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Reciprocal and unidirectional 
scattering of parity-time symmetric 
structures
L. Jin1, X. Z. Zhang2, G. Zhang1 & Z. Song1

Parity-time PT( ) symmetry is of great interest. The reciprocal and unidirectional features are intriguing 
besides the PT  symmetry phase transition. Recently, the reciprocal transmission, unidirectional 
reflectionless and invisibility are intensively studied. Here, we show the reciprocal reflection/
transmission in PT -symmetric system is closely related to the type of PT  symmetry, that is, the axial 
(reflection) PT  symmetry leads to reciprocal reflection (transmission). The results are further 
elucidated by studying the scattering of rhombic ring form coupled resonators with enclosed synthetic 
magnetic flux. The nonreciprocal phase shift induced by the magnetic flux and gain/loss break the parity 
( )  and time-reversal ( ) symmetry but keep the parity-time PT( ) symmetry. The reciprocal reflection 
(transmission) and unidirectional transmission (reflection) are found in the axial (reflection) PT
-symmetric ring centre. The explorations of symmetry and asymmetry from PT  symmetry may shed 
light on novel one-way optical devices and application of PT -symmetric metamaterials.

Parity-time ( )PT  symmetric quantum system may possess entirely real spectrum although being 
non-Hermitian1–13. PT  symmetric system is invariant under the combined PT  operator in the presence of bal-
anced gain and loss. In the past decade, PT -symmetric system has attracted tremendous interests as it possesses 
unintuitive but intriguing implications. Due to the similarity between the paraxial wave equation describing 
spatial light wave propagation and the temporal Schrödinger equation for quantum system, the complex refrac-
tive index distribution satisfying n*(x) =  n(− x) mimics PT -symmetric potentials V*(x) =  V(− x), PT -symmetric 
systems are proposed and realized in coupled optical waveguides through index guiding and a inclusion of bal-
anced gain and loss regions14–17. A number of novel and non-trivial phenomena are found, such as power oscilla-
tion17, coherent perfect absorbers18–20, nonreciprocal light propagation21 in coupled waveguides, and recently the 
PT -symmetric microcavity lasing22–24 and gain induced large optical nonlinear25–29 in coupled resonators.

The spectral singularity30–36 and invisibility37–43 in PT -symmetric system are hot topics, where reciprocal 
transmission and unidirectional reflectionless in PT -symmetric metamaterial are intriguing features for novel 
optical devises. These devices are useful for light transport, control and manipulation44–47. The symmetric scatter-
ing properties are usually attributed to certain internal symmetry of a scattering centre. For instance, the parity 
( )  symmetry, or time-reversal ( ) symmetry of a scattering centre leads to symmetric reflection and transmis-
sion48 ( -symmetric system without unequal tunnelling amplitude is Hermitian, otherwise, only reciprocal 
reflection or transmission holds49). Here, we report reciprocal reflection, similar as reciprocal transmission, are 
both related to the PT  symmetry of a scattering centre: The axial (refection) PT  symmetry, with respect to the 
input and output channels, induces reciprocal reflection (transmission). Recent efforts on photonic 
Aharonov-Bohm effect enable photons behaving like electrons in magnetic field. Effective magnetic field for 
photons can be introduced in coupled waveguides by bending the waveguides50, periodically modulating the 
refractive index51, and the photon-phonon interactions52; or in coupled resonators by magneto-optical effect53, 
dynamic modulation54, and off-resonance coupling paths imbalance55,56. In this work, we focus on the PT
-symmetric structure with balanced gain and loss threading by synthetic magnetic flux, where photons feel a 
nonreciprocal tunnelling phase between neighbour resonators. The nonreciprocal tunnellings and balanced gain 
and loss break the   and   symmetry but keep the PT  symmetry of the scattering centre. The axial (reflection) 
PT  symmetry will lead to reciprocal reflection (transmission) and unidirectional transmission (reflection). Our 
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findings provide new insights of PT  symmetry and the symmetric/asymmetric scattering, which are instrumen-
tal for the applications of PT -symmetric metamaterial for light transport and one-way optical devises.

