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LineageOT is a unified framework for lineage
tracing and trajectory inference
Aden Forrow 1✉ & Geoffrey Schiebinger 2✉

Understanding the genetic and epigenetic programs that control differentiation during

development is a fundamental challenge, with broad impacts across biology and medicine.

Measurement technologies like single-cell RNA-sequencing and CRISPR-based lineage tra-

cing have opened new windows on these processes, through computational trajectory

inference and lineage reconstruction. While these two mathematical problems are deeply

related, methods for trajectory inference are not typically designed to leverage information

from lineage tracing and vice versa. Here, we present LineageOT, a unified framework for

lineage tracing and trajectory inference. Specifically, we leverage mathematical tools from

graphical models and optimal transport to reconstruct developmental trajectories from time

courses with snapshots of both cell states and lineages. We find that lineage data helps

disentangle complex state transitions with increased accuracy using fewer measured time

points. Moreover, integrating lineage tracing with trajectory inference in this way could

enable accurate reconstruction of developmental pathways that are impossible to recover

with state-based methods alone.
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Analyzing the trajectories of cellular differentiation holds
promise for key questions across biology, from how
lineages diverge during embryonic development to how

cell types destabilize with age or are perturbed in disease. Single-
cell measurement technologies like single-cell RNA-sequencing
(scRNA-seq)1,2, single-cell ATAC-seq3, and CRISPR-based line-
age tracing4–6 have opened new windows on these processes, but
it remains challenging to analyze dynamic changes in cell state
and cell lineage over time because the measurements are
destructive: cells must be lysed before information about their
state or lineage can be recovered. In response, there has been a
flurry of work on designing methods to infer developmental
trajectories from static snapshots of cell state7–10, including our
own efforts11. While initial efforts have shed some light
on important biological questions relating to embryonic
development7,12, hematopoiesis13, and induced pluripotent stem
cell reprogramming11, the field of trajectory inference is still in its
infancy.

One of the most significant deficiencies of existing trajectory
inference methods is that they are not designed to incorporate the
rich information from lineage tracing. Technologies for recon-
structing cellular lineage trees have seen tremendous recent
advances, fueled by the CRISPR-Cas9 genome editing
technology5,6,14. While developmental biologists have long used
various methods to tag cells and trace the lineage of their des-
cendants, newer approaches make it possible to recover more
complex lineage relationships, including the full lineage tree of a
population of cells4–6. These technologies employ CRISPR-Cas9
to continuously mutate an array of synthetic DNA barcodes,
which are incorporated into the chromosomes so that they are
inherited by daughter cells and can be further mutated over the
course of development. By analyzing the pattern of mutations in
the barcodes, one can reconstruct a lineage tree describing shared
ancestry within a population of cells. Recent advances allow the
DNA barcodes to be expressed as transcripts and recovered

Fig. 1 Schematic of the LineageOT model and inference procedure. a A lineage tree embedded in two dimensional gene expression space. As cells change
state over time, they trace out paths. Branches in the tree correspond to cell divisions, giving rise to four cells at the measurement time (red circles). Each
cell has a barcode to track its lineage. Starting from the ancestral barcode sequence AAAA, mutations are indicated with a red star on the lineage tree and
the change to the sequence is shown in red. b Embedded lineage trees from two independent realizations of the developmental process measured at times
t1 (blue) and t2 (red). c The setup from (b) is shown in a 3d plot with lineage trees visualized in the vertical dimension. For each time point, we observe cell
states (dots) and also the lineage tree, but not the lineage tree embedded in state space. d A purely state-based algorithm would fail to recover the correct
trajectories in this example. Green lines connect cells at t2 to their nearest neighbor at t1. Dashed lines indicate erroneous connections. e, f The LineageOT
procedure consists of two steps. e Adjust cells at time t2 (purple arrows), based on lineage information. Cells with shared lineage are moved closer
together, towards an estimate of ancestral state (solid dots). f Infer a coupling (green lines) connecting the adjusted cells from time t2 (red) to cells from
time t1 (blue). This corrects the mistake made in (d).
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together with the rest of the transcriptome in scRNA-seq5,6.
Alternative methods use somatic mutations in mitochondria15 to
recover similar information without needing to introduce DNA
barcodes.

Each of these technologies enables simultaneous collection of
data on cell state and cell lineage. The two types of information are
complementary: state measurements can be used for improved
inference of lineage trees16, while the lineage tree itself is inti-
mately related to trajectories. However, high-resolution lineage
tracing, even if informed by gene expression data as in16, does not
obviate the need for trajectory inference because the state of the
ancestral cells remains unknown. While the problems of recon-
structing lineage trees and inferring trajectories have attracted
substantial attention individually17,18, there is much to be gained
from combining these two complementary perspectives19.

Here, we propose an integrated mathematical framework for
inferring developmental trajectories from snapshots of both cell
lineage and cell state. Our framework, called LineageOT, is
broadly applicable to lineage tracing time courses, where popu-
lations of cells are profiled with both scRNA-seq and lineage
tracing at various time points along a developmental process
(Fig. 1). As a proof of concept, we test our methodology on a
time-course of C. elegans embryonic development (Figs. 2, 3),
collected with scRNA-seq20. Because the lineage tree of C. elegans
is known21, we have an objective measure of performance. We
find that our method significantly improves trajectory inference
both on this dataset and on simulated examples where algorithms
without lineage information cannot completely recover the cor-
rect trajectories (Fig. 4). Our results show a path towards realizing
the substantial benefits of lineage tracing19,22 in applications
across developmental biology.

