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Introduction

Alzheimer’s disease (AD) is a progressive neurodegenera-
tive disorder characterized by the presence of extracellular 
amyloid plaques composed of amyloid-β (Aβ) surrounded 
by dystrophic neurites and neurofibrillary tangles. The dis-
covery that certain early-onset familial forms of AD may 
be caused by an enhanced production of Aβ peptides, led 
to the hypothesis that amyloidogenic Aβ is intimately 
involved in the AD pathogenic process [88]. Aβ is derived 
by proteolytic cleavage of the β-amyloid precursor protein 
(APP) [89].

Full‑length Aβ is a physiological peptide with a role 
in long‑term depression

As early as 1992, Haass and colleagues [30] reported 
the unexpected identification of full-length Aβ and the 
p3 fragment in media from cultures of primary cells and 
APP-transfected cell lines grown under normal conditions. 
In addition, using in vivo micro-dialysis in mice, Kang 
et al. [43] found that the amount of Aβ in interstitial fluid 
(ISF) correlated with wakefulness. ISF Aβ was assessed 
in Tg2576 mice at 3 months of age, several months earlier 
than initial deposition of Aβ. They found diurnal variation 
of ISF Aβ levels with significant increases (+75 %) during 

Abstract  Although N-truncated Aβ variants are known 
to be the main constituent of amyloid plaques in the brains 
of patients with Alzheimer’s disease, their potential as tar-
gets for pharmacological intervention has only recently 
been investigated. In the last few years, the Alzheimer field 
has experienced a paradigm shift with the ever increasing 
understanding that targeting amyloid plaques has not led to 
a successful immunotherapy. On the other hand, there can 
be no doubt that the amyloid cascade hypothesis is central 
to the etiology of Alzheimer’s disease, raising the question 
as to why it is apparently failing to translate into the clinic. 
In this review, we aim to refocus the amyloid hypothesis 
integrating N-truncated Aβ peptides based on mounting 
evidence that they may represent better targets than full-
length Aβ. In addition to Aβ peptides starting with an Asp 
at position 1, a variety of different N-truncated Aβ peptides 
have been identified starting with amino residue Ala-2, 
pyroglutamylated Glu-3, Phe-4, Arg-5, His-6, Asp-7, Ser-
8, Gly-9, Tyr-10 and pyroglutamylated Glu-11. Certain 
forms of N-truncated species are better correlates for early 
pathological changes found pre-symptomatically more 
often than others. There is also evidence that, together with 
full-length Aβ, they might be physiologically detectable 
and are naturally secreted by neurons. Others are known to 
form soluble aggregates, which have neurotoxic properties 
in transgenic mouse models. It has been clearly demon-
strated by several groups that some N-truncated Aβs domi-
nate full-length Aβ in the brains of Alzheimer’s patients. 
We try to address which of the N-truncated variants may be 
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the dark period compared to the light period. Despite fluc-
tuations in ISF, total tissue hippocampus homogenates lev-
els of Aβ, full-length APP, APP C-terminal fragments, Aβ1–

40 and Aβ1–42 were not significantly altered between dark 
and light periods. This indicates that the pool of ISF Aβ is 
likely to be regulated independently from total intracellu-
lar and membrane-associated Aβ. The amount of ISF Aβ 
also significantly increased during acute sleep deprivation 
and during infusion of orexin, a neurotransmitter regulat-
ing arousal and wakefulness, but decreased with infusion 
of an orexin receptor antagonist. Moreover, cerebrospinal 
fluid (CSF) levels of Aβ were studied in ten young healthy 
male volunteers via lumbar catheters over a 33 h period and 
illustrated clear evidence of diurnal fluctuation of Aβ in the 
CSF. Aβ levels increased throughout the day with a peak 
in the evening that decreased overnight. The group also 
reported that the APPswe/PS1ΔE9 mouse model of AD 
showed normal sleep–wake cycle and diurnal fluctuation in 
ISF Aβ in the brain before Aβ plaque formation [75].

A physiological effect of the observed diurnal variation 
of ISF Aβ could be the known overall increase in synap-
tic strength during the day and synaptic depression during 
periods of sleep [20, 24, 100]. These findings are corrobo-
rated by results showing that neuronal activity modulates 
the formation and secretion of Aβ peptides in hippocam-
pal slice cultures bearing neurons that overexpress APP. In 
addition, Aβ depressed excitatory synaptic transmission in 
neurons expressing APP, as well as nearby neurons that did 
not, leading to the assumption that activity-dependent mod-
ulation of endogenous Aβ production may normally partici-
pate in a negative feedback loop that could keep neuronal 
hyperactivity under control [42].

Long-term depression (LTD) represents an activity-
dependent reduction in the efficacy of neuronal synapses 
and has been described in a variety of neurons. It has been 
shown that Aβ is capable of regulating the amount of sur-
face NMDA-type glutamate receptors [92]. In addition, 
several parallels between LTD and Aβ-induced synaptic 
changes have been described. Aβ-induced synaptic depres-
sion partially mimicked metabotropic glutamate receptor 
LTD synaptic transmission. It has been hypothesized that 
this could be a normal physiological role of full-length Aβ 
[36]. Recent results suggest that conformational changes of 
the NMDA receptor (NMDAR), and not ion flow through 
the channel, are required for Aβ to produce synaptic 
depression and a switch in NMDAR composition [45].

It has been suggested that N-terminally truncated Aβ5–x 
peptides are preferentially formed by an alternative cleav-
age of APP involving caspase activity [67]. These N-trun-
cations were detected in Aβ deposits of sporadic and famil-
ial AD [29, 62, 63, 72, 90, 94]. Using mass spectrometry 
and Western blot analysis of sporadic AD and familial AD 
cases (M146V PS1 or KM670/671NL APP), Aβ5–40/42 was 

one of the detected N-truncated species. Regarding trans-
genic mouse lines, mass spectrometry of immunoprecipi-
tated Aβ peptides also provided evidence of the presence of 
Aβ5–42, e.g. in APP/PS1KI mice [11]. Our group detected 
Aβ5–42 peptides in the 5XFAD mouse model [110] and 
using immunohistochemistry in APP/PS1KI, 5XFAD and 
3xTG transgenic mouse models [29]. Interestingly, neither 
5XFAD nor APP/PS1KI showed any evidence for intraneu-
ronal Aβ5–x, which is in good agreement with the observa-
tion that this peptide is readily secreted [31]. One should 
note that all of the above-mentioned transgenic mouse 
models express the Swedish APP mutant prone to BACE 
cleavage at Asp-1 of Aβ. It is therefore unclear whether or 
not the Arg-5 truncation may possess neurotoxic proper-
ties, a matter of concern for therapeutic strategies involving 
BACE inhibitor treatment.

