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ABSTRACT Crop improvement must accelerate to feed an increasing human population in the face of
environmental changes. Including anticipated climatic changes with genetic architecture in breeding
programs could better optimize improvement strategies. Combinations of drought and nitrogen limitation
already occur world-wide. We therefore analyzed the genetic architecture underlying the response of Zea
mays to combinations of water and nitrogen stresses. Recombinant inbreds were subjected to nine com-
binations of the two stresses using an optimized response surface design, and their growth was measured.
Three-dimensional response surfaces were fit globally and to each polymorphic allele to determine which
genetic markers were associated with different response surfaces. Three quantitative trait loci that produced
nonlinear surfaces were mapped. To better understand the physiology of the response, we developed a
model that reproduced the shapes of the surfaces, their most characteristic feature. The model contains two
components that each combine the nitrogen and water inputs. The relative weighting of the two compo-
nents and the inputs is governed by five parameters, and each QTL affects all five parameters.

We estimated the model’s parameter values for the experimental surfaces using a mesh of points that
covered the surfaces’ most distinctive regions. Surfaces computed using these values reproduced the
experimental surfaces well, as judged by three different criteria at the mesh points. The modeling and
shape comparison techniques used here can be extended to other complex, high-dimensional, nonlinear
phenotypes. We encourage the application of our findings and methods to experiments that mix crop
protection measures, stresses, or both, on elite and landrace germplasm.
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Crop improvement will need to accelerate in the coming decade, as the
human population increases and the abiotic environment changes
(Wheeler and von Braun 2013). Improving cultivars to be more re-

silient to stress is key. While breeding programs can increase the rate of
genetic gain by using genotype prediction to shorten the breeding cycle
time (Jonas and de Koning 2013), crop improvement depends on the
immediate agricultural context, complicating selection schemes
(Cooper et al. 2014). So far, cultivar improvement in maize has not
significantly increased stress tolerance on a large scale (Lobell et al.
2014). But there is ample potential for improvement: in yield compe-
titions, the maximum is typically one-third higher than the average
(Tollenaar and Lee 2002).

Many breeding programs select germplasm in multiple environ-
ments, andmodelweather and soil inputs usingmultivariatemethodsor
crop models. A crop model is an agronomic model of a crop’s pro-
ductivity that incorporates genotypic, environmental, andmanagement
information into a system of equations (Cooper et al. 2016). Models
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used in predicting crop productivity via genomic selection and crop
modelingmake two sets of assumptions. The first set includes additivity
and the choice of testing environments. To fit growth and to predict
genotype-environment interactions, the current models typically as-
sume an additive relationship among individual loci, the environmental
and managerial contexts, and the phenotypes of interest. Using single
genetic coefficients and a one-SNP-one-input relationship, the models
partition the phenotypes’ variances into additive components that are
each determined by a single QTL (Lamsal et al. 2016; Cooper et al.
2016). Thus, these models imply that any QTL candidate can be ex-
changed for another that exhibits an effect. Epistasis among the QTL is
not considered, except as a last resort in interpreting the data (Huang
and Mackay 2016). To predict the phenotypes of a line in a novel
environment, current approaches attempt to infer performance from
the same or genotypically related lines in a set of testing environments.
These environments do not necessarily include the most predictive
ones under climate change (Cairns et al. 2013). Further, the equations
used to characterize environments can be nonlinear in the cropmodels,
but the genotypes’ interactions with the environments are usually mod-
eled linearly. These complications decrease prediction accuracy in
many circumstances (for example, see (Cooper et al. 2016; Chenu
et al. 2017)).

To understand the second set of assumptions, it helps to clarify
several ideas about phenotypes. We define a complex phenotype as a
function of at least three dimensions, of which at least one is an input, or
independent, variable and at least one is an output, or dependent,
observed variable. The set of dimensions can include measurements
of different features of the phenotype, genotypic information, and
environmental and cultivation conditions. The set of dimensions forms
a point in an n-dimensional space, and each point corresponds to an
experimental unit such as a plant, row, or plot. Each phenotypic point
represents a particular instantiation of the phenotype. Together, the set
of points that have the same definitions for each dimension comprise a
phenotype. The points lie in a phenotypic space, and the surface they
delimit is a phenotypic surface. (Throughout, we use the more general
term “surface” to denote surfaces in any number of dimensions, in-
cluding the “curves” traced by the successive positions of a single point
in an n-dimensional space.) Because the points are high-dimensional,
the phenotypes they denote are also surfaces, not scalars. We will refer
to the phenotype defined by a group of phenotypic points as the phe-
notypic collection when needed to distinguish that from the common
genetic usage of “phenotype”.

The second set of assumptions is that the phenotypic surface is
determinedbyamathematically linear functionof the genotypes and the
cultivation contexts. Each of the terms in an equation relating a
phenotypic response to genotypes, contexts, and noises has a coefficient
anda single termwhoseexponent is either0or1.Thephenotypic surface
is planar when viewed in n-dimensional space: no terms bend the
surface. The mathematical mappings among the phenotypic responses,
themarkers, and the contexts are one-to-one and onto. But themultiple
stresses of field environments fundamentally change the mathematics
of the analysis in its dimensionality, independence, linearity, and map-
pings. Each measured stress and observed trait are dimensions of the
complex phenotype of crop performance and the equations that de-
scribe it. When the response of a single trait to a single stress is a two-
dimensional function lying in a plane, many of the two-dimensional
techniques familiar to geneticists are valid. Combinations of two or
more stresses, or changes in more than one phenotypic dimension,
push the phenotypic response function from the plane to surfaces in
three or more dimensions, making the phenotype complex. Here,
two-dimensional regression is uninformative, since infinitely many

two-dimensional functions lie equally well on a three- or higher-
dimensional surface.Moreover, the mappings can now be few-to-many
or even many-to-many.

Many statistical methods assume that the input dimensions are
independent of each other and have the same distribution (independent,
identically distributed variates). In practice, both assumptions are often
violated by real data.When two ormore dimensions are related to linked
mechanistic causes, theirbehaviors can jointlychange inunexpectedways
that are not apparent from covariance analysis. This interdependence of
dimensions can occur both among the inputs and between inputs and
outputs. Moreover, the distributions of values for each of the dimensions
can be very different, even after rescaling, recentering, and other modest
transformations. Finally, regression and many dimension reduction
techniques assume that linear relationships exist between independent
input dimensions and independent output dimensions. (Throughout, we
use the term “linear” in its strict mathematical sense when referring to
models. The statistical “linear” models we fitted included quadratic
terms (see Equations 1 and 3), as statisticians use the term.) In at least
some situations, these input-output relationships are not linear. Plotted
in two or more dimensions, curvy or bumpy responses signal nonlinear
relationships among the dimensions, and scatter beyond measurement
and physiological noise can signal important missing dimensions or
many-to-many mappings. To understand performance in the out-of-
range field environments of the future, we will need a mechanistic view
that incorporates climate prediction, an understanding of the genetic
architecture and physiology of complex phenotypes, and analytical treat-
ments that are appropriate to the data (Tardieu and Parent 2017; Chenu
2015; Cooper et al. 2014; Heslot et al. 2014). Genetic analysis of com-
bined stress environments is a first step toward this mechanistic view.

There are examples of genetic dissection of abiotic stress combina-
tions for heat and drought (Cairns et al. 2013). In the (Cairns et al. 2013)
study, genotypes with good performance in drought or heat did not
perform well when the stresses were combined (Hallauer et al. 2010).
The poor predictive ability of single stresses for stress combinations
illustrates the interdependence of single stress inputs in conferring the
response. A controlled greenhouse-scale analysis of high UV stress
combined with moderate drought also indicated that loci important
for one stress did not have an important effect in the combined stress
treatment; and that the combined stress effect level was less than ad-
ditive, indicating a nonlinear protective interaction between the two
stresses (Makumburage et al. 2013). This suggests that experiments
should incorporate multiple levels of each input abiotic stress in order
to detect loci that are important for the interactions between stresses.