Results
A unified framework for lineage tracing and trajectory infer-
ence. We develop a mathematical framework for analyzing
scRNA-seq time courses equipped with a lineage tree at each time
point. We formulate the goal of trajectory inference in terms of
recovering the embedding of these lineage trees, defined as fol-
lows. As a population of cells develops, each cell traces out tra-
jectories in a high-dimensional vector space of cellular states (e.g.,
gene expression space). Cell divisions create branching paths, and
the trajectories of related cells coincide up to the point when their
ancestry diverges (Fig. 1a). For example, if all the cells share a
common ancestor, then the trajectories will all originate from a
common point. This collection of branching paths forms what we
call the embedded lineage tree for the population. Note the
emphasis on “embedded”—without this modifier, the term line-
age tree refers to the coordinate-free tree structure, where all
information about the embedded state of each ancestral node is
lost, like those in Fig. 1c.

Single-cell measurement technologies allow us to sample from
a population and measure cell states together with barcodes that
enable recovery of the lineage tree any point in time (Fig. 1a).
However, because the measurements are destructive, we cannot
directly chart the embedded lineage tree at multiple time points.
One can, however, leverage the reproducibility of development
and collect samples from separate populations at different time
points (Fig. 1b, c). For example, one can prepare two independent
populations of cells and collect samples from the first population
at time t1 and samples from the second population at time t2. The
key question is then: which cell from the first sample would have
given rise to each cell from the second sample, if these were two
views of the same population?

Importantly, this cannot be solved in general from the topology
of the lineage trees alone. Both biological variability and simple
subsampling of cells in a tissue could cause the lineage tree at t2 to
be topologically distinct from an extension of the lineage tree at
t1, making it impossible to directly patch one tree onto the other
in a biologically meaningful way. We sketch a hypothetical
example with sampling in Fig. S123. Instead, lineage information
must be used together with gene expression data in a combined
approach.

We have recently demonstrated11 that a classical mathematical
tool called optimal transport24–26 can be applied to infer state
couplings (Methods 1) from a scRNA-seq time-course, without
any information about cell lineage. This method, called
Waddington-OT, connects cells sampled at time t1 to their
putative descendants at time t2 by minimizing the total distance
traveled by all cells. It also includes entropic regularization with a
tunable regularization parameter to model the inherent stochas-
ticity in developmental trajectories and allows for variable rates of
growth across cells by adjusting the distributions at times t1 and t2
based on estimates of division rates. The inferred connections
approximate the frequency of transitions between regions of cell-
state space, i.e., the couplings of the developmental process.
Correctly-recovered couplings encode information about the
probability of each differentiation pathway and the genes
associated with fate specification.

Our present notion of an embedded lineage tree refines the
notion of a coupling from11. While Waddington-OT aims for a
state coupling describing all possible ancestries of a hypothetical
cell with a given state, our embedded lineage tree gives rise to a
lineage-resolved coupling predicting the ancestry of the particular
cells we observed. The distinction is significant in situations
where cells can arrive at a particular state from different ancestral
states (Methods 2). Lineage tracing helps resolve such ambi-
guities: without lineage tracing, we must assume that cells with
similar states have similar ancestral states; with lineage tracing, we
instead assume that cells with similar lineage have similar
ancestral states.

a b

Fig. 2 Complex trajectories in C. elegans development. a UMAP of 81286 C. elegans cells from20, using coordinates provided by Packer et al. Color
indicates estimated time since fertilization following the colorbar in (b). b In the boxed region from (a), multiple developmental trajectories in the
hypodermis converge to the same UMAP coordinates, suggesting a convergence in gene expression.
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We apply optimal transport to recover lineage couplings,
considered as approximations to embedded lineage trees, from
scRNA-seq time courses equipped with an unembedded lineage
tree at each time point. We refer to these datasets as scRNA-
lineage time courses. In practice, the unembedded trees can be
reconstructed from mutations accumulated in DNA barcodes
over the course of development (Fig. 1a), or some lineage
information might be known in advance (as in C. elegans
development). Lentiviral barcoding13 would also provide usable,
though low-resolution, lineage trees through tracing clones: cells
from each clone would form leaves of a separate sub-tree, with an
ancestral node at the time of barcoding. Here, we do not focus on
how the unembedded lineage trees are estimated—our method
assumes these are calculated separately, for example by neighbor
joining27, and given as input to the algorithm. However, we do
demonstrate in simulations below that our method is robust to
errors in the estimated lineage tree.

Our method applies two key steps to recover the lineage
coupling spanning a pair of time points t1, t2.

1. We first leverage the lineage tree to adjust the positions of
the cells at time t2 (Fig. 1e).

2. We then connect them to their ancestors at time t1 (Fig. 1f)
using entropically regularized optimal transport.

The adjustment in the first step can be interpreted as sharing
information between closely related cells in order to construct a
rough initial estimate of the ancestral states at the earlier time t1.
The rationale behind the second step is based on Schrödinger’s
discovery that entropically regularized optimal transport gives the
maximum-likelihood coupling of diffusing particles28,29. This gives
a rigorous interpretation of our methodology, as we explain below.