Results
Reciprocal and unidirectional scattering of PT -symmetric structures. The symmetric scattering 
properties of a PT -symmetric structure are closely related to the classification of PT -symmetry. The parity oper-
ator   is the spatial reflection operator,   is the time-reversal operator. In Fig. 1a,b, we schematically show two 
types of PT  symmetry. The Hamiltonian of the scattering centre is PT -invariant, i.e., ( ) ( ) =−H Hc

1
cPT PT . The 

input and output leads are connected to the PT -symmetric scattering centre at sites L and R. If the connection 
sites under the parity operation satisfies   =−L L1 , =−R R1  , the system is called axial PT  symmetric 
(Fig. 1a). If the connection sites under the parity operation satisfies   =−L R1 ,   =−R L1 , the system is called 
reflection PT  symmetric (Fig. 1b). The red plane indicates the up-to-down (left-to-right) spatial reflection corre-
spondence of axial (reflection) PT  symmetry.

In order to address the reciprocal and unidirectional scattering behavior. We study the reflection and trans-
mission of a scattering centre for the left side and right side inputs, respectively. The Hamiltonian of the scattering 
system is H =  HL +  Hc +  HR with HL (HR) being the Hamiltonian of the left (right) lead. We denote the two scat-
tering states as ψ k

L  and ψ k
R  for the input with wave vector k. The forward going and backward going waves are in 

form of ±e ikj. Combining with the reflection and transmission coefficient, we assume the scattering state wave 
function on the leads (not at the spectral singularities, see Methods) of left side input as,

ψ ( ) =
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where rL and tL represent the reflection and transmission coefficients for the left side input with wave vector k. 
Similarly, the wave function on the leads of right side input is in form of

ψ ( ) =
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where rR and tR represent the reflection and transmission coefficients for the right side input with wave vector k.

Reciprocal reflection under axial PT  symmetry. As shown in Fig. 1a, this type of PT -symmetric scat-
tering centres have connection sites under parity operation satisfying   =−L L1 , =−R R1  . In the axial PT
-symmetric configuration, the PT  symmetry is defined as PT PT( ) ( ) =−H HL

1
L, ( ) ( ) =−H HR

1
RPT PT  in the 

leads, and as PT PT( ) ( ) =−H Hc
1

c in the centre. The whole scattering system is axial PT -symmetric with respect 
to the leads. The axial PT  symmetry results in symmetric relations on the scattering coefficients as (see 
Supplementary Information Note 1 for details),

(b)

(a) (c)

(d)

A
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A
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1− 1

Figure 1. The type of PT  symmetry. Two semi-infinite input and output leads (solid grey) are connected to 
the PT -symmetric structures (black sphere) at sites L and R (yellow circle). (a) The axial PT  symmetry, defined 
as self-correspondence of L, R under parity operation. (b) The reflection PT  symmetry, defined as reflection-
correspondence of L, R under parity operation. The axial (c) and reflection (d) PT -symmetric rhombic ring 
configurations with enclosed magnetic flux Φ  are schematically illustrated. The PT  symmetry axes are in dash 
dotted red. The red (green) site represents the gain (loss).
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R L
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2

L R

From equations (3,4), we notice the reflection probabilities for the left and right side inputs are the same, i.e.,

= . ( )r r 5L
2

R
2

In other words, the axial PT  symmetry leads to the reciprocal reflection. Notice that we have reciprocal reflec-
tion = =r r 1L

2
R

2  at any transmission zero tL,R =  0, where one-way pass through is possible. 
Furthermore,considering the waves with vectors k and − k, the reflection and transmission coefficients further 
satisfy (− ) = ( )⁎r k r kL L , (− ) = ( )⁎t k t kL L , (− ) = ( )⁎r k r kR R , and (− ) = ( )⁎t k t kR R .

Reciprocal transmission under reflection PT  symmetry. As shown in Fig. 1b, this type of PT
-symmetric scattering centres have connection sites under parity operation satisfying   =−L R1 , =−R L1  . 
In the reflection PT -symmetric configuration, the PT  symmetry is defined as ( ) ( ) =−H HL

1
RPT PT , 

( ) ( ) =−H HR
1

LPT PT  in the leads, and as ( ) ( ) =−H Hc
1

cPT PT  in the centre. The whole scattering system is 
reflection PT -symmetric with respect to the leads. The reflection PT  symmetry results in symmetric relations on 
the scattering coefficients as (see Supplementary Information Note 2 for details),

+ = , ( )⁎t r r 1 6L
2

R L
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2

L R

From equations (6,7), we notice the transmission probabilities for the left side and right side inputs are the same, 
i.e.,