Though analysis of the genetic control of the response to combined
stresses is rare, we havemore information about physiological responses
for combinations within one or a few genotypes. For example, plant
protection chemical mixtures show interaction effects (Dashevskaya
et al. 2013), as do biotic/abiotic combinations (Prasch and Sonnewald
2014; Kissoudis et al. 2014; Suzuki et al. 2014). A common theme across
all the types of combinations examined is that the effect of the stress
interaction is not easily derived from single-effect responses. It is also
clear that a single, often severe stress treatment does not predict the
response at lower stress levels (Mittler 2006; Tardieu 2012; Zandalinas
et al. 2017). Work on mixtures of toxins illustrates the classes of phe-
notypes one might see in response to combined stresses. Organismal
responses to mixtures of drugs and chemical toxins are grouped into
modes of action such as concentration addition, independent action,
synergy, antagonism, dose-level, and dose-ratio (Jonker et al. 2005).
The shape of the responses to the mixtures defines these different
modes of interaction. In favorable cases, mechanistic inferences can
be drawn from an analysis of the phenotypic responses to increasing

1482 | M. M. Chang et al.



levels of two abiotic stresses. Models of high-dimensional response
surfaces can then be translated into network models (Lucas et al.
2011; Keurentjes et al. 2013; Reymond et al. 2003).

World-wide, one of themost important stress combinations inmaize is
co-occurring drought and nitrogen deficiency. Increased growth and yield
in maize under drought and low nitrogen are genetically correlated;
selection for one stress results in enhanced performance in the other stress
environment (Weber et al. 2012). However, the correlation can vary by
trait and by the specifics of the stress level and genotype used (Bennett et al.
1989; Sadras and Richards 2014). Typically, only a few levels of nitrogen
and drought are applied; and factorial analyses are used instead of surface-
fitting approaches that could compare equivalent stress intensities. The
maize inbred lines B73 andMo17 have different responses to drought and
nitrogen. B73 exhibits top-fire and Mo17 barrenness under drought
(A. Hallauer, personal communication), and their response to nitrogen
differs by� 25% (Balko and Russell 1980). These two inbreds are known
to combine well as a hybrid (Hallauer et al. 2010), with the hybrid having
very good performance under drought stress (A. Hallauer, personal com-
munication). We infer that there are interactions between alleles of one or
more genes in these parents that confer increased stress tolerance in the
hybrid. If true, a population of offspring from these parents would generate
a range of allele combinations from those inherited alleles, and would
exhibit different responses to varying combinations of stresses. We also
infer from stress combination experiments and toxicological data that sets
of specific alleles should be able to control the sensitivity of growth to
combinations of stresses, and thus shift the stress-tolerance system in
maize among more-responsive and less-responsive states. Those states
delimit parts of the phenotypic space that defines the set of high-dimen-
sional, nonlinear stress response surfaces. The difficulties in predicting the
effects of stress combinations from experiments using single stresses in-
dicate physiological interactions among these dimensions.

Mapping the alleles that control these shifts in phenotypic space
identifies the portions of the system controlling these responses. To
better understand themechanisms of field-relevant stress responses, the
interaction between limited nitrogen and limited water in maize should
be examined over a large range of levels of the stresses and in multiple
genotypes with appropriate comparisons of the surfaces, rather than
scalar summary statistics. In this paper, we map several alleles control-
ling overall responses to combined stresses, and identify the most
parsimonious nonlinear producing function that describes their un-
derlying mechanism. Identifying alleles, response surfaces, and models
will be helpful in optimizing crop improvement strategies.

MATERIALS AND METHODS

Seed Stocks
The Zea mays intermated recombinant line population (IBM94) de-
rived from inbreds B73 andMo17 (Lee et al. 2002) was provided by the
Maize Co-op (http://maizecoop.cropsci.uiuc.edu/). Seed stocks were
increased using standard nursery conditions at the North Carolina
Central Agricultural Station, Clayton, NC. Seed lots were genotyped
using eight simple sequence repeat markers; lines Mo066 and Mo062
failed genotyping quality control, and were thus removed from the data
analysis. The B73 parent inbred was used for random checks across
factor levels within the experiment.

Experimental Design and Plant Growth
A face-centered cubic experimental design (Pukelsheim 2006) with five
levels of drought and five levels of nitrogen was used to examine dose
response surfaces for mixtures of the two stresses. The statistical pro-
gram JMP v.6’s (SAS, Inc., Cary, NC, USA) experimental designmodule

was used to compare designmatrices and to generate the face-centered
cubic sample points (see Figure S7). This experimental design has
more biological replicates in the center portions of the response surface
to enable better fit of nonlinear functions. We used an unbalanced
design to increase the power for detecting the genotype-stress combi-
nation QTL, as QTL analysis was the primary goal of this experiment.
In our face-centered cubic experimental design, the maximum sample
size was either n ¼ 4 or n ¼ 8: The seeds of each of the 89 IBM RILS
and parental Mo17 and B73 inbreds were randomly assigned within the
cubic centered face design stress levels; replication existed within these
levels of the experimental design. Pots in water levels were grouped to
reduce human error when administering the water to the plants. There-
fore, the only variation that would confound the experiment would be
spatial variation within the greenhouse, i.e., if there was fluctuation or
variation between parts of the greenhouse table within a water level that
affected the estimation of the genotype-environment interaction. We
considered adding spatial modeling of water blocks to our analysis but
the additional complexity could not be justified, since differences in
temperature or light across the greenhouse tables were not detected.
The experiment was conducted in the Cape Fear Community College
horticulture greenhouse (GPS coordinates Lat: N 34� 199 2499 (34.324�)
Lon: W 77� 529 4599 (-77.879�), weather station KNCCASTL2) from
May–July 2011. Greenhouse maximum temperature was set to 38�C.

Slow-release fertilizer was custom-mixed by Coor Farm Supply,
Smithfield, NC, with clay pellets containing standard trace minerals,
15% potassium, 15% phosphate, and nitrogen levels of 0, 2.5, 7.5, 12.5,
and 15% fertilizer treatment level. 6.36 kg of fertilizer pellets weremixed
with a 0.08 m3 bag of MetroMix360 potting mix (SunGro, Vancouver,
BC, CA). Deep plant pots (MT38, 0.9 l, Stuewe and Sons, Tangent, OR,
USA) were filled with soil-fertilizer mix. Random soil-filled pots were
weighed, with an average weight of 350 g per pot. Seeds were planted
1 cm below the soil surface. A random number was generated for each
plant pot within each water level using SAS v9.2 (SAS Inc. Cary, NC,
USA). The plant pots were sorted by randomnumberwithin eachwater
level, so that neighboring plants were of randomly chosen genotypes
and nitrogen levels. Water evaporation in plant pots containing B73
checks in the greenhouse was examined May 20–24; the average dif-
ference in weight between fully wet and dry pots over 24 hr was 170 g.
Drought was applied to experimental groups using this average, with
drought levels of 8, 20, 50, 80, and 92% of full weight (13 ml water,
34 ml water, 85 ml water, 136 ml water, and 156 ml water applied per
day per pot). Selective watering in different amounts was applied from
20–30 days after planting, beginning when the check plants were at the
four-leaf growth stage. Soil water potential was measured with a con-
ductivity meter (EC-5, Decagon Devices, Pullman, WA, USA); the
selective watering was stopped when the B73 check 8%-weight plant
pots had an average water potential of 2%. All pots were watered fully
for five days after drought treatment.

Trait Data Collection
Eachplant potwas photographed against a 1 cmgrid background 14days
after planting, before selective watering. Plants were re-photographed
using the same setupand focal length35days after planting, after recovery
from selective watering.

Plant photographs were measured using ImageJ (Schneider et al.
2012), with the internal centimeter ruler in each image used to calibrate
the pixel lengths for each measurement session. Each person analyzing
the images practiced on a calibration image set until his or her accuracy
was greater than 95%. All plant images are available upon request. The
complete trait data file is included as Supplemental Data Files 2 and 3.
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Parental Inbred Analysis
The initial plant height was subtracted from the final height to generate
Zijk; the growth variable difference_in_height. Measured initial, final,
and difference in plant heights for each parental inbred for each stress
treatment were fit with a full factorial model (see Equation 1) using
JMPv11 (SAS Inc., Cary, NC).