The core problem involves a single pair of time points, t1 and
t2, where we are given cells x1,…, xn sampled at time t1, and cells
y1,…, ym sampled at time t2 together with an estimate of their
lineage tree. We assume that these data are sampled from
trajectories generated by diffusion plus drift through Wadding-
ton’s landscape (i.e., a stochastic differential equation as described
in Methods 2).

a b

c d

e f g

Fig. 3 When tested on lineage-labeled C. elegans data, LineageOT outperforms optimal transport with no lineage information. a Relative accuracy of
optimal transport (OT) and LineageOT on the 5123 cells with complete lineage annotations. Errors were normalized by dividing by the error of the
noninformative independent coupling. b The error in predicting ancestor states, like the error for predicting descendant states (Fig. S523), is lower for most
cells with LineageOT. Here each point represents one cell from the 270min time point, which was coupled to the 210min time point. The red line marks
equal error for both methods. For each method in both (a, b) and (f, g), we chose the entropy parameters that gave the minimum error from parameter
scans like those in (c, d). LineageOT consistently improves on Waddington-OT for reasonable values of the entropy parameter, both in ancestor error (c)
and descendant error (d), shown here for the 210–270min couplings. e UMAP visualization of the cells from the 210 (blue) and 270min (red) time points.
f, g Here, in the same UMAP, cells are colored by the ancestor (f) or descendant (g) error from Waddington-OT minus the same error from LineageOT.
Blue indicates better performance by LineageOT, red better performance by Waddington-OT. The cells from 210min and 270min in (f) and (g),
respectively, are gray, as the corresponding error metric does not apply to them.
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Since diffusion dominates drift on short time scales, we can
estimate the ancestral state of yi at time t1 by assuming the
dynamics are driven by pure diffusion. However, conditional on
the lineage tree, the cells are not diffusing independently.
Intuitively, cells with similar lineage should diffuse back toward
one another to reach a common ancestral state. The difference in
cell state across each of the edges of the lineage tree is given by an
independent Gaussian random variable with variance propor-
tional to the time-span along the edge (Methods 4). This implies
that the ancestral state at time t1 for each yi is normally
distributed with mean and variance that can be calculated from

the lineage tree (Methods 4). Because the ancestral states of each
yi are normally distributed, optimal transport will give the
maximum-likelihood matching to the observed ancestors x1,…,
xn, when we use an entropy parameter proportional to the
inferred variance of ancestral states (Methods 4). This matching,
or lineage-resolved coupling, summarizes our knowledge of the
ancestral states of cells from t2 and the hypothetical descendant
states of cells from t1, providing a window onto the embedded
lineage tree of each time point.

As described in the original Waddington-OT paper11, couplings
of the kind fit by LineageOT contain trajectory information

d e f

g h i 

a b c

k l m 

Fig. 4 LineageOT matches the performance of Waddington-OT for simple trajectories and exceeds it for complex trajectories. a–c For a simple
bifurcation, optimal transport alone works well and adding lineage information makes little difference. a We simulated a cluster of cells at an early time
point splitting into two clusters at a later time point. Green lines connect ancestors in blue to descendants in red in (a, d, g, k). The ancestor errors (b) and
descendant errors (c) are similar for optimal transport (OT, orange) and LineageOT (blue) with any entropy parameter, even when LineageOT is given an
imperfect tree fitted to simulated barcodes (green). d–f For a convergent trajectory, LineageOT significantly improves ancestor prediction with no loss of
accuracy in descendant prediction, even with an imperfectly fitted lineage tree. d Here we simulated two early clusters that each split; later, two of the
resulting clusters merge together. Using LineageOT reduces error substantially for ancestor prediction (e) and slightly for descendant prediction (f). g–i
The improvement due to lineage information when trajectories converge does not require nearby unconverged clusters. Here we see qualitatively similar
improvement for two early clusters whose distributions of descendant cells almost entirely overlap. k–m With sufficient time between samples, clusters of
cells may move closer to early time point cells that are not their ancestors. k In this simulation, after two early clusters each split, two of the late clusters
are closer to non-ancestral cells than to their true ancestors. Optimal transport couples clusters incorrectly, leading to high error for predicting both
ancestors (l), and descendants (m). LineageOT corrects the errors in this example by averaging with other clusters that are mapped correctly.
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covering the entire period between the earliest and latest sampling
times. Given a long time course, each method fits a coupling
between each consecutive pair of time points ti and ti+1;
concatenating this sequence of pairwise couplings gives connec-
tions across longer periods. In between measured time points,
trajectories can be estimated with geodesic interpolation. More-
over, in cases where the lineage tree at t2 is a direct extension of
the lineage tree at t1, the correct coupling provides precisely the
matching required to patch the tree topologies.

Subsequent analyses on the cell-cell couplings will reveal
aspects of the underlying biological processes, such as transcrip-
tion factors associated with any transition or the timing of fate
specification. These are the same set of questions that other
trajectory inference methods attempt to answer; the key question
in comparing approaches is their relative accuracy. For Line-
ageOT, the foundation for reliable downstream analyses is
accurate recovery of couplings between two time points, which
we demonstrate in the following sections.

LineageOT outperforms Waddington-OT on a lineage-resolved
time-course of C. elegans embryonic development. We sought
to test our method by applying it to a scRNA-lineage time-course.
While CRISPR-based lineage tracing30,31 offers tremendous
potential for generating scRNA-lineage time courses, this type of
dataset has not yet been published. We reasoned, however, that
we could create a scRNA-lineage time-course from an ordinary,
non-barcoded, scRNA-seq time-course of C. elegans embryonic
development20 because the lineage tree is entirely known21. The
known lineage tree allows us to create a ground-truth reference to
directly evaluate the accuracy of fitted trajectories, making this a
uniquely appropriate dataset for testing LineageOT.