Potential enzymatic activities leading to N‑terminal 
truncations

The precise enzymatic activities leading to the generation 
of the diverse N-terminally truncated Aβ peptides are in 
most cases not known in detail; however, several candidates 
have been proposed (Fig. 1; Table 1).

Aβ molecules secreted by MDCK cells exhibit extensive 
amino-terminal heterogeneity with >80  % of molecules 
containing an amino-terminus at the Arg-5 residue and only 
a minority of fragments initiating at Asp-1 [31]. In contrast 
to the results obtained in cells expressing wild-type APP, 
the cells expressing APP-695swe showed that the majority 
of Aβ peptides began at Asp-1, while only ~10 % began at 
Arg-5. The results indicated that Asp-1 is a preferred site 
for the β-secretase cleavage of APP-695swe [54].

N-truncation of Aβ3–40 and Aβ5–40 is facilitated by 
reduced endocytosis of APP in vitro, a requirement for 
BACE cleavage [12]. The generation of Aβ was analyzed 
in human embryonic kidney (HEK) 293 cell lines sta-
bly expressing wild type and non-internalizing mutants 
of human APP [12]. APP lacking the entire cytoplas-
mic domain or with both tyrosine residues of the motif 
GYENPTY mutated to Ala showed at least fivefold reduced 
endocytosis. In these cell lines, the production of Aβ1–40 
was substantially reduced but accompanied by the appear-
ance of two prominent alternative Aβ peptides differing 
at the amino termini which were identified as Aβ3–40 and 
Aβ5–40.

Portelius et  al. [73] studied the Chinese hamster ovary 
cell line 7PA2 stably transfected with the 751 amino acid 
APP isoform harboring mutant V717F. Treatment of the 
cells with a BACE1 inhibitor decreased the abundance of 
the Aβ monomer band and resulted in lower levels of Aβ1–

40, Aβ1–42 and secreted APP. Western blot bands thought to 
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represent oligomers of Aβ increased in response to BACE1 
inhibition. This increase was paralleled by the emergence 
of N-terminally truncated Aβ5–40 in particular. Treatment of 
cell cultures and dogs with BACE1 inhibitors significantly 
reduced Aβ peptides starting at Asp-1, while amino-termi-
nally truncated variants such as Aβ5–40 increased [59, 83, 
94]. Based on data from treatment of human neuronal and 
non-neuronal cells expressing wild-type APP with inhibi-
tors of BACE and α-secretase in vitro, it has been proposed 
that Aβ5–40/42 might be derived from alternative β-cleavage 
of APP by α-secretase-like protease(s) [94]. One has to 
consider though that the expression of a mutation within 
the APP gene and/or the cell types used can influence the 
variant and quality of the N-terminally truncated Aβ.

Incubation of HEK293 cells overexpressing APP con-
taining the Swedish mutation with the aminopeptidase 
inhibitor amastatin revealed significantly increased levels 
of full-length Aβ in the supernatant. This led to the iden-
tification of aminopeptidase A as a candidate enzyme 

cleaving the N-terminal Asp-1 residue [91]. Very recently, 
meprin-β has been proposed as another enzyme with the 
ability to process Aβ peptides [6]. It has been demonstrated 
that this enzyme cleaves full-length APP in a β-secretase 
manner, leading to the generation of Aβ2–x peptides, which 
have been previously described in AD patients [56, 104]. 
One of the major Aβ-cleaving proteases is the zinc-metal-
loprotease neutral endopeptidase or neprilysin (NEP) [38]. 
High-performance liquid chromatography in combination 
with mass spectrometry analysis identified several cleav-
age sites when Aβ1–40 peptides were incubated with NEP. 
Among other truncations, NEP generates N-terminal trun-
cated Aβ peptides by cleavage between Arg-2 and Glu-3 or 
between Glu-3 and Phe-4 but leaves full-length APP unaf-
fected [35, 47]. In vitro experiments have demonstrated 
that exposure of cultured primary neurons to aggregated 
full-length Aβ leads to increased mRNA-levels of tissue 
plasminogen activator (tPA) and urokinase-type plasmino-
gen activator (uPA), implying a role for the plasmin sys-
tem in Aβ clearance. It has been shown that purified plas-
min degrades Aβ with physiologically relevant efficiency, 
leading to the identification of different cleavage sites, e.g. 
after Arg-5, which is consistent with the known specific-
ity of plasmin to cleave after basic amino acids [96, 97]. 
Genetic studies have established a relationship between 
angiotensin-converting enzyme (ACE) and AD [21]. Hu 
and colleagues [37] provided the first evidence that ACE is 
able to significantly counteract the aggregation, deposition 
and cytotoxicity of Aβ in vitro by cleavage of Aβ at Asp-7. 
Purified myelin basic protein (MBP) is another candidate 
protein that possesses endogenous serine protease activity 
and that, at least in vitro, has been demonstrated to degrade 
Aβ peptides. Mass spectrometry identified several cleav-
age sites in fibrillar and soluble Aβ42 preparations, includ-
ing between Phe-4 and Arg-5 in the N-terminus of the Aβ-
sequence [52]. Finally, the major protease responsible for 
the liberation of Aβ1–x peptides in AD, BACE 1, is also 
capable of cleaving between Tyr-10 and Glu-11, leading 

Fig. 1   Sequence of the first 17 
amino acids of the N-terminus 
of human Aβ is shown in 
three-letter and one-letter-code. 
Amino acids (AA) with charged 
polar side-chains are shown in 
red, AA with uncharged polar 
side-chains in green and hydro-
phobic non-polar AA in blue. 
The cleavage sites of enzymes 
involved in the degradation of 
full-length and potential genera-
tion of N-truncated Aβ peptides 
are indicated

Table 1    Overview of identified proteases and cleavage sites possibly 
involved in N-truncated Aβ generation

Protease Cleavage site Potential  
Aβ peptide

References

BACE1 Met (−1) ↓ Asp(1) Aβ1–x [98]

Tyr (10) ↓ Glu (11) Aβ11–x, 
AβpE11–x

Aminopeptidase A Asp (1) ↓ Ala (2) Aβ2–x [91]