Mixture Surface Parameter Fits
For the checkB73 inbredwithadequatedatapoints, theheightdifference
data were analyzed by the procedure of Jonker et al. (2005) using Excel
Mixtox analysis tools provided by C. Svendsen. TheMo17 data had too
few points to generate a fit. The first step in the Mixtox analysis pro-
cedure was to fit a single dose response relationship to the height
difference data using the log-logistic two-dimensional surface as a dose
response model to determine the separate, single parameter effects of
water and nitrogen. To fit the surface to the water level, the data were
filtered to only include points with the lowest level of nitrogen that had
a variation in the water level— in this case, the nitrogen level was held
constant at 2.5% in order to analyze the single parameter effect of water.
Similarly, the surface was fit for single-parameter nitrogen by holding
the water level constant at 20%. These fitted surfaces are the empirical
analogs of the discrete partial differentials of the response surface with
respect to water or nitrogen, constrained to lie on the planes where
nitrogen ¼ 2:5% and water ¼ 20%; respectively. The fits of the log-
logistic surfaces were further refined using the Solver add-in in Excel
to minimize the sum of squares (SS) between the actual data points and
the predictedmodel values. The second step in the analysis was to fit the
Mixtox mixture dose-ratio and dose-level reference models and the
deviation models to the data. In order to optimize use of the solver,
which was set up to use one measurement rather than replicates, and
was not optimized for a face-centered cubic design, an average was
taken for each of the treatment combinations in the larger data set.

QTL Analysis
To determine which markers are responsible for creating significantly
differentdose response surfaces,wefit the responsedata for eachmarker,
then compared these to the surface fit to all the markers from all lines
using an F-test (see Supplemental Materials 6). Since our experimental
design was optimized to detect interactions among markers and
stresses, we fit the data to a quadratic function; and we focused on
smoothed surfaces to incorporate all the information across levels effi-
ciently. As seeds germinate at different times, all the recombinant in-
bred analyses were conducted on traitmeasurements adjusted for initial
plant size. This approach fits the data for Zijk; the difference in height,
using Equation 1:

Zijk¼mþ ai   þ b1xw;j þ b2xn;k

þ b3x
2
w;j þ b4x

2
n;k þ b5xw;j   xn;k þ eijk;

(1)

where Zijk is the difference in height for line i before and after the
combined water xw; and nitrogen, xn; stresses; m is the mean of the
height differences before and after stresses; ai is a random effect due
to line i; xw;j is a covariate for the jth amount of water; xn;k is a
covariate for the kth amount of nitrogen; and xw;j   xn;k is the interac-
tion term between j ¼ 1; 2; . . . ; J for J amounts of water and
k ¼ 1; 2; . . . ;K for K amounts of nitrogen. b� are the regression co-
efficients, and e is the residual error in the fit to the data.

To fit the data to this equation and detect QTL, we first fit an all-
inclusivemodel that includedall themarkers fromall the lines (Motulsky
and Christopoulos 2004). Then for each marker, data from all the lines

and all combinations of water and nitrogen were divided into two
groups according to whether the genotype of the marker was B73 or
Mo17. The SAS procedure PROC MIXED was used to model each
surface. Due to non-random relatedness between recombinant inbred
lines, we incorporated kinship matrix information into the analysis, as
recommended by (Malosetti et al. 2011). Kinship matrices were calcu-
lated using the SPAGEDI method (Hardy and Vekemans 2002) within
the TASSEL v3 program (Bradbury et al. 2007).

The sums of squares for the individual marker models were com-
pared to the sums of squares of the all-inclusive model via an F-statistic.
The resulting raw P-values from the analysis were adjusted using the
approach described by Makumburage and Stapleton (2011), by group-
ing correlated adjacent marker P values with the Simes function in SAS
(PSMOOTH). SAS data steps were used to scan the Simes-adjusted P
values for groups of significant markers adjacent along the chromo-
some. A false discovery rate of 0.05 and a Sidak adjustment of 0.05 were
each separately used to adjust for multiple testing. Raw and adjusted
P-values, marker data for each mapping line, and SAS code for surface
fits and P-value adjustment are provided in the Supplemental Data and
Methods files (1, 4, and 5).

Response Surfaces of the Markers
We generated the phenotypic response surfaces of the lines using the
parameters obtained by linear regression (Table 1) and Equation 1.
These surfaces were plotted in three-dimensional Cartesian space using
the R package rgl, recentering the intervals for water and nitrogen
(Adler et al. 2017–present). Plotting details and code are provided in
Supplemental Methods File 11. For each marker, two response surfaces
were plotted for the B73 and Mo17 alleles in the QTL region.

Annotation of QTL Loci
QTeller (http://www.qteller.com/) was used to assemble a list of maize
genes in the three chromosomal regions containing QTL that changed
the difference in height Zijk; and the gene IDs were placed into
AGRIGO (Du et al. 2010) for annotation analysis. All GO annotations
within each QTL were used to create scaled semantic-similarity plots
through the Revigo interface (Supek et al. 2011).

Mathematical Model of the Phenotype
Themost distinctive and robust feature of the plant height phenotype is
the shapes of the response surfaces. We sought a function that was
simpler than Equation 1, that would reproduce the shapes of the
experimental phenotypes, and that would not assume the hypothesized
interactions. The simplest such producing function is the sum of two
components, an elliptical paraboloid and a plane, shown in Equation 2.

z ¼ c
�
ax2w þ bx2n

�

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
elliptical  paraboloid

þ dxw þ exn
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

plane

; (2)

z is the difference in height; xw; water; xn; nitrogen. a; b;   and  c are
parameters governing the paraboloid’s shape and orientation (c) and
its weighting of input water (a) and nitrogen (b). d   and  e tilt the plane
along the water and nitrogen axes, respectively. To confirm the mod-
el’s correctness, we tested many different candidate components by
analysis and substitution, the importance of each term by deletion,
and the effects of the parameters by simulation. Using R, the function
was evaluated over the recentered water and nitrogen intervals
½242; 42� and ½27:5; 7:5� with a step size of 0.5, and surfaces were
plotted in a standard orientation (Supplemental Files 12 and 16).
Package viridis was used to color these and subsequent plots, since
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it produces color maps that are less problematic for those with color
blindness (Garnier et al. 2017–present).

Estimation of Model Parameters
Weestimated the parameters of the producing function (Equation2) for
each allele’s surface using standard linear regression, analogous to the fit
of Equation 1 but omitting the constant. We set the value of c to
f21; 1g for the non-Mo17 and Mo17 shaped experimental surfaces,
respectively, and estimated the values of ða; b; d; eÞ for

Z ¼ c
�
aX2

w þ bX2
n

�þ dXw þ eXn; (3)

where Z is the vector of empirical heights at a mesh of points at
coordinates ðXw;XnÞ: The mesh points were chosen to emphasize
surface regions that had the most empirical data and were most com-
parable among the surfaces. The points lie at the intersections of a set of
contours at fixed z values and a set of rays defined with respect to a local
axis. For the non-Mo17 surfaces, the local axis was defined as the
apparent major axis of the distorted ellipsoid. For Mo17, the local axis
was defined as midway between the asymptotes of the trough. The rays
extended from the surfaces’ peaks at fixed angles relative to the local
axes.We call these the “absolutemesh points” to distinguish them from
the relative mesh points of the next section.

We used the linear solvers Solve and lsei in the R package limSolve
(Soetaert et al. 2009; Van denMeersche et al. 2009). Both gave identical
parameter values.We report those obtained by lsei in Table 3, since that
algorithm also computes a scalar error measure cumulated over the
surface, the square root of the least squares error fit. We repeated these
computations using the relative mesh points described in the next
section. Those fits were considerably worse except for Mo17, as judged
by the scalar error. Code for these computations is in File S15. The
resulting surfaces were projected into the ðxw; xnÞ plane and plotted
using the image function of package graphics (R Development Core
Team et al. 2017–present).