= . ( )t t 8L
2

R
2

This indicates the reflection PT  symmetry leads to the reciprocal transmission, as observed in Bragg gratings 
and other PT -symmetric structures45–47. Notice that we have reciprocal transmission = =t t 1L

2
R

2  at any 
reflection zero rL,R =  0, where unidirectional reflectionless is possible37–43. Furthermore, considering the waves 
with vectors k and − k, the reflection and transmission coefficients further satisfy (− ) = ( )⁎r k r kL R , 
(− ) = ( )⁎t k t kL R , (− ) = ( )⁎r k r kR L , and (− ) = ( )⁎t k t kR L .

We show that in the present of PT  symmetry, the reciprocal reflection or transmission in a scattering centre 
is protected when the axial or reflection PT  symmetry holds even though the   and   symmetry are absent. 
Moreover, PT  symmetry structure may exhibit unidirectional scattering behavior.

PT -symmetric rhombic ring structures. We use a rhombic ring structure (Fig. 1c,d) to elucidate the 
results. The scattering centre encloses with an effective magnetic flux Φ, photons moving along the rhombic ring 
structure in clockwise (counterclockwise) direction will acquire an additional direction-dependent phase factor 
+ Φe i  ( )− Φe i , thus photons tunnelling is nonreciprocal except when πΦ = n , ∈n . This is an effective photon 

Aharonov-Bohm effect creating by synthetic magnetic field50–56. The phase factor ± Φe i  is an analytical function of 
Φ with period of 2π, it is sufficient to understand the influence of magnetic flux on the scattering by studying Φ in 
the region π, )[0 2 . To realize a synthetic magnetic field, two ring resonators are coupled through an auxiliary 
off-resonant ring resonator. The auxiliary resonator introduces optical paths imbalance when coupling to two 
primary resonators, the auxiliary resonator can be effectively reduced and create a coupling phase factor between 
two primary resonators. The coupled resonators under synthesized magnetic field is described by a magnetic 
tight-binding Hamiltonian55,56,

= − ( + + + ) + . . , ( )φ
− −

† † † †H e a a a a a a a a h c 9i
A A B B0 1 1 1 1

where φ =  Φ /4 is a nonreciprocal phase shift induced by the magnetic flux in the tunnelling constant. In Fig. 1c, 
the Hamiltonian of the scattering centre is γ γ= − +† †H H i a a i a aA A B Bc 0 , where γ is the gain/loss rate. The bal-
anced gain and loss are the origin of the non-Hermiticity realized in the optical systems14–17,23–27. The configura-
tion is axial PT -symmetric with the parity operator acting on the rhombic ring sites defined as (− ) = −−1 11  , 
  =−A B1 ,  =−1 11  ,  =−B A1  .  In Fig.   1d,  the Hamiltonian of the scattering centre is 

γ γ= + −− −
† †H H i a a i a ac 0 1 1 1 1, the parity operator   is defined as (− ) =−1 11  , =−A A1  ,   = −−1 11 , 

  =−B B1 , and the configuration is reflection PT -symmetric. In the system, the magnetic flux is inverted 
meanwhile the gain and loss are switched under the   or   operation. However, the system is invariant under the 
combined PT  operator, i.e., the presence of non-trivial magnetic flux as well as balanced gain and loss both break 
the   and   symmetry but keep the PT  symmetry of the system.

The scattering centre is actually a two-arm Aharonov-Bohm interferometer. Light wave propagates through 
two pathways (A and B) between the connection sites − 1, 1 and interfere with each other. The interference gen-
erates the output which varies as the enclosed magnetic flux. The effective magnetic field is gauge invariant and 
the magnetic flux acts globally, thus the reflection and transmission are not affected by the nonreciprocal phase 
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distribution in the tunnellings for fixed magnetic flux. In the following, we discuss the reflection and transmission 
of the PT -symmetric rhombic ring structures in details.