Packer et al. sampled 86,024 cells with 10× from loosely
synchronized embryos spanning the first 800 min of C. elegans
embryonic development. As visible in a UMAP embedding
(Fig. 2a), the differentiation process is complex. In addition to the
many branchings, the gene expression of distinct transient cell
types converges for several tissues, including the hypodermis
(Figs. 2b, S8 of20) and IL1/IL2 neurons (Fig. 4a of20). Such
convergences cause difficulties for state-based trajectory infer-
ence, because cells with similar measured state have different
histories.

Because the precise timing of each embryo is not known,
Packer et al. estimated the developmental time of each cell by
correlating gene expression levels with data from a previous bulk
RNA time course20,32. They then divided the cells into groups
with similar estimated developmental times. We treat the six
groups of cells between 130 and 450 min post fertilization as
discrete time points along a scRNA-seq time-course, using the
end of each group’s time interval as the group’s time of sampling.

To obtain the scRNA-lineage time-course required for Line-
ageOT, we needed to incorporate lineage information at each
time point. Using both known marker genes and UMAP
trajectories, Packer et al. annotated their dataset with cells’
location on the reference C. elegans lineage. The resulting tree can
be used in LineageOT in the same way as a tree recovered from
lineage tracing, with the potentially important difference that
lineage labels are ultimately based on state measurements.
Because lineage information is most helpful where it is not
redundant with cell state data, that difference most likely biases
this evaluation against LineageOT. For example, convergent
trajectories that LineageOT might separate with lineage tracing
independent of cell state may not be distinguishable.

While the majority of cells (54%) in the Packer et al. dataset
are annotated with lineage information, the lineage of many of
the annotated cells is not completely specified: some symmetric

lineages are not distinguished (e.g., cells whose true lineage is
ABprp or ABplp are all labeled as ABpxp). We explored three
different strategies to get around this problem of incomplete
lineage information. We first simply filtered out all cells with
imperfect lineage annotation. This leaves us with only 5123
cells but with no ambiguity in the lineage tree. Second, we
restricted attention to the well-annotated ABpxp sublineage,
which contains 7087 cells (entirely distinct from the 5123 cells
above), and we treated the lineages ABprp and ABplp as if they
were identical. Third, we filtered out only cells completely
lacking lineage annotation. For cells with incomplete annota-
tions, we imputed a precise lineage label by randomly selecting
from the options consistent with the partial annotation. For
each approach, we also removed a small number of cells (<5%)
whose assigned sampling time was before their birth time
according to the reference lineage tree. These three strategies
yield three scRNA-lineage datasets (visualized in Fig. S223)
which we analyze separately. The results we describe below
are broadly similar for each of the three strategies (Figs. 3, S3,
S4 in23).

With each strategy, we applied both Waddington-OT11 and
LineageOT to infer developmental trajectories and compare their
performance. We provide both methods with ground-truth
growth rates (Methods 7), and compute state couplings and
lineage couplings connecting each pair of time points. The input
cell states are the first 50 coordinates from principal components
analysis of normalized, log-transformed counts for the 46,159
cells with partial lineage annotations, corrected for background
counts as in20. For LineageOT, the input lineage trees come from
mapping cell lineage annotations onto the known C. elegans
lineage tree. This additional information, given to LineageOT and
not Waddington-OT, is precisely the information now measur-
able with lineage tracing.

We compare each fitted coupling to a ground-truth lineage
coupling computed directly from the lineage-annotated data. This
ground truth is constructed by connecting each early cell to all
late cells labeled as being its descendants. Creating a coupling in
this way would not be possible in other organisms without cell
annotations from a known, invariant lineage tree. While previous
work18 has measured the success of trajectory inference by
reducing to discrete branching representations, we directly check
whether the predicted ancestors and descendants are similar in
state to the true ancestors and descendants, respectively (Methods
6). These are two separate error metrics: the ancestor prediction
error and the descendant prediction error. As an alternative,
performance can be evaluated by the probability ancestor-
descendant pairs from the ground truth are correctly linked.
Though LineageOT does improve on Waddington-OT by that
metric (Fig. S623), we prefer the ancestor and descendant error
metrics because they do not require assuming the lineage trees
from the two time points match.

In all our tests, LineageOT has consistently lower error for both
ancestor and descendant prediction at reasonable levels of
entropy (Figs. 3a, S3, S4 in 23), including after concatenating
couplings across more than two time points (Fig. S723).
LineageOT systematically predicts better for the majority of cells
(Fig. 3b). The degree of improvement depends on the choice of
entropic regularization parameter and the strategy for getting
complete lineage annotations (Figs. 3c, d, S3, S4 in23), but there is
no entropy choice for which LineageOT performs significantly
worse. The increased accuracy comes from effectively using the
information in the lineage tree.

Lineage-informed trajectory inference outperforms state-based
trajectory inference on complex trajectories. We next explored
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the performance of LineageOT on simulated data, with the goal of
characterizing some of the settings where lineage-based trajectory
inference can significantly outperform state-based trajectory
inference. We found that lineage information is most helpful in
resolving convergent trajectories, where similar cells arise from
different ancestral states. Moreover, we found that LineageOT is
robust to imperfections in the lineage tree. Below we present four
simulations illustrating these concepts.