Comparison of Surfaces’ Shapes
Weassessedhowwell the surfacesgeneratedby themodelusingthefitted
parameters reproduced the intrinsic shapesof the experimental surfaces.
For all possible pairs of experimental and simulated surfaces, we scored
differences in signed Euclidean distance, r; relative rotation of the
surfaces projected into the ðxw; xnÞ evaluation plane, u; and relative
gradients in z along a set of rays, dzr: r estimates the displacement of
the simulated surface in ðxw; xn; zÞ space relative to the experimental,
due to either or both components of the model. u accounts for different
amounts of rotation over the surfaces, due to tilting of the planar
component of the producing function. dzr captures differences in the

“bending” of the surfaces, due to either or both components of the
model. We discretized the shapes using 10 mesh points placed at the same
relative distances from the peak along each of six ray segments of fixed
slopes (the “relative mesh points”). The segments are bounded by the peak
and the edges of the evaluation plane. Non-Mo17 surfaces had ray segments
at slopes f0; 0:05; 0:099; 0:175; 0:32; 0:75g relative to the origin. For
Mo17, the slopes were f0; 2 0:05; 2 0:099; 2 0:175; 2 0:32; 2 0:75g
This discretization divides the surface into nine adjacent bands whose tilts
and twists reflect shape changes in that region.

R code to generate mesh points, compute comparisons, and plot
heatmaps is in File S14.Weused theRpackages superheat and viridis for
the heatmaps (Barter 2017–present).

Data and Code Availability
All supplemental files (input data, SAS analysis code, outputs, supple-
mental methods, supplemental results, and outputs are available from
FigShare at https://figshare.com/s/3ef69b44d24d0953d625. Code for
modeling, fits, and simulations is on GitHub at https://github.com/
tonikazic/univariate_dose_response.git in a public repository.

RESULTS

Effect of Stress Combinations on Parental Inbreds
Table 1 shows the parameter values obtained by fitting Equation 1 to
the experimental data for the parental lines (first and last rows). The
response surfaces generated using these parameters are plotted in Fig-
ure 1 for the parental lines. The parental inbreds exhibited different
responses to combinations of water and nitrogen deprivation, with B73
showing more variation in its response surface than Mo17. The plots
are rotated to show the most severe stresses in the front center corner,
placing the normal full-water and full-nitrogen combination in the
back. The intersections of the surface with the nitrogen-height
(ðxn; zÞ) and water-height (ðxw; zÞ) planes define the phenotypic re-
sponse at constant amounts of water and nitrogen, respectively, corre-
sponding to the discrete partial differentials dz=dxn   and  dz=dxw: B73
exhibited a domed surface, with the peak atmoderate amounts of water
and nitrogen (Figure 1A). This surface is convex upward in the sense
that it opens downward toward negative values of z; and has a relatively
high, and highly curved, peak (large zmax and small discrete curvature),
that lies in the region of relatively high nitrogen and water (Sullivan
2006). While B73 declined under the most severe conditions (front
center corner), it showedmodest growth under bothmoderate drought
and very low nitrogen (e.g., the maximum of dz=dxw at the surface’s
right edge) and high drought and middle nitrogen (e.g., the maximum
of dz=dxn at the surface’s left edge). The worst condition wasminimum
water and maximum nitrogen (rear left corner).

n Table 1 Regression Coefficients and Constant Terms for the Experimental Data Regressed to Equation 1. The regression coefficients,
b�; are ordered by the degree of the applied stresses. Thus, b1; xw; b2; xn; b3; xw2 ; b4; xn2 ; and b5; xw;n: The columns are ordered to highlight
the elliptical paraboloid (b3x

2
w;j þ b4x

2
n;k), hyperbolic paraboloid (b5xw;j   xn;k), and plane (b1xw;j þ b2xn;k), components of Equation 1 in that

order. The lumped constant ℓ incorporates all the constant terms in the equation, ℓ ¼ mþ ai;0 þ ei;w;n:

marker b3 b4 b5 b1 b2 ℓ

B73 20.006042 20.188712 0.025567 0.229554 0.997363 32.034927
QTL1-B73 20.004447 20.110527 0.007851 0.251079 0.542153 29.572431
QTL2-Mo17 20.005370 20.105151 0.007068 0.239113 0.497335 30.499056
QTL3-Mo17 20.005307 20.116559 0.005924 0.249475 0.525478 31.324343
QTL1-Mo17 20.003192 20.049303 0.004224 0.215691 0.317815 26.144178
QTL2-B73 20.002367 20.068065 0.006244 0.237807 0.418609 25.779661
QTL3-B73 20.002917 20.063999 0.008152 0.228592 0.411333 25.720664
Mo17 0.000814 20.001170 20.006244 20.009502 0.063104 0.266425
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In contrast, Mo17 had little growth change under any stress (Figure
1B). Its surface is a very shallow trough, or is concave upward; the nadir,
zmin; is small; its discrete curvature is larger; and the peak lies on a
corner. For Mo17, reducing nitrogen affected growth slightly more
severely than reducing water (compare the slopes along the left front
and right front faces of Figure 1B. We investigated whether this small
difference in Mo17’s change of heights could be due to its decreased
overall growth.We compared the initial plant heights of B73 andMo17
and found no significant differences between them (P ¼ 0:18). When
we compared the inbred plant heights after deprivation, we found that
the B73 plants had more growth and greater differences between treat-
ments than Mo17 (comparing the factors inbred, nitrogen level, water
level, and inbred by nitrogen level, at P, 0:05; the numerous sample
sizes and confidence intervals are reported in File S9). But when we
scaled the differences in height to adjust for the smaller Mo17 plants at
the beginning of the experiment, plant growth during the experimentwas
more pronounced for Mo17 in mid-level nitrogen and low water-level
treatment combinations. In contrast, B73 growth was typically greater
when more water was available. This indicates that the Mo17 inbred line
is less sensitive to drought provided at least some nitrogen was present.
Comparisons at very low nitrogen levels did not exhibit any trend toward
differences between parental inbreds (Figure S8). For both B73 and
Mo17, the slopes of the four lines intersecting each pair of the surfaces’
corners are different, indicating the plants’ responses vary with extremal
stress combinations. Mixture toxicity models with two shape parameters,
, a  and  b. for water and nitrogen, were used to analyze the shape
differences in the parental B73 inbred. (These two parameters are not the
same as the a and b of Equation 2, andwe have typeset them in a different
font than is normally used in mixture toxicity papers to emphasize this
distinction.) B73 had the best fit to a dose-ratio surface. , a and b .
indicating that the antagonistic effect of combined stresses is caused
mainly by nitrogen deprivation. This is consistent with the curvature
of the discrete partial differentials at the edges of the B73 response surface
in Figure 1A: dz=dxw is more sharply curved and has a higher local
maximum than dz=dxn:

QTL That Change Phenotypic Response Surfaces
Chromosomal loci with significant interaction P values for the response
surface were fit to nitrogen deprivation and drought. The interaction
effect is visualized as the intersections between the surfaces in the
illustrative plots in Figure 2. The interaction between marker allele
and each stress combination covariate was fit with a standard linear
model, and the parameters derived from the model were those used in

mapping the QTL.We found three highly significantQTL that changed
the response surface fitted from the data on all lines and an additional
50 QTL when false discovery rate-adjusted P-values less than 0.05 were
considered. The three QTL with P values below the experiment-wise
Sidak-adjusted significance threshold of 0.05 are shown in Figure 2.
Table 1 shows the parameter values obtained by fitting Equation 1 to
the data for the smoothed QTL response surfaces.

For all threeQTL, the response surface for theMo17 allele is upwardly
convex, a shape resembling that of the B73 allele and parent, and very
different from the upwardly concave shape of the Mo17 parental surface.
The three QTL’s alleles differ from each other and from parental inbreds
in many details, including the magnitudes of z over their surfaces, the
relative magnitudes of the B73 and Mo17 surfaces, and the value and
position of zmax: TheMo17 allele’s surface forQTL1, shown in Figure 2A,
is pushed upward along the z axis, far above the range of the Mo17
parent’s response in Figure 1B. For extremal combinations of water
and nitrogen, changes in the growth of the Mo17 allele exceed those
for the B73 allele. QTL2’s and QTL3’s Mo17 surfaces lie mostly above
those of their B73 alleles. For these loci, the B73 alleles exhibit better
performance under extremal conditions (see Figures 2B and 2C). Thus,
the phenotypic response surface can differ in shape and magnitude
within the population, and surface shape can be quite different than
the parental response surface in offspring carrying some QTL allele
combinations. Because the experimental design was optimized to detect
marker-stress treatment interactions using Equation 1, theseQTL display
a crossover interaction between the allele surfaces. Like their parents,
none of these alleles have surface corners that lie on parallel lines.