Meprin-β Asp (1) ↓ Ala (2) Aβ2–x [6]

Neprilysin Ala (2) ↓ Glu (3) Aβ3–x,  
AβpE3–x

[35, 47]

Glu (3) ↓ Phe (4) Aβ4–x

Arg (5) ↓ His (6) Aβ6–x

Myelin basic protein Phe (4) ↓ Arg (5) Aβ5–x [52]

Angiotensin-converting 
enzyme

Asp (7) ↓ Ser (8) Aβ8–x [37]

Plasmin Arg (5) ↓ His (6) Aβ6–x [97]
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to the release of Aβ11–x peptides [98]. The identification of 
this β′-cleavage site matched previous observations in pri-
mary neurons and cell lines suggesting that many of the 
Aβx–40/x–42 peptides start with Glu-11 [95, 103]. Whereas 
N-terminally truncated and post-translationally modified 
AβpE11–42 peptides have been demonstrated predominantly 
in mature plaque cores in AD brains, both unmodified 
Aβ11–40, as well as AβpE11–40 peptides have been detected in 
vascular deposits by immunohistochemistry [53].

N‑truncated Aβ is neurotoxic in vitro

Pike et al. [71] demonstrated that N-terminal deletions are 
neurotoxic. Interestingly, the N-truncated Aβx–40 peptides 
exhibited an enhanced neurotoxicity in vitro, while no dif-
ference was reported between full-length Aβ1–42 and the 
other truncated Aβx–42 peptides. The authors compared the 
aggregation characteristics and biophysical properties of 
Aβ starting with Asp-1, Phe-4, Ser-8, Val-12 and Lys-17. 
Peptides with N-terminal deletions exhibited enhanced 
peptide aggregation relative to full-length species, as quan-
titatively assessed by sedimentation analyses. Full-length 
and truncated peptides showed circular dichroism spectra 
consistent with predominant β-sheet conformation, fibril-
lar morphology under transmission electron microscopy, as 
well as significant toxicity in cultures of rat hippocampal 
neurons. The authors concluded that N-terminal deletions 
enhance aggregation of β-amyloid into neurotoxic, β-sheet 
fibrils and suggested that such peptides may initiate and/
or nucleate the pathological deposition of Aβ into plaques. 
Others reported that pyroGlu-3 was found to be more neu-
rotoxic as compared to full-length Aβ [79]. In addition, it 
has been demonstrated that irrespective of the C-terminus 
of Aβ, i.e., Aβ40 or 42, pyroGlu-3 modified Aβ peptides 
displayed dramatically accelerated initial formation of 
aggregates compared to unmodified full-length Aβ. The 
accelerated seed formation was accompanied by a change 
in the oligomerization kinetics [85]. The N-terminal pyro-
Glu-3 and pyroGlu-11 modifications in comparison to their 
non-pyroglutaminylated counterparts Glu-3 and Glu-11 or 
Asp-1 (only Aβx–40 was investigated), revealed a decrease 
of solubility in the physiological pH range which was 
accompanied by an increase in hydrophobicity [87].

Nussbaum et al. [69] reported that AβpE3–42 and Aβ1–42 
form metastable, cytotoxic, hybrid oligomers possessing a 
prion-like activity. The authors compared the cytotoxicity 
of the peptides in cultured neurons or glia cells and found 
that 12 h of 5 µM Aβ1–42 exposure had little effect on cell 
viability on wild-type or tau-knockout neurons, or wild-
type glial cells. In contrast, most wild-type neurons died 
and detached from the substrate after exposure to 5  µM 
AβpE3–42 or a mixture of 5  % AβpE3–42 and 95  % Aβ1–42 

(5 µM peptides in total). Tau-knockout neurons and wild-
type glia, which express little tau protein, were resistant to 
AβpE3–42 and the mixture containing 5 % AβpE3–42 and 95 % 
Aβ1–42.

We have recently extended these observations show-
ing that soluble aggregates of Aβ4–42 and pyroGlu AβpE3–42 
have specific structural features that might carry their neu-
rotoxic activity [7]. We demonstrated that Aβ4–42, Aβ1–42 
and AβpE3–42 are unstructured in the monomeric state. 
However, upon heating the Aβ variants showed a high pro-
pensity to form folded structures. Monomeric Aβ4–42 and 
AβpE3–42 were rapidly converted to soluble aggregated spe-
cies, whereas Aβ1–42 stayed in equilibrium between mono-
mers and soluble oligomers. The soluble aggregates were 
capable of converting to fibrillar aggregates with Aβ4–42 
and AβpE3–42 showing significant thioflavin-T-reactivity 
already during the nucleation phase of aggregation [7]. 
The observation that the propensity of Aβ4–42 and AβpE3–42 
to form aggregates is more pronounced than that of the 
N-terminally intact Aβ1–42 peptide suggests that Aβ4–42 and 
AβpE3–42 aggregation may precede Aβ1–42 aggregation in 
vivo.

Using far-UV CD spectroscopy, NMR spectroscopy 
and dynamic light scattering, we also have demonstrated 
that Aβ4–42 and AβpE3–42, and to a lesser extent Aβ1–42, had 
a remarkable tendency to form stable aggregates [7]. The 
aggregates formed by Aβ4–42 and AβpE3–42 were distinct 
in size and different from Aβ1–42. In addition, the fibril-
lar structure of Aβ aggregates was studied using transmis-
sion electron microscopy. The observation that all peptides 
except for Aβ1–42 formed clumps of fibrils pointed to the 
importance of the N-terminal residues pyroGlu-3 and Phe-4 
for aggregate morphology [7].