The reflection and transmission coefficients for the axial PT -symmetric rhombic ring structure (Fig. 1c) are 
calculated from the Schrödinger equations (see Methods), yielding

γ

γ
= =

+ − (Φ/ )

(Φ/ ) + −
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The reflection and transmission probabilities are functions of the magnetic flux Φ , gain/loss rate γ, and wave 
vector k. They satisfy γ γ(Φ, , ) = (Φ, , )r k r kL

2
R

2 (see Fig. 2a,d), γ γ(Φ, , ) = (−Φ, , )t k t kL
2

R
2 (see 

Fig. 2b,c), and γ γ(Φ, , ) = (Φ, − , )t k t kL
2

R
2 (see Fig. 2e,f). In the absence of non-trivial magnetic flux Φ , or 

gain/loss γ, the system is -symmetric (reflection--symmetric for Φ  absence, i.e., left to right by mirror imag-
ing; inversion--symmetric for γ absence, i.e., left to right by 180° rotation), the reflection and transmission are 
both reciprocal. The non-trivial magnetic flux Φ  together with balanced gain and loss γ break the   symmetry. 
The symmetric transmission in the PT -symmetric system at π≠ /k 2 is broken, i.e., the transmission is unidirec-
tional at π≠ /k 2. Moreover, the axial PT  symmetry protects the symmetric reflection, therefore, the reflection 
is reciprocal but the transmission is unidirectional. The white curves in Fig. 2 show the reflection/transmission 
zeros. At γ = ± (Φ/ ) ≠k2 cos cot 2 0, we have tL =  0 or tR =  0 with total reflection =,r 1L R

2 . This indicates 
that we only have a non-zero transmission for the right side or left side input, thus the axial PT -symmetric rhom-
bic ring structure allows one-way pass through.

Photons circle in the scattering centre either in a clockwise direction or in a counterclockwise direction, we 
schematically illustrate the two pathways in Supplementary Fig. 1. The phase difference between two pathways 
affects the interference in the scattering centre, thus the transmission varies as the effective magnetic flux induced 
phase difference. The phase difference between clockwise direction and counterclockwise direction of transmis-
sion pathways is Φ  for the left side input (Supplementary Fig. 1c) or − Φ  for the right side input (Supplementary 
Fig. 1d). The transmission pathways are not equivalent in the presence of gain/loss, the interference of phase dif-
ference being Φ  is different from the interference of phase difference being − Φ . Therefore, the unidirectional 
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Figure 2. Reciprocal reflection and unidirectional transmission under axial PT  symmetry. (a–c) The 
reflection and transmission probabilities ,rL R

2, tL
2, tR

2 at γ =  1/2 as functions of Φ  and k. (d–f) The reflection 
and transmission probabilities ,rL R

2, tL
2, tR

2 at Φ  =  π/2 as functions of γ and k. The insert in (a) schematically 
illustrates the axial PT -symmetric rhombic ring structure. The white curves are the reflection and transmission 
zeros. At k =  π/2 and Φ  =  0, 2π, the reflections in (a) are 1, the transmissions in (b,c) are 0.
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transmission is enabled in the presence of nonreciprocal tunneling phase factor ( ≠ )+ Φ − Φe ei i  attributed to 
non-trivial magnetic flux (Φ  ≠ nπ, ∈n ).

In Fig. 3, we plot the reflection and transmission probabilities for an axial PT -symmetric rhombic ring struc-
ture (Fig. 1c) at several set parameters. Figure 3a is for a system with balanced gain and loss in the absence of 
magnetic flux, i.e., γ =  1/2, Φ  =  0. The gain/loss, being non-Hermitian, plays the role of on-site potentials and is 
the origin of unidirectional behavior. However, the presence of balanced gain and loss alone does not ensure 
unidirectional scattering. We notice the reflection and transmission in Fig. 3a are both reciprocal. The scattering 
is unitary even though the system is non-Hermitian (the balanced gain and loss of this rhombic ring structure 
γ ( − )† †i A A B B  can be reduced to an anti-Hermitian interaction γ ( ′ ′ + ′ ′)† †i A B B A  by composing 
′, ′ = ( ± )/A B B A 2 , and the non-Hermiticity of the scattering centre only arises from the anti-Hermitian 

interaction between ′, ′A B , which is proved to have unitary scattering57). By introducing magnetic flux to the 
system, the   and   symmetry is destroyed but the PT  symmetry holds. The interference between light waves 
from the loss arm and the gain arm generates unidirectional transmission for non-trivial magnetic flux. Figure 3b 
is for a system in the presence of non-trivial magnetic flux, i.e., γ =  1/2, Φ  =  π/2. The unidirectional transmission 
zero happens at π= (± / )k arccos 1 4 , i.e., at k ≈  0.420π, =t 0L

2 , ≈ .t 1 369R
2 ; at k ≈  0.580π, ≈ .t 1 369L

2 , 
=t 0R

2 , which indicates a one-way pass through. Figure 3c is for a Hermitian scattering centre in the presence 
of non-trivial magnetic flux, i.e., γ =  0, Φ  =  π/2, we have Hermitian scattering without unidirectional behavior.