In each simulation, we generate an embedded lineage tree by
allowing an initial population of cells to follow a vector field with
diffusion and also to divide (Methods 8). Each cell has a lineage
barcode that randomly mutates and is inherited by the cell’s
descendants. We sample populations of cells at two time points,
compute couplings with Waddington-OT and LineageOT, and
compare to the ground-truth coupling from the simulation, using
the ancestor and descendant prediction errors we described
above. We also test the robustness of LineageOT by giving the
algorithm either (a) a lineage tree constructed from the simulated
barcodes using a heuristic algorithm called neighbor-joining27

(Methods 5) or (b) the ground-truth lineage tree. For comparison,
in the supplement we present the results of applying PAGA10a
well-regarded trajectory inference method that only uses state
information, to our simulated data.

Our first example, Simulation 1, is a simple bifurcation of a
single progenitor cell type into two descendant cell types (Fig. 4a).
This is one of the simplest trajectory structures to recover and one
where ordinary state-based inference already does well. Given a
sufficiently accurate tree, LineageOT performs marginally better
at ancestor prediction (Fig. 4b) and marginally worse at
descendant prediction (Fig. 4c). In hindsight, this is not
surprising. The lineage tree, rather than providing substantial
new information, just reaffirms the natural assumption that cells
in the same cluster are a bit more closely related.

Inferring whether a single differentiated cell type came from
multiple lineages is a common problem33 and one of the standard
goals of lineage tracing methods22. These convergent trajectories
are difficult for state-based trajectory inference, which cannot
distinguish the different ancestries of cells with similar measured
states. In Simulation 2, we simulate two clusters that each split;
after the split, two of the resulting clusters merge together
(Fig. 4d). Now lineage information is important: LineageOT can
separate cells in the convergent cluster by ancestry, while state-
based methods cannot. Incorporating lineage information leads to
substantially better prediction of ancestors than purely state-
based optimal transport (Fig. 4e), without undermining descen-
dant prediction (Fig. 4f).

We included two unmerged clusters at the late time in
Simulation 2 to illustrate how lineage information can resolve
ambiguity: cells whose ancestry is unclear from expression alone
should be coupled similarly to their close relatives in the lineage
tree with unambiguous ancestry. The existence of separate
unconverged clusters is not, however, necessary for separating
cells by ancestry. In Simulation 3, we show two clusters that
converge to a single final cell type (Fig. 4g). The distributions of
descendants from each early cluster overlap too much for state-
based methods like Waddington-OT to accurately infer ancestors.
Despite the overlap, the descendant distributions remain
sufficiently distinct for LineageOT to have nearly perfect assign-
ment of late cells to early clusters, and thereby low ancestor error
(Fig. 4h) with no loss of accuracy in descendant prediction
(Fig. 4i).

Our fourth example illustrates that lineage information can go
beyond resolving ambiguity and even correct mistakes from state-
based inference. For Simulation 4, we consider two clusters that
split so that two of the late-time clusters end up closer to early
cells that are not their ancestors (Fig. 4k). Optimal transport fails

in this case, mapping entire clusters to the wrong set of ancestors.
The failure is not due to any mistake in the algorithm: any
method that uses only state information could not correctly infer
the trajectory from this data, as shown for PAGA in Fig. S823.
LineageOT, on the other hand, can use the shared ancestry to
match clusters correctly, leading to significantly better prediction
of both ancestors and descendants (Fig. 4l–m).

In Simulation 4, increasing the temporal resolution by
sampling the system in between the two time points could allow
optimal transport or other state-based methods to accurately
describe the trajectories. In real biological systems with this type
of curled trajectory, lineage tracing may limit the need for many
expensively-sampled time points, though it does add other costs
like integrating the barcode editing technology into the genome.
For convergent trajectories like Simulation 2 or 3, adding more
time points without lineage information would not be enough: in
that setting, lineage tracing is necessary for correct trajectory
inference.

Discussion
Analyzing the trajectories cells traverse during differentiation is
crucial for understanding development and for harnessing the
potential of stem cell therapies. However, general-purpose tech-
niques for directly measuring trajectories of cellular differentia-
tion remain elusive. In certain biological contexts, such as
hematopoeisis13 where cells are grown in suspension, daughter
cells can be split and measured at different time points. These
direct connections between time points allow for improved tra-
jectory inference34. Such specialized techniques, however, are not
applicable to systems where cells are adherent, because splitting
daughter cells would perturb the developmental process. Trajec-
tory inference from independent snapshots remains the most
promising approach for understanding the genetic and epigenetic
forces driving development in diverse biological contexts.

We present a general-purpose method for inferring develop-
mental trajectories from scRNA-seq time courses equipped with
lineage information each time point. Lineage tracing techniques
are progressing from early demonstrations of the technology30,31

through elaboration of the potential value of the data22 and on
toward future widespread use. We envision that scRNA-lineage
time courses will soon replace traditional scRNA-seq time cour-
ses, because adding lineage information enables a far more
powerful form of trajectory inference.

We demonstrate that LineageOT outperforms Waddington-OT
on a time-course of C. elegans development (Figs. 3, S3, S4 in23),
and we illustrate through simulation that LineageOT can accu-
rately recover complex trajectory structures that are impossible to
recover from measurements of cell state alone (Fig. 4d–i). Effec-
tively using the lineage information experimentally accessible
within each time point intuitively ought to improve inference
accuracy across time points. LineageOT realizes that implicit
potential.