N‑terminally truncated Aβ peptides in transgenic 
animal models of Alzheimer’s disease

In recent years, N-terminal truncated Aβ peptides have 
been described not only in human samples, but also in a 
variety of transgenic AD mouse models. A thorough analy-
sis in the APP/PS1KI mouse model using two-dimensional 
gel electrophoresis in combination with mass spectrometry 
at different time points, revealed the presence of a variety 
of N-truncated Aβ species [11]. In addition to full-length 
Aβ1–42 peptides, additional spots representing Aβ4/5–42 
or Aβ8/9/10/11–42 were detected as early as 2.5  months of 
age, followed by Aβ2/3–42 being detectable at 4 months of 
age. In the respective 2D-gels, the spot corresponding to 
Aβ8/9/10/11–42 allows no further discrimination, making 
assumptions about the presence of Aβ11–42 difficult. This 
is an important issue, as previous in vitro data has indi-
cated species specificity for BACE1, which is reported 
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to be due to an amino acid difference in the murine and 
human Aβ-sequence at position 10 (Tyr in human and Phe 
in mouse). In conditioned media of mouse primary neu-
rons transfected with human wild-type APP, only murine 
Aβ11–40 could be recovered and only co-transfection with 
human BACE1 led to considerable amounts of secreted 
human Aβ11–40 [10]. This might lead to significant bias in 
the assessment of N-truncated Aβ variants in transgenic 
mouse models and the fact that most available models har-
bor the Swedish APP mutation favoring the generation of 
full-length Aβ peptides may skew results even further. In 
the APP/PS1KI mouse model pyroGlu-modified Aβ3–X 
becomes detectable at 6 months and increases in abundance 
with aging [11]. Subsequent immunohistochemical studies 
using the APP/PS1KI mouse model revealed the presence 
of plaque-associated and intraneuronal pyroglutamate Aβ3–

x [8] or in spinal cord motor neurons [105]. Pyroglutamate 
Aβ3–x-positive plaques increase significantly in abundance 
but at the expense of plaques containing full-length-Aβ 
(starting with Asp-1) which show a corresponding decrease 
in abundance [107]. This suggests that in the parenchyma, 
pyroglutamate Aβ-formation might represent a later step in 
plaque maturation which might depend on remodeling of 
existing extracellular deposits. The presence of pyroglu-
tamate Aβ deposits in transgenic mouse models has been 
confirmed in a variety of studies demonstrating that pyro-
glutamate Aβ-immunoreactivity is mainly confined to the 
amyloid core [23, 33, 40, 55]. In order to verify the in vivo 
toxicity of pyroglutamate Aβ, mouse models expressing 
solely the respective peptide but not the entire human APP 
molecule have been developed. These models made use of 
constructs starting with an N-terminal glutamine residue at 
position 3, which has been demonstrated to represent a bet-
ter substrate for enzymatic conversion to pyroGlu-3 [13]. 
Abundant intracellular AβpE3–42, followed by subsequent 
loss of AβpE3–42-accumulating neurons could be demon-
strated [1, 106]. This cell loss was rescued by crossing to a 
Tau knock-out background [69].

In order to study a potential seeding effect of AβpE3–42 on 
full-length Aβ in transgenic mice, AβpE3–42 expressing mice 
(TBA42 model) were crossed with 5XFAD mice [110]. The 
resulting bigenic model FAD42 was examined at 6 months 
of age. FAD42 mice showed an aggravated behavioral 
phenotype compared with the single transgenic parental 
5XFAD or TBA42 lines. ELISA and plaque load measure-
ments revealed that AβpE3–x levels were elevated in FAD42 
mice; however, no change in Aβx–42 or other Aβ isoforms 
was detected by ELISA or mass spectrometry. As Aβ1–42 is 
the most abundant peptide in 5XFAD and FAD mice, these 
observations point to a drastic effect of AβpE3–42.

Mass spectrometric analysis of 5XFAD mouse brain 
following immunoprecipitation with pan-Aβ or pyroGlu-
specific antibodies also revealed the occurrence of Aβ1–42, 

Aβ1–40, AβpE3–40, AβpE3–42, Aβ3–42, Aβ4–42 and Aβ5–42. Aβ4–

42 was the most abundant species among the N-truncated 
forms, but Aβ1–42 clearly had the highest levels of all pep-
tides [110]. Using NT4X-167, an antibody recognizing the 
N-terminus of N-truncated Aβ species with a preference 
for Aβ4–x, strong intracellular staining could be detected in 
young 5XFAD transgenic mice [3]. Very recently, a trans-
genic mouse model overexpressing Aβ4–42 without any 
mutations under the control of the murine neuron-specific 
Thy1-promotor has been described. These mice develop a 
massive age-dependent CA1 pyramidal neuron loss which 
correlates with the transgene expression pattern in the hip-
pocampus. In addition, age-dependent spatial reference 
memory deficits were detected using the Morris water 
maze paradigm, underscoring the in vivo toxicity of Aβ4–42 
peptides [7].

However, in relative amounts, N-terminally truncated Aβ 
peptides, and in particular AβpE3–42, in transgenic mouse 
models are much less abundant compared to human brain 
samples [76, 84]. In very old Tg2576 mice (21–23 months), 
only 5  % of the total insoluble Aβ is N-terminally trun-
cated, whereas the corresponding percentage in human 
brain is ~70–85  % [44]. The relative solubility of human 
and APP transgenic mouse amyloid is strikingly differ-
ent. Whereas, e.g. amyloid cores in Tg2576 and APP23 
mice are completely soluble in SDS solutions with EDTA, 
human amyloid deposits are much more stable and do not 
dissociate in the presence of ionic or nonionic detergents 
or strong denaturing agents like guanidine hydrochloride. 
Therefore, the increased solubility of transgenic mouse 
amyloid might be directly related to the relative absence of 
N-terminal truncations and other post-translational modifi-
cations [41].

Together with Glu-3 of Aβ, the N-terminus of monocyte 
chemoattractant protein 1 (CCL2 or MCP-1) is modified to 
a pyroglutamate residue protecting against degradation in 
vivo. Cynis et al. [14] showed that the pyroGlu-formation 
of MCP-1 depends on glutaminyl cyclase (QC) activity. 
The same group has also provided strong evidence that 
Glu-3 of Aβ is pyroglutamated by QC [86]. Genetic abla-
tion of the glutaminyl cyclase iso-enzymes QC or isoQC 
revealed a major role of isoQC for pyroGlu-MCP-1 for-
mation and monocyte infiltration [14]. As neuroinflamma-
tory processes around amyloid plaques represent a major 
hallmark of AD, it is likely that glial activation leads to 
enhanced QC activity and subsequent pyroGlu-3 formation 
in AD plaques. In line with that notion, we have observed 
that during plaque maturation the amount of Aβ peptides 
with intact N-terminus starting with Asp-1 declines whilst 
pyroGlu-3 increases [107].

While it is clear that transgenic mice expressing only 
N-truncated Aβ peptides AβpE3–42 and Aβ4–42 do develop 
massive neuron loss in CA1 [1, 7], the mechanisms of cell 
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death have not been elucidated. Palop and Mucke [70] dis-
cussed that AD is associated with cognitive decline and 
increased incidence of seizures. Sporadic cases are known 
to exhibit seizure activity, as well as many pedigrees with 
autosomal dominant early-onset AD, including those with 
mutations in presenilin-1, presenilin-2, or APP, or with 
duplications of wild-type APP. Moreover, high levels of 
Aβ in the brain of APP transgenic mouse models can cause 
epileptiform activity.