In the rhombic ring structure under axial PT  symmetry (Fig. 1c), the reflection and transmission coefficients 
rL, rR, tL, tR diverge at the spectral singularities30. When k =  π/2, we have the reflection and transmission coeffi-
cients γ γ= = (Φ/ ) + / (Φ/ ) −r r [4 sin 2 ] [4 sin 2 ]L R

2 2 2 2  and γ γ= − = − (Φ/ )/ (Φ/ ) −t t i4 sin 2 [4 sin 2 ]L R
2 2 . 

We notice the spectral singularities are at γ = ± (Φ/ ) ≠2 sin 2 0. When Φ  =  π, we have the reflection and trans-
mission coefficients γ γ= = ( + )/( − )r r k k4 sin 4 sinL R

2 2 2 2  and γ γ= − = − /( − )t t i k k4 sin 4 sinL R
2 2 . 

The spectral singularities are at γ = ± ≠k2 sin 0. At the spectral singularities, the scattering states are in form 
of a self-sustained emission =<

−f ej
k ikj

0 , => f iej
k ikj

0  and a reflectionless absorption =<f ej
k ikj

0 , 
= ±>

−f iej
k ikj

0  (see Method)58. The transfer matrix of the scattering centre is = =M M 011 22 , = M i12 , 
= ±M i21  with matrix-element M22 vanishes59.

Now, we turn to discuss the rhombic ring structure under reflection PT  symmetry. The configuration is 
shown in Fig. 1d. Supplementary Fig. 2 schematically illustrates the pathways of photons. The connection sites are 
linked by two same pathways. In the presence of magnetic flux Φ , photons travelling from left lead to right lead in 
clockwise direction and counterclockwise direction acquire additional phases + Φ /2 and − Φ /2 in the two path-
ways (Supplementary Fig. 2c), respectively. The situation is unchanged for photons travelling inversely from right 
lead to left lead (Supplementary Fig. 2d). Equivalently, the upper and lower pathways are undistinguishable. 
Therefore, only relative phase difference Φ  matters (affecting the transmission coefficient) and the transmission is 
directionless. The reflection and transmission coefficients are calculated as (see Methods)

γ γ
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The reflection and transmission coefficients are functions of the magnetic flux Φ , gain/loss rate γ, and wave 
vector k. They satisfy γ γ(Φ, , ) = (Φ, , )t k t kL

2
R

2 and γ γ(Φ, , ) = (Φ, − , )r k r kL
2

R
2. Figure 4 implies a 

reciprocal transmission (Fig. 4a,d) and unidirectional reflection (Fig. 4b,c,e,f ). In this configuration, the 

(b)(a) (c)

2
Lt

2
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2
Rt

2
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Figure 3. Symmetric reflection under axial  PT  symmetry. (a) γ =  1/2, Φ  =  0, (b) γ =  1/2, Φ  =  π/2, (c) γ =  0, 
Φ  =  π/2.
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scattering with both reflection and transmission being reciprocal happens in the absence of gain and loss (γ =  0), 
that is when the system is -symmetric. In the presence of gain and loss (γ ≠ 0), the reflection probability is uni-
directional, but the reflection PT  symmetry protects the reciprocal transmission. Due to the presence of gain and 
loss, the probability of the total reflection and transmission after scattering is not unitary, being balanced gain and 
loss rate dependent. The white curves in Fig. 4 show the reflection and transmission zeros. At k =  π/2 and Φ  =  0, 

=,r 0L R
2 , =,t 1L R

2 . At the reflection zeros, | | =( )r 0L R
2 , | | ≠( )r 0R L

2 , and =,t 1L R
2 , the system exhibits unidi-

rectional reflectionless with reciprocal transmission.
In Fig. 5, we plot the reflection and transmission probabilities for a reflection PT -symmetric rhombic ring 

structure (Fig. 1d) at several set parameters. Figure 5a,b are for balanced gain and loss rate γ =  1/2 with two dif-
ferent magnetic flux Φ  =  0 and π/2, respectively. The reciprocal transmission and unidirectional reflection are 
clearly seen. In Fig. 5a, the unidirectional reflectionless happens at k ≈  0.27π, 0.73π, =r 0L