Lineage trees are particularly helpful for untangling convergent
trajectories, where cells arrive at a particular state from multiple
ancestries. This occurs, for example, in the development of the
lymphatic endothelium33, macrophage development from
embryonic or monocyte-derived progenitors35, mouse gut
endoderm36, and several tissues in C. elegans (20, Figs. 4a, S8,
S17). While finer temporal resolution might allow state-based
trajectory inference to succeed in some of these examples, Line-
ageOT can achieve higher accuracy with fewer time points. The
couplings we recover enable a direct, rigorous approach to answer
biological questions about ancestor-descendant relation in
developmental processes and predict regulators that govern those
transitions, as demonstrated by11.
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Our algorithm is derived from a flexible mathematical frame-
work that can be adapted to include future methodological
advances. Most immediately, novel methods for inferring a
lineage tree from any kind of experiment, or from prior knowl-
edge, can be used directly in the LineageOT pipeline. To leverage
this to its fullest extent, one could incorporate an explicit quan-
tification of uncertainty in the lineage tree. Furthermore, there
could be significant advantages to simultaneously inferring the
lineage tree together with the trajectories, rather than first fitting
the tree and subsequently recovering a coupling. Finally, it might
be possible to incorporate additional information, beyond cell
state and cell lineage. For example, measurements of RNA
velocity37 could be incorporated into our framework of estimat-
ing ancestor or descendant states and then coupling across time
points. As with LineageOT, the resulting algorithm would apply
optimal transport with a modified cost function.

All of these improvements would build on the key observation
that lineage tracing allows us to share information across closely
related cells. State-based trajectory inference relies exclusively on
the assumption that each descendant considered individually
should be close in state to its ancestor. As we have demonstrated,
expanding that assumption to consider related cells together
allows for more powerful trajectory inference that can recover
more complicated trajectories without relying on the restrictive
assumption that cells with similar states having similar ancestry.
LineageOT analyses of future cell state and lineage time courses
collected with current technologies will provide a more accurate
window on the intricate processes of development.

Methods
Developmental stochastic processes and state couplings. A developmental
stochastic process is a mathematical description of a population of cells developing
over time, where a single cell is represented by a point in a high-dimensional vector
space X of cellular states and a population of cells is represented by a probability
distribution P on X . In deriving our method, we do not assume any particular
state space: a vector x 2 X could contain a cell’s raw gene expression, coordinates
from principal components analysis of expression as used in our C. elegans case
study, or other state measurements like chromatin accessibility.

When we profile the population with scRNA-seq, we model the resulting data as
a set of random samples from P. In the context of development, a time-varying
distribution Pt represents the cells alive at time t, and the data from a scRNA-seq
time-course consists of samples from Pt collected at various times t1, t2,…, tN. The
crucial point is that the random samples from different time points are independent
in the probabilistic sense, because each time point is typically collected from a
separate biological sample.

This brings us to the second key concept of a developmental stochastic process:
the notion of a coupling connecting a pair of time points. We distinguish between
two kinds of couplings: state couplings (defined here) and lineage couplings
(defined in the next section). Intuitively, the state coupling connecting time t1 to t2
specifies relationships between ancestral states at t1 and descendant states at t2.
Mathematically, it is a joint probability distribution over pairs of cell states (x, y),
with x and y corresponding to cells alive at t1 and t2 respectively. Conditioning on
cell-state x at time t1 gives a distribution over possible descendant states y at time
t2. In other words, while Pt simply describes the states of cells that exist at each
time point, the state couplings specify the trajectories that give rise to the changes
we observe in the population. The state couplings contain information lost in a
scRNA-seq time-course: the measurements are destructive so we cannot
simultaneously measure the state of a cell and the state of its ancestors or
descendants.

Forward and backward lineage couplings. Even state couplings, however, still
omit some of the information from a specific experiment or realization of the
stochastic process. A cell j at time t2 has a true history, which may differ from the
average history of cells with state equal to yj. Lineage information makes it possible
to recover the history of j in particular. The history can again be described by a
coupling, this time thought of as a coupling of specific sampled cells rather than of
states. We name this a lineage-resolved coupling (or “lineage coupling” for short).

One reason the distinction matters is that our descriptions of cell state are
incomplete. Gene expression profiles, for example, are only one easily measured
part of the cell state. Cells with similar current gene expression but different history
could in principle differ in other aspects of their current state. Investigating that
possibility requires separating the cells by ancestry even when their current state
measurements are similar.

Above, we introduced a developmental stochastic process from the perspective
of time-dependent probability distributions Pt connected by state couplings. From
a complementary perspective, we can consider the time evolution of individual cells
rather than distributions.

Each cell state at time t is a point x(t) in the state space X . Over time, cells
follow some true path through X according to a stochastic differential equation
combining diffusion and drift:

dXt ¼ vðXtÞ dt þ
ffiffiffiffiffiffi
2D

p
dBt ð1Þ

where v denotes a velocity field and Bt denotes standard Brownian motion scaled
by the diffusion constant D. On short time scales, diffusion, which is Oð

ffiffiffiffiffiffi
d t

p
Þ,

dominates drift, which is O(dt).
In this model, an experiment samples a set of cell paths {xi(t)} from a

distribution P over the space of paths ½0; 1� ! X . Importantly, these paths are not
observed in full; we only see xi= xi(t1) for the one measurement time t1. In a time-
course experiment, in addition to measuring a set of cell states {xi} at time t1 we
also measure the states {yj} of a second set of identically prepared cells at time t2.