N‑truncated Aβ peptides appear during Alzheimer 
progression

Due to variations in the methods and tools used to extract 
and identify different pools of Aβ, drawing conclusions 
on the exact levels of the various N-truncated Aβ variants 
is challenging. Evaluation of data is difficult as far as the 
exact levels of different Aβ peptides in post-mortem brains 
are concerned. Many factors can influence an analysis rang-
ing from antibody specificities and sensitivities in applica-
tions like immunostaining, Western blotting or immunopre-
cipitation, as well as extraction protocols and brain areas 
studied. Most consistently, there is general agreement that 
plaque-born peptides harbor high amounts of N-truncated 
Aβ especially Phe-4, but also pyroGlu-3 and pyroGlu-11. 
In presymptomatic AD cases, Phe-4 seems to be the 
N-truncated variant most consistently reported. Besides 
plaque-associated Aβ, intraneuronal Aβ can be N-trun-
cated in AD brain [27]. Immunohistochemical studies in 
cases with Down syndrome demonstrated plaque-Aβ start-
ing at Asp-1 or pyroGlu-3 [48]. A transient accumulation 
of intraneuronal Aβx–42 was also evident [66]. Analyzing 
FAD patients, Ancolio and colleagues [2] firstly showed a 
selective and drastic increase of N-truncated Aβx–42 spe-
cies triggered by the mutation APP V715M. In contrast to 
the N-terminus, there is common agreement that plaque-
associated Aβ peptides mainly terminate at position 42 with 
Ala-42.

In the following paragraphs, we endeavor to shed light 
on what is known regarding the role of N-terminal trun-
cated Aβ peptides in AD.

In 1985, ragged Aβ peptides were described to precipi-
tate in AD plaques, including a major species beginning 
with phenylalanine at position 4 of Aβ (Phe-4; Aβ4–x) [58]. 
A majority of 64  % of the peptides in amyloid plaques 
of the two sporadic AD cases and of 45 % in the patients 
with Down syndrome studied started with a Phe-4 residue. 
At the same time, Glenner and Wong [26] demonstrated 
full-length Aβ beginning with Asp-1 to be the main spe-
cies detected in cerebrovascular deposits. A scheme of the 
amino acid residue numbering of N-terminal Aβ is shown 
in Fig. 1.

Miller et al. [62] compared the peptide compositions of 
the cerebrovascular and senile plaque core amyloid depos-
its in AD. Matrix-assisted, laser-desorption-time-of-flight 
(MALDI-TOF) mass spectrometry of plaque-Aβ revealed 
an array of peptides ending with Ala-42 of that sequence, 
while cerebrovascular Aβ began with Arg-1 ending at Val-
40. They verified that Phe-4 is the main component in 
plaques, but cautioned that their MALDI-TOF spectral data 
suggests the presence of two pyroglutamyl amino termini 
(pyroGlu-3 and pyroGlu-11) that might escape detection by 
other methods. Other N-termini reported were Asp-1, Ala-
2, Arg-5, Asp-7, Ser-8, Gly-9.

Surface-enhanced laser desorption/ionization mass 
spectrometry was performed comparing AD and vascu-
lar dementia patients [51]. In AD, the authors found Aβ 
starting with Asp-1, Ala-2, pyroGlu-3, Phe-4 and Arg-5 in 
senile plaque extractions with Phe-4 to be the most preva-
lent one.

The presence of pyroGlu-3 peptides as an important 
component of plaque depositions in patients with AD was 
further substantiated [77, 80]. MALDI-TOF mass spec-
trometry of Aβ peptides isolated from sporadic and familial 
AD (APP V717I and several PS1 mutations) brains indi-
cated that besides full-length Aβ1–40/42; pyroglutamylated 
Aβ3–42 (AβpE3–42) and AβpE11–42 as well as Aβ4–42 were 
detected in these cases [78]. Analysis of sporadic and famil-
ial AD cases by electrospray–ionization mass spectrometry 
even showed that Aβ11–42/AβpE11–42 represent the second 
most abundant species following Aβ1–40 [68]. Further anal-
ysis of FAD cases revealed that N-terminally truncated Aβ 
peptide species ending at residues 42 and 43 are the main 
Aβ peptides deposited in brain parenchyma in association 
with the PS1 V261I mutation. MALDI-TOF  mass spec-
trometry following immunoprecipitation using a mixture 
of Aβ antibodies showed that most intense signals corre-
sponded to pyroGlu-11, pyroGlu-3, but also non-pyrogluta-
mylated Glu-3 peptides, whereas the signals corresponding 
to Glu-11 and Asp-1 were less intense [63].

The Aβ isoform pattern was studied in the cerebel-
lum, cortex and hippocampus in AD, including subjects 
with mutations in PS1 (M146V) or APP (KM670/671NL) 
genes, sporadic AD subjects and non-demented controls 
[72]. Using immunoprecipitation in combination with mass 
spectrometric analysis, the dominating Aβ isoforms in the 
three different brain regions analyzed from control, spo-
radic and familial AD were described as Aβ1–42, AβpE3–42, 
Aβ4–42 and Aβ1–40, with Aβ1–42 and Aβ4–42 being the domi-
nant isoforms in hippocampus and cortex in all groups ana-
lyzed [72].

The question whether N-truncations of Aβ are a post-
mortem artefact or might even precede the symptomatol-
ogy of AD was addressed by Sergeant and co-workers [90]. 
They have adapted a proteomic method in combination 
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with Western blotting and mass spectrometry for the char-
acterization of insoluble Aβ extracted in formic acid. Full-
length Aβ peptides represented 37  % of all Aβ species, 
while 17  % corresponded to N-truncated species start-
ing at residues Phe-4, Arg-5 and 20  % with Ser-8, Gly-9 
and Tyr-10. They also demonstrated that the first stage of 
amyloid deposition in non-demented individuals comprise 
N-terminal truncated variants starting at positions 4-, 5-, 8- 
and 9–42, or with a pyroglutamyl residue at position 3. At 
this stage, Aβ oligomers were exclusively made of Aβx–42 
species.

N-terminal truncations of Aβ, especially pyroGlu-3 were 
reported to be more frequently found in plaques of sporadic 
AD cases as compared to the PS2APP mouse model [28].