2 , = .r 0 437R
2 , 

= =t t 1L
2

R
2 . In Fig. 5b, the unidirectional reflectionless happens at k ≈  0.072π, 0.928π, =r 0L , = .r 1 899R , 

= =t t 1L
2

R
2 ; or at k ≈  0.310π, 0.690π, = .r 0 634L

2 , =r 0R
2 , = =t t 1L

2
R

2 . In the absence of gain and 
loss γ =  0, the reflection and axial PT -symmetric rhombic ring configurations reduce to an identical system. In 
Fig. 5c, we plots the reflection and transmission probabilities of a scattering centre in the absence of both gain and 
loss and magnetic flux, i.e., γ =  0, Φ  =  0, we observe Hermitian scattering behavior of reciprocal reflection and 
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2
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Figure 4. Reciprocal transmission and unidirectional reflection under reflection PT  symmetry. (a–c) The 
reflection and transmission probabilities ,tL R

2, rL
2, rR

2 at γ =  1/2 as functions of Φ  and k. (d–f) The reflection 
and transmission probabilities ,tL R

2, rL
2, rR

2 at Φ  =  π/2 as functions of γ and k. The insert in (a) schematically 
illustrates the reflection PT -symmetric rhombic ring structure. The white curves are the reflection and 
transmission zeros. At k =  π/2 and Φ  =  0, 2π, the transmissions in (a) are 1, the reflections in (b,c) are 0 as 
marked by black crosses.
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Figure 5. Symmetric transmission under reflection PT  symmetry. (a) γ =  1/2, Φ  =  0, (b) γ =  1/2, Φ  =  π/2, 
(c) γ =  0, Φ  =  0.
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transmission similar as γ =  0, Φ  =  π/2 shown in Fig. 3c. Notice that no spectral singularity emerges in the scatter-
ing of reflection PT -symmetric rhombic ring system. The system with Φ  =  0 leads to input with wave vector 
k =  π/2 both sides invisible that rL =  rR =  0, tL =  tR =  1 (black crosses in Fig. 4a–c); The system with Φ  ≠ 0 leads to 
input with vector k =  π/2 both sides opaque that rL =  rR =  1, tL =  tR =  0. For the input with wave vector k =  π/2, 
the scattering behavior is very sensitive to the magnetic flux.

Conclusion
We investigate the reciprocal and unidirectional scattering of PT -symmetric structures. We show an insightful 
understanding of the symmetric scattering behavior, that is associated with the type of PT  symmetry, defined as 
the PT  symmetry of the connection sites on the PT -symmetric structures. We find that the axial (reflection) PT  
symmetry leads to reciprocal reflection (transmission). The transmission (reflection) is unidirectional affected by 
the magnetic flux and gain/loss, this is because the magnetic flux induced nonreciprocal phase and the gain/loss 
break the   or   symmetry of the scattering centre. The results are further elucidated using a PT -symmetric 
rhombic ring structure with enclosed effective magnetic flux describing by tight-binding model. The physical 
realization of such scattering centre is possible in optical systems such as coupled waveguides array and coupled 
resonators. Notice that our conclusions are also applicable to the system with nonreciprocal tunnelling being 
unequal tunnelling amplitude60. We believe our findings may shed light on coherent light transport and would be 
useful for applications of quantum devices with inherent symmetry, in particular, for novel unidirectional optical 
device designs that not limited to optical diodes using synthetic PT -symmetric metamaterial.

Methods
Schrödinger equations. The input and output leads are described by two semi-infinite tight-binding chain. 
The left lead is = −∑ ( + )=−∞

−
− −

† †H a a a aj j j j jL
1

1 1 , the right lead is = −∑ ( + )=
∞

+ +
† †H a a a aj j j j jR 1 1 1 , where †aj  (aj) 

is the creation (annihilation) operator of the site j, the tunnelling between sites is uniform and set unity. The 
Hamiltonian of the scattering system is H =  HL +  Hc +  HR. The eigenstate of the scattering system is set 
ψ = ∑ + +, =−∞

+∞ † † †f a f a f avac vac vack
j j

k
j A

k
A B

k
BL R .