We then want to couple the early and late distributions in order to trace cells
forward and backward in time. As described above, a coupling γ is a joint
distribution over pairs; for a lineage coupling, these are pairs of cells (i, j) rather
than pairs of states (x, y). When {xi} and {yj} are discrete sets, as they are here, γ is a
matrix whose entries sum to 1. The true lineage coupling connects each cell j from
the late-time point to its unobserved ancestor at the early time point. Though that
true coupling is experimentally inaccessible, we can attempt to couple early or late
cells respectively to cells similar in state to their hypothetical descendants or true
ancestors.

The forward and backward questions are in principle different for lineage
couplings. We could seek either a coupling γF such that γFi;:, considered as a
distribution on the {yj}, is approximately the true distribution of the descendants of
cell i; or we could seek a coupling γB such that γB:;j , considered as a distribution on
the {xi}, is approximately the true distribution of the ancestors of cell j. For one cell,
that true ancestor distribution will be a single point mass.

Optimal transport as maximum-likelihood estimate. For both the forwards and
backwards problems, entropic optimal transport can be understood as the
maximum-likelihood coupling between an infinite population of cells started with
the distribution of {xi} and conditioned to end up with the distribution of {yj}. If the

likelihood of a cell at x ending at y is pðyjxÞ ¼ e�
cðx;yÞ
ϵ , maximizing the log-

likelihood log ðpðyjx; γÞÞ leads to
γML ¼ arg min

γ
∑
ij
γijcðxi; yjÞ � ϵHðγÞ ð2Þ

where HðγÞ ¼ �∑ijγijlog ðγijÞ is the entropy of γ. This is precisely the objective
function for optimal transport with cost c(x, y) and entropy parameter ϵ.

If the times t1 and t2 are sufficiently close together, the dynamics of x between t1 and
t2 are approximately purely diffusive, so that xðt2Þ � xðt1Þ � N ð0;Dðt2 � t1ÞIÞ.
This then translates to a quadratic optimal transport cost

cðxi; yjÞ ¼ k xiðt1Þ � yjðt1Þk2 ð3Þ
and entropy parameter

ϵ ¼ Dðt2 � t1Þ: ð4Þ
Because the likelihood is symmetric there is no difference between estimating forwards
and estimating backwards. Other assumptions about the dynamics of the cells, such as
might come from RNA velocity, could be incorporated here. Our goal with LineageOT
is to find an appropriate replacement for the likelihood using the lineage information
and use that as a cost for optimal transport.

Ancestor inference with lineage information. A complete lineage tree T for {yj}
encodes the time tj1 ;j2 of the most recent common ancestor of each pair of cells
fyj1 ; yj2 g. In terms of paths yj1 ðtÞ and yj2 ðtÞ of the cells, a common ancestor at time
tj1 ;j2 implies that

8t ≤ tj1 ;j2 ; yj1 ðtÞ ¼ yj2 ðtÞ: ð5Þ
This gives no direct information about the unknown {yj(t1)}; instead, it tells us

something about the correlations among {yj(t1)}. For LineageOT, we follow the
same maximum-likelihood derivation that leads to entropic optimal transport but
replace the distribution of x conditional on yj with the distribution of x conditional
on the full sample {yj} and the lineage tree T :

γlineage ¼ arg max
γ

log ðpðxjfyg; γ; T ÞÞ: ð6Þ
Like Waddington-OT, LineageOT is derived from the diffusive model where the

differences in cell state over time are Gaussian. In that model, conditional on the
connectivity of T the cell-state values at the nodes (i.e., the common ancestors of
the leaves) are sampled from a Gaussian graphical model on T . We can then
additionally condition on the observed values {yj(t2)} to find the posterior density
pðyjðt1Þjfykðt2Þg; T Þ. This density will be Gaussian with each mean �yjðt1Þ equal to a
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weighted average of the values {yj(t2)}. We then use an entropically regularized
optimal transport coupling between fyjðt1Þg and {xi(t1)} to approximate the
backwards coupling γB.

Specifically, LineageOT implements the following procedure:

1. Fit a lineage tree estimate T̂ for {yj(t2)} including the estimated time of
division of each most recent common ancestor, for example via neighbor
joining on CRISPR barcodes.

2. Add nodes {yj(t1)} for the ancestor of each time t2 cell at time t1 to T̂ . Some
cells may share an ancestor here.

3. Pick a reference cell y0(t2). The difference in state of other nodes of T̂ with
respect to this reference (i.e., yv− y0(t2)) is assumed to be normally
distributed with mean zero; the precision matrix has entries

Λuv ¼ 1
Djtu � tvj

1 ðu; vÞ 2 T̂
h i

: ð7Þ
4. Condition on the values yj(t2) for the set O of observed nodes. The

conditional means for yv− y0(t2) in the set U ¼ Oc of unobserved nodes
can then be found using the appropriately truncated precision matrix: for
each gene g, with 1 the vector of jOj ones,

μgU ¼ Λ�1
UUΛUOðygO � yg01Þ: ð8Þ

5. Compute the entropic optimal transport coupling between {xi} and {yj} with
cost

cði; jÞ ¼
k xi � μyjðt1Þk

2

σ2yjðt1 Þ
; ð9Þ

where μyjðt1 Þ and σ2yjðt1 Þ are the conditional mean and variance respectively
for the ancestor of each t2 cell at time t1.

In practice, despite being designed for ancestor prediction rather than
descendant prediction, LineageOT outperforms entropic optimal transport on both
tasks for all but the simplest trajectories.