CNS and the cerebrospinal fluid from APP23 trans-
genic mice were assessed using one- and two-dimensional 
gel electrophoresis, immunoblotting and mass spectrom-
etry [84]. Significant differences between APP23 mice and 
brain samples from sporadic AD cases (Braak stage V–VI) 
were observed in their relative abundance of specific vari-
ants of Aβ peptides, such as pyroGlu-3, Aβ1–42 and N-ter-
minally truncated Aβ2/3–42.

In a recent report, phosphorylated Aβ at Ser-8 (pSer-8) 
and pyroGlu-3 in soluble, dispersible, membrane-associ-
ated and plaque-associated amyloid-β aggregates in brains 
from 21 cases with symptomatic AD, 33 pathologically 
preclinical AD cases, and 20 control cases was compared 

[74]. Plaques containing pSer-8 were detected in all symp-
tomatic cases with AD, but only in a few non-demented 
control subjects. The deposition occurred in a hierarchical 
sequence with pyroGlu-3 appearing early in the amyloid 
cascade corroborating earlier findings in preclinical AD 
cases [90].

Moore et  al. [64] employed sequential pull-down with 
antibodies Ab9 (epitope Aβ1–16) and 4G8 followed by mass 
spectrometry using brain samples from the prefrontal cor-
tex. 16 brains from AD, eight brains from subjects without 
clinical evidence of dementia and seven brains with rare or 
no AD lesions from elderly individuals without clinical evi-
dence of a neurological illness were studied. In the mem-
brane-associated SDS extracted lysates Aβ1–42, Aβ4–42 and 
Aβ1–40 were the most prevalent peptides. In plaque-associ-
ated formic acid lysates the spectrum became more diverse. 
The two pyroglutamylated peptides AβpE3–42 and AβpE11–42 
were showing up, albeit at low levels compared to Aβ4–42, 
Aβ8–40, Aβ8–42, Aβ9–40 and the full-length Aβ1–42, Aβ1–43 
and Aβ1–40. The presymptomatic group revealed elevated 
Aβ4–42, AβpE3–42 and Aβ1–42 levels compared to the control 
group.

A comparison of antibody staining profiles in the brain 
of a patient with sporadic AD against Asp-1, pyroGlu-3 
(pan- and oligomer-specific), Phe-4- and Arg-5 is shown 
in Fig. 2. Antibodies against pan-Aβ, Asp-1 and pan-pyro-
Glu-3 stained amyloid plaques very strongly, whereas the 

Fig. 2   Comparative immunostaining against intact N-terminus and 
most prevalent N-truncated Aβ peptides AβpE3–X, Aβ4–X and Aβ5–X in 
the brain of patients with sporadic Alzheimer’s disease. Staining was 
performed with antibodies 4G8 (a epitope Aβ17–24), IC16 (b against 

Aβ1–x; gift by Sascha Weggen [39]), 2–48 (c against AβpE3–X; Synap-
tic Systems [107]), 9D5 (d against oligomeric AβpE3–X; Synaptic Sys-
tems [108]), NT4X-167 (e against oligomeric Aβ4–X; [3]) and AB5-3 
(f against Aβ5–X; PSL Heidelberg [29]). Scale bar 100 μm
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oligomer-specific antibodies (9D5 against pyroGlu-3 and 
NT4X-167 against Phe-4) labeled predominantly cerebro-
vascular deposits. AB5-3 against position 5 of Aβ detected 
both hallmarks with a tendency towards stronger labeling 
of cerebrovascular deposits. The cerebrovascular localiza-
tion indicates that these N-truncated Aβ peptides are form-
ing preferentially soluble aggregates with a reduced ten-
dency to aggregate in plaques.

Aβ as target for immunotherapy

In 1999, Schenk et al. [82] pioneered the AD field by intro-
ducing immunization as a causal therapeutic option. They 
immunized transgenic APP mice with pre-aggregated 
synthetic Aβ1–42, either before or after onset of plaque 
deposition. Immunization of young animals essentially 
prevented the development of plaque formation and astro-
gliosis. Treatment of older animals also markedly reduced 
the extent and progression of these AD-like neuropatholo-
gies. These results implied that immunization with pre-
aggregated Aβ1–42 may be effective in preventing and treat-
ing AD. Moreover, vaccination with Aβ not only reduced 
plaque load, but also protected transgenic mice from the 
learning and age-related memory deficits [65]. Several 
mechanisms have been suggested since then for the sig-
nificant therapeutic effects of immunotherapy in AD mouse 
models, which will be discussed below.

Clearing plaque Aβ

Antibodies may act catalytically to dissolve preformed Aβ 
aggregates or prevent Aβ aggregation [93]. In this case, 
the antibody pool might also be neutralized by amyloid 
plaques due to plaque binding, leading to weakened effi-
cacy. The phase II clinical trial with AD patients using pre-
aggregated synthetic Aβ1–42 for active immunization was 
very instructive, despite the fact that it had to be stopped 
due to unexpected side effects with 6 % of AD subjects (18 
of 300) developing serious brain inflammation resembling 
meningoencephalitis [25]. Although immunization with 
Aβ1–42 resulted in clearance of amyloid plaques in patients 
with AD, the clearance did not prevent progressive cogni-
tive decline [34]. While these observations clearly showed 
that peripheral antibodies against Aβ do have an effect on 
CNS molecules like deposited amyloid peptides, simple 
plaque removal is not sufficient to rescue AD memory 
decline. Antibodies targeting plaques could even have a 
noxious effect by solubilizing fibrillar and innocuous Aβ 
[5, 32].

Bapineuzumab was the first humanized antibody in clin-
ical trials. However, in double-blinded, randomized, pla-
cebo-controlled phase III trials involving more than 2,000 

patients with mild-to-moderate AD, bapineuzumab did not 
improve clinical outcomes [81]. The crystal structure of a 
bapineuzumab Fab–Aβ peptide complex revealed that it 
captured Aβ in a monomeric helical conformation at the 
N-terminus [61]. The authors used microscale thermopho-
resis to demonstrate that the Fab binds soluble Aβ1–40 with 
a KD of 89 (±9) nM. They concluded that the crystal struc-
ture explains the antibody’s selectivity for monomeric Aβ 
species and that it cannot recognize N-terminally modified 
or truncated Aβ peptides.