The differences in surface shape between allele fits in all three QTL,
with highly-domed surfaces that have increased combined stress peaks in
themiddle of the response surface, indicate that nitrogen andwater stress
have nonlinear effects on plant growth. These B73-like surface shapes
indicate that the better-performing allele at mid-range combined stress is
typically not the allele that provides best performance under extreme
conditions.Thehighestwater andnitrogen input conditions,whichmight
naïvely be assumed to support the most growth, exhibit less growth and
could be favored by a different allele than the mid-range combinations.

The Shapes of the Alleles’ Response Surfaces
Themost distinctive and robust feature of thephenotypes is the shapesof
the surfaces, rather than their absolute placement in ðxw; xn; zÞ space.
The shapes show the patterns of the alleles’ responses to the stresses, and
are less sensitive to the effects of errors due to small sample sizes. The
smoothed experimental surfaces fall into four nondisjoint categories:

Figure 1 Parental Inbred Response Surfaces
to Combined Drought and Nitrogen Depriva-
tion. A quadratic surface was fit to the mea-
sured trait of differences in plant height (z) and
is shown for each parental inbred on the same
scales. (A) The B73 inbred response surface;
(B) the Mo17 response surface.
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domed more sharply domed, highest amplitude surfaces with peaks
in the high nitrogen, high water region (B73 and QTL1-B73);

hybrid higher amplitude domed surfaces with the peaks displaced
from the high nitrogen, high water corner toward the center of
the water-nitrogen plane (QTL2-Mo17 and QTL3-Mo17);

shoulder lower amplitude surfaces, with lower peaks on the high
water edge that slope more gradually downward as nitrogen
decreases (QTL1-Mo17, QTL2-B73, and QTL3-B73); and

trough a very low amplitude trough with a peak at the lowest water
and highest nitrogen corner (Mo17).

These categories are illustrated by examining the positions of the
peaks in ðxw; xn; zÞ (Table 2), and by projecting the surfaces into the
water-nitrogen plane (first and third columns of Figure 5).

Weemphasize that themembershipof themiddlecategoriesdepends
on the classification criteria. If one considers just the positionof the peak
in the ðxw; xnÞ plane, then B73 and QTL1-B73 would form the domed
class, and QTL2-Mo17 and QTL3-Mo17 would form the hybrid class.
Weighting the peak’s position in zmore than in ðxw; xnÞ would classify
only B73 as domed and shift QTL1-B73 into the hybrid class with
QTL2-Mo17 and QTL3-Mo17. Binning the zmax more coarsely would
eliminate the hybrid category altogether. Adding other criteria, singly
or in combination, might further change the classification.

Annotations of Gene Function in QTL Regions
Gene annotations under QTL provide a qualitative new data type that
can provide additional context to the mapping of chromosomal loci.
Annotations such as ”response to abiotic stress” in the two QTL on
Chromosome 1 (Figure 3A and 3B) are consistent with our identifica-
tion of these QTL as important for response to drought and nitrogen
fertilizer. QTL3 in bin 9.03 does not have unique annotations in stress

response (Figure 3C); this may indicate that a novel gene type is re-
sponsible for the causal allele difference at this locus. The marker with
the smallest P value within the QTL1 region was IDP168, which tags
geneGRMZM5G828396. This gene is annotated as a basic Helix-Loop-
Helix (BHLH) transcription factor. The marker with the lowest P
value in the second QTL interval was umc1446, which tags gene
GRMZM2G162508; this gene is annotated as a polyketide-synthase-like
protein. The marker with the smallest P value in the third QTL in bin
9.03 was mmp17b, which is between the genes GRMZM2G538859 and
GRMZM2G093187; neither gene model has assigned annotations.

Modeling the Response Surfaces With a
Producing Function
What is the simplest physiologicalmodel that produces the phenotypes?
If one assumes the phenotypes are produced by a single network in the
plant, then the corresponding producing function is the most parsimo-
nious network. Tuning the function’s parameters to reproduce the
observed phenotypic points is equivalent to tuning the network’s pa-
rameters, rather than its connectivity. The phenotypic points form an
n-dimensional space, with each phenotype a point in this space. The
greater the range of observed phenotypes, the more the phenotypic
space is sampled, and the more constraints an hypothesized function
must satisfy. Such a function can also predict novel phenotypic points
that lie in the space.

Equation 1 is not the best choice for the producing function. Its
large constant, lumped together as ℓ in Table 1, shifts the surfaces
along the z axis without modifying their shapes. It assumes the
hypothesis — an interaction between water and nitrogen — via
the hyperbolic paraboloid term. Finally, it has a fairly large number
of terms.

Figure 2 Loci with Significant Effects on the Phenotypic Response Surface. Three QTL with a Sidak-adjusted significant interaction surface for
differences in height were identified. At each QTL, the trait data were fit with a quadratic response surface separately for each allele. The B73
allele is shown in orange and the Mo17 allele in blue. Each panel shows the QTL’s location (chromosome bin and marker range indicated above)
and surface fits for the allele differences at the locus. (A) Surfaces for QTL1, gpm906a – IDP2465; (B) surfaces for QTL2, umc1838a – mmp22; and
(C) surfaces for QTL3, ufg71 – IDP1681.

n Table 2 Comparison of Numerical Values of the Experimental Peaks’ Positions and the Nondisjoint Shape Classification. These values
were obtained from the surfaces generated using Equation 1 and the fitted parameter values of Table 1.

domed hybrid shoulder trough
criterion B73 QTL1-B73 QTL2-Mo17 QTL3-Mo17 QTL1-Mo17 QTL2-B73 QTL3-B73 Mo17

xw 28.5 31.5 24.0 25.0 37.0 42.0 42.0 242.0
xn 4.5 3.5 3.0 3.0 5.0 5.0 6.0 7.5
zmax 37.6 34.5 34.2 35.2 30.9 33.3 32.4 4.5
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We therefore searched for a simpler function that would reproduce
the surfaces’ shapes without explicitly assuming an interaction between
the inputs. The single, sharp global maxima of the B73-like surfaces
immediately suggested an elliptical paraboloid. This is the simplest
function that generates a single peak; changing the sign of one param-
eter flips the peak to produceMo17’s trough. An orthogonal projection
of the paraboloid into the ðxw; xnÞ evaluation plane gives an ellipse,
whose ratio of major andminor axes reflect the relative weighting of the
water and nitrogen inputs for that phenotypic point. We considered
other functions that generate peaks, but they are structurally more
complicated, harder to flip, and need more assumptions that are more
difficult to justify. For example, a two-dimensional Gaussian function is
structurally more elaborate, and flipping requires the reciprocal of the
Gaussian. Periodic functions, such as transcendental or Bessel func-
tions, would have forced us to assume either that their other peaks lie
outside the evaluation interval or that the functions are severely
damped.

However, three asymmetries in the phenotypes indicate the pro-
ducing function is not just an elliptical paraboloid. First, themaxima are
notwhere theywould be for an elliptical paraboloid, at ð0; 0; zÞ: Second,
the surfaces are tilted: intersecting each surface with the four planes
perpendicular to the evaluation plane yields a set of different surfaces.
Third, the surfaces are not symmetric around the peaks, but distorted.
While the peak can be shifted by adding a constant along xw; xn; or
both, tilting and distorting the surfaces requires the addition of another
component to the producing function. We experimented with many
possibilities for this second component, including exponential and
transcendental functions and operators to combine the first and second
components, and found the simplest approach was to add a plane.