Fitting a lineage tree. To apply LineageOT, we need to infer a lineage tree that will
define the structural equation model. We do not optimize this step, instead relying
on a heuristic algorithm called neighbor joining27. Neighbor joining starts from
pairwise lineage distance estimates, which can be estimated in CRISPR-based
barcoding approaches using the Hamming distances between observed barcodes30.
The fitted tree will not be perfect, and indeed simulations with currently plausible
experimental parameters find significant errors in the inferred tree topology38. As
our own simulations demonstrate, however, an imperfectly inferred tree can still
substantially improve trajectory inference. Moreover, the source of the tree does
not matter: a lineage tree based on detailed prior biological knowledge, as is
available for C. elegans, can be used directly in LineageOT.

For LineageOT, we need not only the tree topology but also the time elapsed along
each edge of the tree. The raw lineage distances computed from Hamming distances,
however, give very noisy estimates of the edge times. We therefore correct the
distances using the fact that all cells were sampled at the same time; this means that all
leaves of the tree must have the same total distance to the root. Minimizing the mean
squared error to the Hamming distance estimates subject to this constraint is a
quadratic program that can be solved with standard convex optimization techniques
and significantly improves the estimated lineage distances (Fig. S923).

Error metrics. While we only produce one estimated coupling for both ancestor
and descendant prediction, we separate out the two questions in evaluation. Given
a true coupling γ*, we define the descendant prediction error LDðγÞ for a fitted
coupling γ with the same marginal over {xi} as the mean squared optimal transport
distance between γi,: and γ�i;: considered as distributions over {yj}:

LDðγÞ ¼ ∑
i
W2

2 γ�i;:; γi;:
� �

ð10Þ

where W2(μ, ν) denotes the optimal transport distance between distributions μ and
ν with quadratic cost, also called the Wasserstein-2 distance. Symmetrically, we
define the ancestor prediction error LAðγÞ for a fitted coupling γ with the same
marginal over {yj} as the mean squared optimal transport distance between γ:,j and
γ�:;j considered as distributions over {xi}:

LAðγÞ ¼ ∑
j
W2

2 γ�:;j; γ:;j
� �

: ð11Þ

C. elegans ground truth and growth rates. Our ground-truth coupling γ* for the
C. elegans time-course is the forward coupling based on the lineage labels: we set
γ�ij ¼ ðjfxigjnd;iÞ�1 if i is an ancestor of j and γ�ij ¼ 0 otherwise, where nd,i is the
number of descendants of cell i in {j}. This forward coupling has a uniform
marginal over {xi} but not over {yj}. For simplicity, rather than using soft marginal
constraints with estimated growth rates as Waddington-OT does, we use the true
marginals of γ* for all fitted couplings. Knowledge of the true marginals should
help Waddington-OT and LineageOT approximately equally without significantly
affecting the comparison between them.

Simulations. For our simulations, we construct a vector field to recreate a
biologically plausible trajectory structure. Cells follow the vector field with
diffusion and occasional cell division; the time between cell divisions is nearly
constant, with normally distributed variability with a small variance (so that all
sampled cell lifetimes are positive). Changing this variance in cell division times
or setting it to 0 does not significantly affect our results. Meaningful dynamics
occur in either two dimensions (for Simulations 1, 2, and 3) or three dimensions
(for Simulation 4). The vector field is always constant in the first dimension,
making x1 a proxy for time since the start of the simulation. In the remaining
nontrivial one or two dimensions, we set the vector field to be the negative
gradient of a potential with minima at locations we would like to have clusters,
with the minima changing with x1. We simulate in three dimensions in all cases;
for Simulations 1, 2, and 3, in the third dimension cells diffuse with no mean
velocity. Thus, for example, the simple bifurcation of Simulation 1 follows the
flow field

vðxÞ ¼
v1ðxÞ
v2ðxÞ
v3ðxÞ

0
B@

1
CA ¼

1

�x32 þ x1x2
0

0
B@

1
CA: ð12Þ

Initially, with x1 < 0, x2= 0 is the only stable value of x2; later, with x1 > 0, there
are two stable states x2 ¼ ±

ffiffiffiffiffi
x1

p
. For the remaining simulations, which involve

more complex piecewise-smooth flow fields, we refer readers to our code:
https://github.com/aforr/LineageOT.

Each cell has a lineage barcode that randomly mutates and is inherited by the
cell’s descendants. The global mutation rate r is set so that the expected proportion
of sites in a barcode of length ℓ that are unmutated at the time of sampling t2, equal

to e�
rt2
‘ , is close to 0.5 and so relatively far from both 0 and 1. The rate is then

neither so slow that little lineage information is recorded so fast that barcodes are
saturated before the sampling time. This choice was inspired by similar numbers in
experimental data from30.

For each vector field, we simulate a single embedded lineage tree measured at
two time points and compute the couplings inferred by Waddington-OT,
LineageOT given the true lineage tree, and LineageOT given a lineage tree fitted to
the simulated barcodes. Because the simulated division rates are uniform across
cells, we set the marginals for each fitted coupling to be uniform rather than
inputting the true marginals as we did for the C. elegans evaluations. The fitted
couplings are compared to the true coupling with the same ancestor and
descendant prediction errors we used for C. elegans.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The C. elegans data is available on GEO with accession code GSE12695439.

Code availability
A Python package implementing LineageOT and all simulations is available at https://
github.com/aforr/LineageOT with documentation at https://lineageot.readthedocs.io40.
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