Clearance by microglia

Microglia clearance of Aβ is another mechanism that has 
recently been proposed as being important in an immu-
notherapy approach [101]. Intracranial administration of 
anti-Aβ antibodies into frontal cortex and hippocampus 
of Tg2576  APP transgenic mice resulted in clearance of 
compact amyloid deposits and is associated with micro-
glial activation [102]. This might lead to subsequent phago-
cytosis via an interaction of the Fc receptor on microglia 
cells with the Fc part of the antibody bound to Aβ [4]. In 
contrast, using Fc receptor-gamma chain knock-out mice, 
the effects of anti-Aβ antibodies on Aβ deposition in 
Tg2576 APP transgenic mice were not dependent on FcR-
mediated phagocytic events [16]. Therefore, Fab fragments 
of therapeutic antibodies might be sufficient, as the Fc part 
is not required for Aβ neutralization.

Peripheral sink hypothesis

Another therapeutic option does not require penetration of 
the blood–brain barrier. Chronic treatment with the mon-
oclonal anti-Aβ antibody m266 led to increased plasma 
levels of Aβ and reduced amyloid plaques in the PDAPP 
transgenic mouse model [17]. In a follow-up study, the 
group reported that administration of m266 to these mice 
rapidly reversed memory deficits without altering brain Aβ 
burden [19]. They also found that an Aβ/antibody com-
plex was present in both the plasma and the cerebrospinal 
fluid of m266-treated mice. The authors concluded that the 
observed treatment effect might be due to enhanced periph-
eral clearance and (or) sequestration of a soluble brain Aβ 
species [19]. In contrast, Yamada et al. [111] have reported 
that immunotherapy with m266 neutralizes intracerebral, 
rather than peripheral, soluble, monomic forms of Aβ.

Soluble aggregates as possible target

Yet a further mechanism proposes the ability of certain 
antibodies to bind to oligomers and neutralize their synap-
totoxic effects directly [46]. It has been shown that intra-
cerebroventricular injection of naturally secreted human 
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Aβ oligomers (harvested from 7PA2-conditioned medium) 
inhibited long-term potentiation in rat hippocampus. Injec-
tion of a monoclonal antibody to Aβ completely prevented 
the inhibition of long-term potentiation even after Aβ expo-
sure. The N-termini of the naturally secreted oligomers 
were not described, therefore Asp-1 or N-terminally trun-
cated forms could account for the observed effects.

Autoantibodies against N‑truncated Aβ

Using peptide microarrays, the presence of natural anti-
bodies against Aβ in plasma samples and cerebrospinal 
fluid of AD patients and healthy controls aged 21–89 years 
was reported [9]. Antibody reactivity was most prominent 
against oligomeric Aβ and pyroGlu or oxidized residues. 
Interestingly, IgG levels specific for oligomeric prepara-
tions of Aβ1–42 declined with age and AD progression. 
In good agreement, we have observed that the levels of 
pyroGlu-IgM autoantibodies significantly decreased in AD 
patients as compared to non-demented controls [57]. In the 
group of mild cognitive impaired patients there was a sig-
nificant positive correlation between pyroGlu-IgM autoan-
tibodies and cognitive performance, i.e. individuals with 
high levels of pyroGlu-IgM autoantibodies obtained higher 
scores in the Mini Mental State Examination test battery.

N‑truncated Aβ as a target for immunotherapy

In contrast to Aβ1–42, N-truncated pyroglutamate Aβ3–42 
and Aβ4–42 peptides are not produced under normal, non-
disease conditions. Pyroglutamate Aβ3–42 and Aβ4–42 form 
soluble aggregates and are toxic in vitro and in vivo. On 
the basis of these empirical data, we formulated a novel 
hypothesis on the role of soluble aggregates of pyrogluta-
mate Aβ3–42 and Aβ4–42 (Fig. 3).

Pyroglutamate Aβ3–X as a target

We have introduced novel conformation-specific mono-
clonal antibodies (9D5 and 8C4) detecting low molecular 
weight pyroGlu-modified Aβ oligomers [108]. The selec-
tivity to low molecular weight (4–10 mers) pyroGlu-3 was 
confirmed by size exclusion chromatography and immuno-
blot assays. When the 9D5 antibody was added to AβpE3–42 
monomers, it efficiently decreased the formation of higher 
aggregates, but did not interfere with the rapid formation 
of Aβ1–42 aggregates. 9D5 treatment of SH-SY5Y neu-
roblastoma cells abolished the toxic effects of AβpE3–42 
peptides, while no beneficial effect was seen on Aβ1–42-
induced toxicity. Passive immunization with 9D5 antibody 

in 4.5-month-old 5XFAD mice for 6  weeks reduced Aβ 
plaque load and AβpE3–x levels [108]. This antibody labeled 
only a minor proportion of extracellular plaques in sporadic 
AD cases [99, 108].

APPswe/PS1ΔE9 transgenic mice received weekly 
intraperitoneal injections of an antibody against the N-ter-
minus of pyroGlu-3 (mAb07/1). The preventative treatment 
protocol lingered from 5.8 to 13.8 months of age, whereas 
the therapeutic treatment ranged from 23 to 24.7  months 
of age. Passive immunization significantly reduced total 
plaque deposition in hippocampus and cerebellum in both 
treatment studies, however, insoluble Aβ levels were not 
affected [22].

Prior preclinical studies have shown that both active 
and passive immunotherapies were effective in lowering 
plaques in transgenic APP mice when performed as a pre-
ventative treatment; however, when performed as a thera-
peutic approach in aged transgenic mice, they lacked any 
effect on plaque levels [15, 50].

Using antibodies specific for the N-terminus of AβpE3–x, 
De Mattos and colleagues [18] reported that passive immu-
nization of PDAPP mice reduced pre-existing plaques 
without inducing microhemorrhage in a dose-dependent 
manner. In an initial experiment, chronic administration 
of the N-terminal antibody 3D6 (the murine equivalent 
of bapineuzumab) significantly lowers plaque deposition 
when treatment was started at 9  months of age (preven-
tative trial), but fails to alter deposition when used in a 
therapeutic regimen beginning at 18 months of age. Next, 
the novel antibody mE8 specific for the pyroGlu-modified 
N-terminus of Aβ3–x (does not recognize full-length Aβ or 
unmodified Aβ3–x) was used for passive immunization of 
23–24 month-old PDAPP mice for 3 months at a weekly 
intraperitoneal dose of 12.5  mg/kg. Treatment with mE8 
significantly lowered Aβ42 by 30  % in the hippocampus 
as compared to the starting time point thus demonstrating 
clearance of existing Aβ deposits. The authors [18] spec-
ulated that the only mechanism of action through which 
Aβp3–x antibodies could lead to plaque lowering is through 
phagocytosis of existing plaques. It is, however, less effec-
tive at preventing Aβ42 deposition in young PDAPP mice. 
In contrast, the N-terminal antibody 3D6, which binds 
soluble and insoluble Aβ, revealed an opposite pattern of 
efficacy (no clearance of existing plaques and strong pre-
vention of deposition), thereby suggesting that the major 
mode of action for these two antibodies is different [18]. 
Consistent with such a mechanism, they observed that 
treatment with 3D6 led to increased microglial colocaliza-
tion with amyloid deposits in vivo. We have also observed 
that pyroGlu-3 peptides can be observed in microglia in 
the APP/PS1KI mouse model as an indication of phagocy-
totic activity [109].
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Aβ4–x as a target