Thus, the simplest producing function is that shown in Equation 2,
reproduced here:

z ¼ c
�
ax2w þ bx2n

�

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
elliptical  paraboloid

þ  dxw þ exn
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

plane

;

where z is the difference in height; xw is water; and xn is nitrogen.
a  and  b modify the paraboloid’s size, shape, and weighting of input
water (a) and nitrogen (b). cmodifies the paraboloid’s size and shape
and flips it: c, 0 makes the surface convex upward like the B73-like
surfaces, while c. 0 produces the concave upward surface of Mo17.
d   and  e tilt the plane along the water and nitrogen axes, respectively.
This shifts, stretches, rotates, and tilts the paraboloid to change its

shape with a set of affine transformations. The relative weighting of
the paraboloid and plane components is controlled by all five param-
eters: cðaþ bÞ. d þ e emphasizes the paraboloid features of the sur-
face. The relative weightings of water and nitrogen within each
component are different (a  and  b; d   and  e), and independent of the
weightings of the two components.

We tested the model by deleting terms and by varying the values of
the parameters. Both components are essential to reproducing the
experimentally observed surfaces. Omitting the elliptical paraboloid
makes it impossible toreproduceanyexperimental surface, since allhave
domes or troughs; and omitting the plane makes all of the surfaces
symmetric about themajor andminoraxesof theparaboloid, placing the
maxima andminima at ð0; 0; zÞ:Each term in the equation corresponds
to a node in the network, drawn in Figure 4A. The simulated surfaces in
Figure 4B show good qualitative agreement with the experimentally
observed surfaces of the B73 and Mo17 parental inbreds in Figures
1A and 1B. Thus, the phenotypes we observe are products of the entire
network.

Parameter Estimation for the Producing Function
How well does Equation 2 reproduce the shapes of the alleles’ response
surfaces? To answer this question one must first estimate the model’s
parameters for each allele. However, the surfaces’ nonlinearity entails
several trade-offs that affect the accuracy of the estimates. The edges of
the surfaces were under-sampled to optimize the experiment for peak
detection. By omitting a hyperbolic paraboloid, the model cannot re-
produce the apparent nonplanar, twisted quadrilateral of the surfaces’
corners. Circumventing those issues by fitting with data near the peaks
makes the estimates more sensitive to the smoothing errors inherent in
flatter peaks, and inadvertant affine transformations of the surfaces due
to slight changes in a; b; d; or  e: Linear regression is simpler, faster, and
more likely to converge than nonlinearmethods, but will exaggerate the
peak regions since their z values are so much greater.

With these caveats, we estimated the model’s parameters for each
line by linear regression to Equation 3. We used a set of absolute mesh
points that sampled the central, best-determined parts of the smoothed
experimental surfaces. We preset c to f21; 1g to simplify estimation,
and estimated parameters using and omitting the peaks. Table 3 sum-
marizes the values of a; b; d; and  e; and the square root of the solution
norm scalar errors, s, for each experimental surface. The residual norms
for all the parameters were 0. In general, the estimated values distribute
the numerical weight more evenly among the four parameters than the

Figure 3 Gene Ontology Annotations for QTL. All known genes in each QTL region were scanned for significant annotations. GO process
annotations are shown. Annotations were ordered by semantic similarity (Supek et al. 2011), with single genes under the QTL having higher
uniqueness (redder shades). (A) QTL1, bin 1.06, bounded by markers gpm906a to IDP2465; (B) QTL2, bin 1.08, bounded by umc1838a to
mmp22; and (C) QTL3, bin 9.03, bounded by ufg71 to IDP1681.
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fits to the regression model of Equation 1, shown in Table 1. The
exception is QTL3-Mo17, where nearly all of the numerical weight
is concentrated in e. The parameters shown were estimated by including
the experimental peaks. Judged by s, omitting the peaks slightly de-
graded the quality of the estimates for all lines exceptMo17 (Figure S10).

The right side of Table 3 summarizes the patterns of parameter
signs, and compares these to the independently derived classification
of the surfaces’ shapes shown in Table 2. Grouping by signs makes it
more visually obvious how the surfaces in Figure 5 connect to the
parameters of the producing function, and emphasizes the overlap
among the categories. The sign patterns match the shape classification
shown in Table 2 except for QTL1-B73 and QTL3-Mo17. QTL1-B73’s
classification strongly depends on how the classification criteria are
weighted, and its estimated values for b  and  d are much closer to those
for the hybrid shape of QTL2-Mo17 than B73’s. QTL3-Mo17 is a
hybrid surface based on the peak position in ðxw; xn; zÞ (Table 2), the
projection into the evaluation plane (Figure 5), and its estimate for e,
but has a distinct sign pattern that reflects the small estimated value of
b. Both the sign pattern and the estimates of a; b; d;   and  e for the
shouldered lines are much more internally consistent.

Comparison of Experimental and Simulated Surfaces
To see how well the model reproduces the shapes of the phenotypes, we
compared the smoothed experimental response surfaces to those gen-
erated by the model. The experimental surfaces were generated by
Equation 1 and Table 1, while the model’s surfaces used Equation
2 and the parameter values from Table 3. Figure 5 shows these surfaces
projected into the ðxw; xnÞ evaluation plane. They are plotted to show
each surface’s amplitude by using its minimum and maximum to set
the scales. The producing function reproduces the major shape features

of the phenotypes. All four shape categories are generated with the
correct membership and ambiguities. The surfaces illustrate the caveats
of using linear regression for nonlinear phenomena for the values in
Tables 1 and 3. Relative to the generated experimental surfaces, all the
model surfaces are rotated counter-clockwise and their amplitudes
exaggerated. Model surfaces are translated relative to the evaluation
plane:domed and hybrid surfaces toward the low-nitrogen edge; the
shouldered surfaces toward the high water edge; and Mo17 toward the
low nitrogen, high water corner.

We assessed the intrinsic shapes of the surfaces using three types of
similarities, computed on a mesh of points that extend from the peaks
leftwards and downward. Unlike the absolute mesh points used in the
linear regression that are very sensitive to affine transformations of the
surfaces, these relative mesh points are placed at constant relative
distances along a set of ray segments that cover the lower left quadrant
of the surfaces, and are adequately robust to translation of the surfaces
relative to the evaluation plane. Three similarity scores were computed.
r, the signed Euclidean distance, evaluates the displacement of the
model surface in ðxw; xn; zÞ space relative to the experimental due to
either or both components of Equation 2. u, the rotation angle between
the surfaces projected into the ðxw; xnÞ evaluation plane, accounts for
different amounts of relative rotation due to tilting the planar compo-
nent. dzr; the gradients of relative discrete differences along the rays as
one moves away from the peaks, captures differences in the “bending”
of the surfaces due to either or both components.

We compared the shapes’ similarities for each pair of generated
experimental (e) and model (s) surfaces at each corresponding pair
of relative mesh points. The QTL3-Mo17 and Mo17 parameters pro-
duced surfaces that were displaced too far in the evaluation plane to be
included in the comparison. Values for r;   u; and  dzr for each pair of

Figure 4 Modeling of Response Surfaces with the Producing Function (Equation 2). (A) The producing function drawn as a network. The elliptical
paraboloid component is on the left, and the planar component on the right. Each term in the function is a node; the operators are edges. The
parameters of the producing function (Equation 2) are in magenta; results of mathematical operations on the input nodes are shown in orange. The final
equation is in yellow. (B) Sample simulated response surfaces and their projections into the ðxw ; xnÞ plane. (left) B73-like response surface,
ða;b; c;d;eÞ ¼ ð0:260; 0:305; 20:175;2:575;0:500Þ; (right) Mo17-like response surface, ða;b; c;d;eÞ ¼ ð0:0330; 0:4250;0:0030; 2 0:0025;0:5500Þ:
The color scale for each is the same for its surface plot and projection.
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comparisons are shown as heatmaps in Figure 6. In the heatmaps, each
experimentally-derived surface (e) is compared to all available model
surfaces (s), beginningwith itsmodel sibling. Each comparison is a row,
and the columns are ordered to form concentric rings around the peaks.
The first ray segment in each ring is parallel to xw; the water axis, and
the last nearly parallel to xn; the nitrogen axis. Bluer shades indicate
higher similarity for r; for u and dzr; the greener shades indicate higher
similarities. For dzr; bluer shades indicate the simulation’s gradients are
steeper compared to the experimental; yellower shades signal the sim-
ulation’s gradients are shallower.