For the axial PT -symmetric configuration shown in Fig. 1c, the Hamiltonian of the scattering system is 
γ γ= − +† †H H i a a i a aA A B Bc 0 . The Schrödinger equations ψ ψ=, ,H Ek

k
k

L R L R  on the scattering centre yield four 
independent equations

− − − = , ( )φ φ
−

−
−f e f e f E f 16k i

A
k i

B
k

k
k

2 1

− − − = , ( )φ φ−f e f e f E f 17k i
A
k i

B
k

k
k

2 1

γ− − = ( + ) , ( )φ φ
−

−e f e f E i f 18i k i k
k A

k
1 1

γ− − = ( − ) , ( )φ φ−
−e f e f E i f 19i k i k

k B
k

1 1

For the reflection PT -symmetric configuration shown in Fig. 1d, the Hamiltonian of the scattering centre is 
γ γ= + −− −

† †H H i a a i a ac 0 1 1 1 1. Correspondingly, four independent equations from the Schrödinger equations 
ψ ψ=, ,H EL R

k
k L R

k  on the scattering centre are in form of

γ− − − = ( − ) , ( )φ φ
−

−
−f e f e f E i f 20k i

A
k i

B
k

k
k

2 1

γ− − − = ( + ) , ( )φ φ−f e f e f E i f 21k i
A
k i

B
k

k
k

2 1

− − = , ( )φ φ
−

−e f e f E f 22i k i k
k A

k
1 1

− − = , ( )φ φ−
−e f e f E f 23i k i k

k B
k

1 1

where φ =  Φ /4. The Schrödinger equations on the leads give the energy Ek =  − 2cosk for the input with wave 
vector k. Notice that k =  π/2 in the reflection PT -symmetric rhombic ring with Φ  =  2nπ ( ∈ )n  results in 
= −−f f1 1 and the transmissions are 1. Otherwise, k =  π/2 in system with πΦ ≠ n2  ( ∈ )n  leads to f−1 =  f1 =  0 

and the transmissions are 0.

Reflection and transmission coefficients. To calculate the reflection and transmission coefficients, we 
set the left side input wave functions equation (1) as

= + , ( )−
−f e r e 24k ik ik

2
2

L
2

= + , ( )−
−f e r e 25k ik ik

1 L
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= , ( )f t e 26k ik
1 L

= , ( )f t e 27k ik
2 L

2

and the right side input wave functions equation (2) as

= , ( )−f t e 28k ik
2 R

2

= , ( )−f t e 29k ik
1 R

= + , ( )−f e r e 30k ik ik
1 R

= + , ( )−f e r e 31k ik ik
2

2
R

2

Substituting −f
k

2, −f
k

1, f k
1 , f k

2  of equations (24–31) into equations (16–19) and eliminating fA
k, fB

k, we get equations of 
rL, tL, rR, tR for the axial PT -symmetric rhombic ring configuration. Through directly algebraic calculation and 
simplification, we obtain the reflection and transmission coefficients rL, tL, rR, tR as functions of k, Φ , γ given in equa-
tions (10–12). Using the same procedure, we get the reflection and transmission coefficients for the reflection PT
-symmetric rhombic ring configuration. After substituting −f

k
2, −f

k
1, f k

1 , f k
2  of equations (24–31) into equations (20–

23) and eliminating fA
k, fB

k, we get equations of rL, tL, rR, tR. Through directly algebraic calculation and simplification, 
we obtain the reflection and transmission coefficients rL, tL, rR, tR as functions of k, Φ , γ given in equations (13–15).

Scattering states at the spectral singularities. The scattering coefficients diverge at the spectral singu-
larities, to calculate the scattering states, we have the wave functions of equation  (1) replaced by 

= +<
−f A e B ej

k
k

ikj
k

ikj
0 , = +>

−f C e D ej
k

k
ikj

k
ikj

0 . Substituting −f
k

2, −f
k

1, f k
1 , f k

2  into equations (16–19) of the axial 
PT -symmetric rhombic ring configuration, we obtain the coefficients satisfying = A iDk k, = ±B iCk at the 
spectral singularities that i) k =  π/2, γ = ± (Φ/ ) ≠2 sin 2 0; and ii) Φ  =  π, γ = ± ≠k2 sin 0. These indicate 
the scattering states are a self-sustained emission and a reflectionless absorption.
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