Although first identified in 1985 [58], Aβ4–x has not 
received much attention as a potential therapeutic target. 
McLaurin et al. [60] have performed an active immuniza-
tion approach in TgCRND8 transgenic mice using protofi-
brillar Aβ1–42 peptides. The mice developed robust titers 
against Aβ and the sera isolated from these mice stained 
mature, but not diffuse plaques in TgCRND8 mice. The 
therapeutically active antibodies were subsequently iso-
lated and characterized. Interestingly, although protofibril-
lar Aβ1–42 was used as vaccine, beneficial effects in mice 
arose from antibodies selectively directed against residues 
4–10 of Aβ42. These antibodies inhibited both Aβ fibrillo-
genesis and cytotoxicity without eliciting an inflammatory 
response.

We have recently generated the Aβ4–x-specific antibody 
NT4X-167 [3]. While NT4X-167 significantly rescued 
Aβ4–42 toxicity in vitro, no beneficial effect was observed 
against Aβ1–42 or AβpE3–42 toxicity. Phenylalanine at posi-
tion four of Aβ was imperative for antibody specificity, 

because its replacement with alanine or proline com-
pletely prevented binding. Although amyloid plaques were 
observed using NT4X-167 in 5XFAD transgenic mice, it 
barely reacted with plaques in the brain of sporadic AD 
patients and familial cases with the Arctic, Swedish and 
the presenilin-1 PS1Δ Exon9 mutation. Most interestingly, 
Aβ4–x preceded the occurrence of AβpE3–x in the 5XFAD 
mouse model.

Overall, we would suggest that N-truncated pyrogluta-
mate Aβ3–42 and Aβ4–42 peptides represent ideal therapeutic 
targets to fight AD for the following reasons: (1) they are 
produced only in diseased brain and not normal brain; (2) 
they aggregate quickly and irreversibly into soluble toxic 
oligomers; (3) only slowly react further into inert amor-
phous fibrils (Fig. 3); (4) are seeding aggregation of Aβ1–40 
and Aβ1–42. It is worthy of note that the mechanisms dis-
cussed in this review are not exclusive and may overlap 
under certain circumstances. Moreover, different stages of 
the disease may be associated with one particular mecha-
nism more so than the other [49].

In summary, we conclude that

Fig. 3   N-truncated pyroglutamate Aβ3–42 and Aβ4–42 are more toxic 
as compared to full-length Aβ1–42 due to reduced neutralization via 
plaque formation. Upper graph Monomers and low- and high-molec-
ular weight aggregates of Aβ1–42 (blue) are in equilibrium and are 
toxic as long as they stay soluble [7]. Once high-molecular weight 
aggregates are formed, they rapidly react into highly ordered and 
insoluble, non-toxic fibrils found in plaques. Therefore, soluble low- 
and high-molecular weight oligomers are toxic, but can escape toxic-
ity by forming monomers and/or fibrils. As Aβ1–42 is a physiological 
peptide, which is continuously generated also in healthy individuals, 

plaque formation may be one way to neutralize full-length Aβ during 
the prodromal stage of the disease. Lower graph Soluble monomers, 
low- and high-molecular weight aggregates of N-truncated pyrogluta-
mate Aβ3–42 and Aβ4–42 (red) are in disequilibrium and are toxic [7]. 
High-molecular weight aggregates also can be neutralized by plaque 
formation, but with a significant slower tendency as compared to full-
length Aβ, because the fibrillization process is unordered forming 
only amorphous fibrils. As a consequence, the level of soluble low- 
and high-molecular weight aggregates of N-truncated Aβ variants 
increase over time, thereby playing a major role in AD pathology
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•	 There is strong evidence that full-length Aβ peptides 
serve a physiological function in long-term depression 
and are tightly regulated during day and night in the 
interstitial fluid in healthy individuals.

•	 N-truncated Aβ variants correlate well with presympto-
matic AD with Ala-2, pyrGlu-3, Phe-4, Arg-5, Ser-8 and 
Gly-9 often reported, but predominantly pyroGlu-3 and 
Phe-4.

•	 There is general agreement that N-truncated Aβ pep-
tides are abundant in brains of patients with diagnosed 
sporadic and familial AD. Of the N-truncated variants 
pyroGlu-3 and Phe-4 truncations were most consistently 
reported.

•	 APP transgenic mouse models generate N-truncated Aβ 
peptides, albeit at quite low levels not reflecting the situ-
ation in AD brain.

•	 Transgenic mouse models that solely express AβpE3–42 
(Glu-3 mutated to Gln-3 in order to facilitate pyroGlu-3 
formation) consistently develop neuron loss and associ-
ated neurological deficits. Plaque load is low.

•	 The transgenic mouse model Tg4–42 expressing Aβ4–42 is 
the first model to harbor no mutation in the Aβ sequence 
and develops an age-dependent hippocampus-related refer-
ence memory deficits in the Morris water maze due to the 
drastic CA1 neuron loss. No plaque pathology is observed.

•	 AβpE3–42 and Aβ4–42 rapidly form soluble toxic aggre-
gates in vitro having different biochemical properties 
than full-length Aβ1–42.

•	 Antibodies reacting with the N-terminus of pyroGlu-3 
and Phe-4 recognize neoepitopes distinctly different 
from antibodies reacting with full-length Aβ peptides.

•	 Passive immunization with antibodies against pyroGlu-3 
of transgenic mouse models demonstrated beneficial 
effects: no risk for microbleedings, lower pyroGlu-3 Aβ 
levels and reduction of pre-existing amyloid plaques.
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