Shape reproduction by the model is good, with different pairs of
surfaces showing reasonable accuracyover their entirety for thedifferent
similarity scores. Blocks of similar blue and green colors dominate all
three scoring matrices, and correspond to the nondisjoint shape cate-
gories. The same experimental surface was often fit equally well over
most of its surface by multiple simulations, as judged by two or more
criteria. For example, generated experimental shouldered surfaces
QTL1-Mo17, QTL2-B73, and QTL3-B73 were best emulated by non-
Mo17 surfaces; B73 was poorly emulated; and Mo17 was never well
emulated by simulations of the non-trough surfaces. Occasionally the
self comparisons were not the best fit, suggesting we did not overfit the
model’s parameters. For example, the shouldered surfaces were less well
emulated by their simulated selves, compared to B73. Changes in gra-
dients along the shapes were usually least for the experimental surfaces
compared to their simulated siblings. All simulated non-Mo17 surfaces
tended to descend more sharply toward the tails of the surfaces in
several comparisons. Mo17 descended more shallowly when compared
to any other simulations, as one would expect.

Some nuances deserve highlighting. As expected, the accuracy of
shape reproduction is not uniform over the surfaces for any similarity
score, and the three scores often differ for any given comparison.
Reproduction is better nearer the peaks and for the more central ray
segments. The regression to Equation 3 was based on those regions, but
the performance of the model outside them is often almost as good for
many comparisons. The scores are still somewhat sensitive to affine
transformations. For example, the repeating yellow stripes in u for ray
segment r1 in Figure 6 are an artifact of the way u is calculated. As the
peaks fromwhich they are drawn shift in the ðxw; xnÞ plane, the absolute
lengths of the ray segments compared increases, increasing the apparent
rotation. Thus, the maximum rotation we observe along r1 reflects
greater length differences in the r1 ray segments relative to the others.

DISCUSSION
We observed that the parental B73 and Mo17 inbreds show different
responses to combined stresses (Figure 1). The position of maximum

response and the surfaces’ shapes differ markedly among the parental
and recombinant lines (Figure 2 and Table 2). All three of the QTL we
identified have better performance for one allele in the mid-range
combined stress, at moderate levels of water and nitrogen. Mo17 is
the least responsive of all the lines, with a flat trough responding to
all water-nitrogen combinations. In constrast, lines with Mo17 QTL in
mixed RIL backgrounds have responses that show much greater, more
B73-like amplitudes and convexities. All Mo17 QTL exhibit B73-like
convexity, but their other effects on the baseline B73 response vary by
QTL: QTL2-Mo17 and QTL3-Mo17 lift the response above their B73
alleles. The responses of the B73 alleles are damped, and shifted by the
addition of Mo17 germplasm in the background across all environ-
ments (Table 2). These differences in the response surfaces illustrate the
effects of multiple segregating genes for this population in combina-
tions of water and nitrogen. The QTL we identified have contrasting
and intersecting response surfaces. To estimate an effect size for these
QTL, we would need a way to express the shape differences in multiple
dimensions for fitting. Simply calculating the slope along a slice of the
surface, or at zmax; would not capture the full effect of the QTL and
would mis-estimate the effect size.

One interpretation of the nonlinear response surfaces is that they
arise fromepistatic interactionsbetween theQTLandothermodifier loci
in the background. Antagonistic, damped responses to combinations of
stresses were previously observed in this IBM population in an exper-
iment measuring changes in height under combinations of UV and
drought, which identified different QTL than we see here for drought
and low nitrogen (Makumburage et al. 2013). Our results are consistent
with the importance of nitrogen for growth for modern corn lines
(Hallauer et al. 2010) and the ability of lower levels of nitrogen fertil-
ization to ameliorate the effect of severe drought under certain condi-
tions (Sadras and Richards 2014). For example, the B73 MixTox
analysis indicates that low nitrogen “over-shadows” drought; in low
nitrogen, having additional water available does not improve growth.
Since combinations of other stressesmay have different genetic control,
dose response analyses for more stress combinations, and perhaps
more complex surface fits such as dose-ratio (Jonker et al. 2005), would
be needed.

While epistatic interactions are common, they are difficult to detect
in small mapping populations using combinatorial or variance compo-
nent methods (Mäki-Tanila and Hill 2014; Huang and Mackay 2016).
Although we weighted our statistical model (Equation 1) for overall
polygenic similarity, we did not have sufficient data to test for specific
epistatic interactions. However, it is likelier that any epistasis one
might deduce from a linear model is instead the result of attempting
to fit a linear model to a nonlinear response such as those seen here, or

n Table 3 Parameter Values, Errors, Sign Patterns, and Shape Types for Experimental Surfaces Fit to Equation 3. The absolute
experimental mesh points used in these estimates included the peak of each surface. The value of c was preset to produce the
appropriate convexity. s is the square root of the solution norm. The residual norms were all 0.

line a b c d e s sgnðaÞ sgnðbÞ sgnðdÞ sgnðeÞ shape

B73 20.0463 21.8005 21 20.0765 1.3540 146.0321 2 2 2 þ domed
QTL1-B73 20.0429 20.5926 21 20.3134 20.9222 127.2874 2 2 2 2 domed,

ambiguous
QTL2-Mo17 20.0332 20.4362 21 20.3681 22.9073 134.1696 2 2 2 2 hybrid
QTL3-Mo17 20.0636 0.0039 21 20.5199 24.0788 112.6761 2 þ 2 2 hybrid
QTL1-Mo17 0.0164 20.6201 21 1.2777 1.8758 89.4613 þ 2 þ þ shoulder
QTL2-B73 0.0268 20.4119 21 1.7254 1.7119 81.4159 þ 2 þ þ shoulder
QTL3-B73 0.0278 20.4450 21 1.6600 1.0073 83.2248 þ 2 þ þ shoulder
Mo17 0.0259 0.2164 1 1.7406 20.7203 34.1571 þ þ þ 2 trough

1490 | M. M. Chang et al.



Figure 5 Generated Experimental and Model Surfaces Projected into the Evaluation Plane. Experimental surfaces were generated using Equation
1 and Table 1, marked “experimental”. Model surfaces were generated using Equation 2 and Table 3, marked “model”. The left two columns
show the domed and hybrid shape categories, and the right two columns the shoulder and trough categories. Each surface’s scale spans its
maximum and minimum: bluer shades are near the minima and yellow the maxima.
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mis-assigning the meaning of the various variance components (Sailer
and Harms 2017; Huang and Mackay 2016). Instead, one would solve
for the nonlinear function and its matrix of coefficients. The latter
captures both the interactions among genes and their entailed products
and reactions; and themagnitudes of those interactions (the effect size).
Such a function and its matrix define a physiological model of the
network that, as an entirety, produces the phenotypic collection. Paths
through the network select subsets of terms from the full nonlinear
model, fragmenting the phenotypic collection into multiple approxi-
mations that can appear as epistasis. Epistatic interaction terms can also
arise from linear transformations of nonlinear responses, which de-
couple the network into a matrix of connecting interactions and a
matrix of the interactions’magnitudes. Better nonlinear models would
fold these apparent epistases into the inherent nonlinearity of the
response.

Nonlinear changes in growth in response to combined stresses
form a complex phenotype. Just from the surfaces fit to the experi-
mental data, one can rule out an unbranched network sensitive to both
water and nitrogen, because the response’s peak does not scale with
the sum or product of the inputs. Similarly, one can exclude two
completely independent nodes, one for each input. Instead, the two
inputs interact so that the response varies as a function of both: the
phenotypic collection is produced by the action of the entire network,
rather than just paths through it (Figure 4A). The nonlinear produc-
ing function of Equation 2 defines this interaction as the sum of two
components, each of which is sensitive to both water and nitrogen. It
successfully accounts for all the important qualitative features of the
experimentally observed phenotypic collection without assuming the
large constants that dominate the solution in the QTL analysis (Equa-
tion 1 and Table 1). Surfaces generated using parameter values
obtained by linear regression approximated the shapes of the exper-
imental surfaces well, but were shifted downward in three-dimen-
sional space (Figures 5 and 6). The heatmaps illustrate how much
the surfaces can change with the parameter values. Slightly tilting the
plane component of Equation 2 can strongly shift and rotate the
position of the peak in ðxw; xn; zÞ: This suggests the model is quite
sensitive to variation in d and e, and is consistent with our simulations
(data not shown).

