteins 
on the secretory functions of the endoplasmic reticulum and the 
Golgi apparatus appears to simultaneously influence trafficking 
of the dopamine transporter and other membrane proteins. 
Here, we highlight these new findings in view of the broader 
literature identifying the role of synucleins in protein trafficking 
and suggest emerging themes for ongoing and future work in 
the field of synuclein biology.
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Although it remains controversial, evidence is also 
accumulating for a role of the Syn proteins inside the ER lumen. 
Several studies have shown that α-Syn interacts functionally with 
the lumenal ER chaperone Grp78/Bip and further suggest that 
intra-ER accumulations of α-Syn are directly linked with the 
processes of synucleinopathy.16,19 Grp78 is a critical determinant 
of the folding capacity of the ER lumen, with Grp78 assisting 
in the functional expression of complex transmembrane proteins 
such as SERT, a close homolog of DAT.20 Like the IgG heavy 
chain (C

H
1), a classical Grp78 substrate,21 the Syn proteins are 

recognized as intrinsically disordered proteins.22 Structural 
studies have shown that by binding to and stimulating the ATPase 
activity of Grp78, intrinsically disordered proteins are constantly 
engaged in sequestering the “open” population of the chaperone, 
thus reducing availability of Grp78 for enabling the folding 
reactions of other ER-resident proteins.23 The site of interaction 
between Grp78 and the Syn proteins is unclear, but whether they 
occupy the substrate binding pocket or merely associate with the 
substrate binding domain, physical interactions with this portion 
of Grp78 are likely to modify its activity. Further analysis of 
the interaction of Syn proteins with the components of the ER 
lumen, in particular description of a mechanism of ER entry, is 
an effort that should continue to generate exciting results.

Syn proteins in the context of neuronal secretion
Many studies now implicate the Syn family generally, and 

α-Syn in particular, in both regulatory and pathological roles 
with regard to ER and Golgi function. While some of the 

relevant work has been conducted in neuronal culture systems 
or in vivo models, much of the data supporting involvement 
of the Syn proteins in the process of transmembrane protein 
trafficking comes from more generic mammalian cell culture 
models (eg NRK or COS-7 cells)24,25 or even yeast and other 
organisms that lack endogenous Syn protein expression.26,27 As 
these results continue to accumulate, it is important to relate the 
findings in these model systems to the admittedly more complex 
and less understood reality of transmembrane protein trafficking 
in actual neurons. It has been established that neuronal soma 
contain the familiar ER and Golgi configuration, with a well-
described ER–Golgi interface and a post-Golgi pathway that 
appears similar in many respects to the trafficking systems 
described in other cell types.28 Most of the proposed models 
describing the involvement of Syn proteins in regulating ER 
– and Golgi-dependent trafficking rely on this canonical 
understanding of the function and arrangement of these 
secretory organelles. There is a growing consensus, however, that 
neurons possess alternative modes of secretory trafficking that 
are topologically and functionally dissimilar to the generic model 
often presented.29 Non-canonical ER–Golgi trafficking is best 
described in the dendritic compartment, but similarly specialized 
secretory machinery has also been identified in neuronal axons.30 
Though the Syn proteins can be expressed throughout the various 
neuronal cell compartments, it is generally agreed that these 
proteins accumulate pre-synaptically, and recent work shows 
that the Syn proteins are enriched in pre-synaptic membranous 

Figure 1. Evidence supports many distinct possible mechanisms that may operate simultaneously and in parallel to modulate trafficking of DAT and 
similarly secreted proteins in neuronal cells. The earliest steps of biosynthesis, including chaperone-mediated folding events (A) inside the ER, may 
be subject to interference from the Syn proteins, as several recent studies show binding with ER chaperone Grp78 and identify α-Syn inside the ER 
lumen.15-17 Syn proteins also antagonize many elements that contribute to (B) export of newly synthesized membrane proteins out of the ER and to 
the Golgi apparatus.1 The consequences of this function, which have varied widely across different model systems, range from a general slowing 
of the ER–Golgi transition to significant cytotoxicity.24-27 Syn proteins can bind tubulin and have been shown to (C) act as a bridge between DAT or 
NET and the microtubule cytoskeleton.4,33,34 This tethering function serves to increase the cytosolic fraction of the transporters and reduce their 
distribution to the cell surface. A similar relationship has been described between α-Syn, NET, and (D) the actin cytoskeleton, which penetrates even 
further into the axonal synapse.35 The final steps required to insert DAT and related cargos into the plasma membrane at or near axonal synapses 
are (E) mediated by SNARE proteins.36,37 Assembly of SNARE proteins into functional complexes is in part dependent on appropriate levels of the Syn 
proteins.12 These findings together suggest a role for the Syn proteins in regulating the insertion of trafficked proteins into the pre-synaptic plasma 
membrane. Syn mRNA has been identified in the axonal transcriptome, suggesting that local translation could contribute to accumulation of the 
Syn proteins in the pre-synaptic area.32 This accumulation puts the Syn proteins in position to have a potentially large contribution to regulating (F) 
non-canonical secretory functions performed by axonal ER and Golgi outposts that to date remain poorly described.
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structures that remain poorly described.31 This places the Syn 
proteins in an optimal position to directly influence non-
canonical neuronal secretion by interaction with various protein 
and lipid components of putative axonal ER and Golgi outposts 
(Fig. 1F). Furthermore, Syn mRNA has been identified in the 
axonal transcriptome,32 strengthening the evidence that the Syn 
proteins are involved in regulation of this specialized biosynthetic 
compartment.

Conclusions
The Syn proteins have the potential to be simultaneously 

involved in regulating the core biosynthetic processes as well as 
modulating specialized secretory and trafficking events at or near 

the pre-synaptic membrane. These facts indicate the potentially 
broad impact of the Syn proteins on neuronal function, but also 
highlight the difficulties involved in dissecting these diverse 
activities. This difficulty is exacerbated for DAT and other pre-
synaptic transmembrane proteins that still lack comprehensively 
described neuronal trafficking mechanisms. Ongoing and 
future efforts should be directed at elucidating the details of Syn 
protein biology as well as answering more fundamental questions 
regarding the unique biosynthetic pathways present in neurons.
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