Unlike cropmodels that frame the organism’s physiology as a system
of equations that involve large numbers of parameters that may not be
directly measured (Cooper et al. 2016; Technow et al. 2015), the pro-
ducing function is a simpler, more coarsely-grainedmodel that approx-
imates the behavior of the system. It explicitly treats the parameters as
fundamental model components that adjust the organism’s physiolog-
ical response to input water and nitrogen. Environmental perturba-
tions, such as varying the available water and nitrogen, change the
intervals over which the producing function is evaluated by the plant.
Genetic perturbations, such as the alleles of the QTL identified in this
work, delimit different regions in the phenotypic space in which pos-
sible responses lie. Of course, considering additional phenotypes or
phenotypic dimensions might necessitate changing the function.

The usual objective of QTL experiments is to isolate loci that exert a
change on a single dimension of a phenotype, such as the mean (Lynch
and Walsh 1998). The assumptions are that the mappings between
QTL and the parameter space, and between the parameter space and
the phenotypic space, are one-to-one and onto; that the association
function is linear and additive; and that one QTL can be freely ex-
changed for another with an effect of similar magnitude. However,
our data clearly show none of these assumptions hold. The phenotypic
collection we observe falls into four overlapping categories, and the
close similarities of the phenotypic points within each category, and
the overlap between the domed and hybrid categories depending on the
classification criterion, suggest that the parameter values governing
them can fall into rather broad ranges. This is a hallmark of sloppiness
in model systems that breeders commonly call equifinality, and statis-
ticians call “parameter nonidentifiability” (Transtrum et al. 2015; Luo
et al. 2009; Hartung 2014; Hines et al. 2014). This interpretation is
supported by extensive simulation experiments: so far, we have been
unable to identify unique combinations of parameter values that de-
termine each phenotypic point. The parameter ranges for the observed
phenotypic points are not disjoint, another characteristic of sloppy
systems (data not shown) (Transtrum et al. 2015). Thus, our data divide
both the parameter and the phenotypic spaces into nondisjoint sub-
spaces, and confirm the mapping is many-to-many.

Our current approach detects single QTL that control shifts among
points in the phenotypic space, changing entire response surfaces. How

Figure 6 Heatmaps of Surface Similarity Scores r, u, and dzr : The pairwise comparison of all 60 relative mesh points for each pair of experimental (e) and
simulated surfaces (s) are the rows; the values for the pair of mesh points are the columns. The columns are ordered by concentric rings around the
experimental peaks, so that the leftmost six columns are closest to the peak (:1) and the rightmost six furthest away (:10). Within each set of six columns,
the ray segments (r0; r1; . . . ; r5) are arranged in order of increasing slope (non-Mo17) or decreasing slope (Mo17). For dzr ; bluer colors correspond to
steeper gradients for the simulated surfaces, relative to the experimental ones, and yellower colors the opposite. The scales are heatmap-specific.
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could one detect portions of the network that affect different aspects of
thephenotypic collection?Forexample, are thereQTLthat influence just
the elliptical paraboloid or that restrict which shape categories can be
reached from another? One would need to look for sets of QTL that
jointly influence phenotypic features: these phenotypic subspaces, iden-
tified by specific loci, correspond to a higher resolution view of portions
of the system. The many-to-many mappings among markers, the
parameter space, and the phenotypic space would also have to be
explicitly considered. We can think of two ways to approach this
problem. The first way is to ask for markers that jointly affect subsets
of parameters, shifting the phenotypic points from one phenotypic
subspace to another. The overlapping categories of shapes we observe
may reflect genuine nondisjointness in phenotypic space or missing
dimensions that would separate the categories in a higher dimensional
space. The second approach is to ask how many distinct groups of
phenotypic points are in the collection by unsupervised clustering of all
the experimental units. Themembership of the resulting clusters would
not necessarily be coincident with the genotypic or stress labels, nor
would they necessarily be disjoint. One would then ask for intersecting
sets of loci within and across all clusters, which allows many-to-many
mappings. The clusters in phenotypic space correspond to allowable
states of the underlying system and its producing function, joined by
appropriate transitions among the clusters. The sets of loci may not be
mutually disjoint, and subspaces of the parameters will differ in their
sloppiness. These approaches could be tested first by simulations that
randomly assign markers to different simulated surfaces.

The success of this endeavor hinges first on the ability to recognize
similarities among high-dimensional surfaces. The technique we used
of scoring similarities bymultiple criteria over a set of mesh points can
be readily extended to higher dimensional surfaces, and used for
clustering phenotypic points, optimizing parameter searches, and
genetic mapping. For example, looking across all three scoring ma-
trices in Figure 6 would produce a vector in 179-dimensional space.
The second condition is the ability to fit parameters to nonlinear
phenomena. Estimating parameters by fitting is more challenging
with nonlinear phenomena. Two questions arise: what should be
fitted? and how should it be fit? The first question is the fit criterion.
We tested a wide variety of objective functions, singly and in combi-
nation, to describe the surfaces through a set of proxies that are faster
to compute than the scores over the mesh points. None effectively
discriminated among somewhat similar surfaces. This is not surpris-
ing in retrospect, given the many-to-many mapping between param-
eter and phenotypic spaces.

The second question is one of fitting method. The most common
approach approximates the higher degree polynomial with a linear
statistical model, as we have done here. Our results illustrate the
limitations of that approach. A more sophisticated, but compute-in-
tensive, approachwould be tofit a set of hyperplanes, approximating the
surface as a set of n2 1-dimensional splines. Another approach is to
optimize the fit of the model to the data using one of many nonlinear
optimization techniques (Bartholomew-Biggs 2008). Nonlinear opti-
mizations require a good initial guess for the parameter values. We
found the values generated by the linear fits were not good guesses,
evidently placing the initial point outside the feasible region of the
optimization. Further experimentation will be needed to improve the
fits using this approach. Finally, one can search systematically for pa-
rameter combinations that generate surfaces thatmatch the experimen-
tal ones. This is oneway of asking how sensitive the phenotypic surfaces
are to variations in the parameters’ values. For nonlinear polynomial
functions, the relationship between sets of parameter values and gen-
erated surfaces will not be regular or easily anticipated: stepwise

changes in parameter values will produce “clumps” of generated phe-
notypes, consistent with the nonlinearity and sloppiness of the system.

We encourage application of our response surface and shape
modeling approaches to experiments mixing crop protections or
stresses; developing methods to discover producing functions and
the variousmappings; and detecting and characterizing subspaces that
subsume expressed phenotypic points. Methods to more efficiently
traverse phenotypic spaces have the potential to accelerate breeding
gains.
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APPENDIX

List of Supplementary Material
• On FigShare at https://figshare.com/s/3ef69b44d24d0953d625:
1. Supplemental_Material_metadata_readme.txt
2. Supplemental_Data_File_1a.csv
3. Supplemental_Data_File_1b.csv
4. Supplemental_Data_File_2.csv
5. Supplemental_Data_File_3.csv
6. Supplemental_Methods_File_1v2.rtf
7. Supplemental_Figure_S1.png
8. Supplemental_Results_Figure_S2.png
9. Supplemental_Results_File_1.csv
10. Supplemental_Results_Figure_S3.pdf
• On GitHub at https://github.com/tonikazic/univariate_dose_response.git. a public repository:
11. replot MatLab surfaces in R in standard orientation: replot_ann.r
12. generate surfaces according to Eqn 2: modified_eqn.r
13. library of proxies and other helper functions: sweep_fcns.r
14. library of helper functions for analysis: analysis_fcns.r
15. linear estimation of parameters: estimate_exptl_parameters.r
16. standard view for plotting surfaces in 3D: std_view.r
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