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Infants are more likely to develop lethal disseminated forms of tuberculosis compared

with older children and adults. The reasons for this are currently unknown. In this study

we test the hypothesis that antimycobacterial function is impaired in infant alveolar

macrophages (AMφs) compared with those of adults. We develop a method of obtaining

AMφs from healthy infants using rigid bronchoscopy and incubate the AMφs with live

virulent Mycobacterium tuberculosis (Mtb). Infant AMφs are less able to restrict Mtb

replication compared with adult AMφs, despite having similar phagocytic capacity and

immunophenotype. RNA-Seq showed that infant AMφs exhibit lower expression of

genes involved in mycobactericidal activity and IFNγ-induction pathways. Infant AMφs

also exhibit lower expression of genes encoding mononuclear cell chemokines such as

CXCL9. Our data indicates that failure of AMφs to contain Mtb and recruit additional

mononuclear cells to the site of infection helps to explain the more fulminant course of

tuberculosis in early life.

Keywords: macrophage, tuberculosis, infant, transcriptomics, chemokine, lung, lysosome

INTRODUCTION

Alveolar macrophages (AMφs) are long-lived, tissue-resident phagocytes, originating from
fetal monocytes colonizing the airways in the first days of life (1, 2). Their occasional
replenishment in the alveolar airways by peripheral monocytes in the steady state is accelerated
following inflammatory necrosis (3). AMφs are trained by the lung microenvironment and their
inflammatory responses are restrained to avoid inappropriate activation by harmless particulate
matter and commensal microbes (2, 4). A number of pathogenic microorganisms exploit the AMφ

niche (5) includingMycobacterium tuberculosis (Mtb) (6).
Infants are particularly vulnerable to severe tuberculosis (TB), such as TBmeningitis andmiliary

TB (7). Studies performed prior to the availability of effective antibiotics against Mtb demonstrated
that bacillary dissemination occurs in approximately one third of infants, compared with only one
in 20 older children and adults (7). Histology from these studies showed that infants with untreated
TB exhibit dysfunctional granuloma formation and failure to control mycobacterial replication in
the lung (8, 9). However, the facets of infant immunity responsible for these phenomena have not
yet been elucidated.
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An incomplete understanding of mycobacterial immunity
has also hampered delivery of an effective vaccine against
tuberculosis. Current candidate vaccines enhance antigen-
specific T-cell immunity and IFNγ production (10), however
Mtb disseminates before this develops (11). Animal studies have
shown that Mtb-infected AMφs are important in early bacillary
containment, by initiating granuloma formation in the lung
interstitium through the recruitment of other mononuclear cells
(12–14). Human studies of primary AMφs have demonstrated
that these cells exhibit a unique transcriptional and functional
response to Mtb, distinct from model systems of human
macrophage immunity (15–17). No studies to date have
examined Mtb control in primary AMφs from human infants,
predominantly due to difficulties in their sampling. We
developed a method for obtaining AMφs from infants without
active clinical lung inflammation or infection and used this
cellular source to show that infant AMφs exhibit a multifaceted
dysfunctional response to Mtb, including diminished ability to
control Mtb replication. These data suggest that infant AMφs
are less able to contain the replication and spread of Mtb. This
may relate to the lack of exposure to microenvironmental signals
required to drive development of innate mycobacterial immunity
in the infant (4, 18), and provides a potential approach to
therapeutically train AMφs in this vulnerable age group.

METHODS

Human Subjects and Samples
The research protocol was approved by the National Health
Service Research Ethics Committee (Reference 14/SW/0100 and
15/NW/0409). Written informed consent was obtained from
adult participants and the legal guardians of infant participants
in accordance with the Declaration of Helsinki. Bronchoalveolar
lavage (BAL) with upto 20mL 0.9% saline was performed on
infants undergoing rigid bronchoscopy for suspected airway
abnormalities at Royal Manchester Children’s Hospital, using a
ventilating Storz bronchoscope under sevoflurane inhalational
anesthesia. In adults, BAL was performed with upto 50mL 0.9%
saline during flexible bronchoscopy for investigation of persistent
unexplained cough or hemoptysis with normal thoracic imaging,
as previously described (19). Exclusion criteria for participants
undergoing BAL included any febrile illness within the last 14
days, receipt of antibiotics within previous 6 weeks, any evidence
of immunodeficiency, immunosuppressive medication, previous
close contact with an individual with TB, family history of TB,
atopic disease, asthma, any chronic lung disease, any chronic
inflammatory disease, or surgery involving general anesthetic
within the last 4 weeks. Additional exclusion criteria for infant
participants included preterm delivery (<37 weeks gestation),
low birth weight (<2.5 kg) or congenital malformation.

Peripheral blood was obtained from participants undergoing
BAL for IFNγ release assay (QuantiFERON-TB Gold Plus,
QIAGEN) which was performed as per manufacturer’s
instructions. Lung resection samples were obtained from
University Hospital of South Manchester through the
Manchester Allergy, Respiratory and Thoracic Surgery Biobank.

AMφ Isolation and Culture
BAL fluid was transported to the laboratory on ice within 1 h
of acquisition. Mucous was disrupted by the addition of a 4-
fold volume of 0.1% dithiothreitol (Sigma-Aldrich) followed by
gentle rocking for 15min at room temperature. The suspension
was filtered serially through sterile 150 and 50µm filters
(CellTrics) and diluted 2-fold with phosphate-buffered saline
(PBS). Cells were either stained immediately for flow cytometry
or prepared for culture by suspension in Roswell Park Memorial
Institute (RPMI) 1640 Medium (Sigma-Aldrich) supplemented
with 10% Fetal Calf Serum (FCS), 100 U/ml penicillin, 100µg/ml
streptomycin and 2mM L-glutamine, and then seeded in 24-
well tissue culture plates (Corning Inc.). Following 1h of
incubation at 37◦C/5% CO2, non-adherent cells were removed
by vigorous washing with PBS, and adherent cells were cultured
for downstream application.

To obtain sufficient cells with which to perform optimization
experiments, AMφs were harvested from healthy non-cancerous
lung tissue (“ex-vivo BAL” AMφs) obtained from patients
undergoing surgery for suspected or confirmed cancer. These
patients did not have a chronic inflammatory lung disease
or severely impaired lung function (forced expiratory volume
in 1 s/forced vital capacity ratio >70%). Lung tissue was
perfused with PBS, followed by enrichment of mononuclear cells
by Ficoll-Paque (GE Healthcare Biosciences) density gradient
centrifugation according to the manufacturer’s instructions.
The mononuclear cells were either stained immediately for
flow cytometry, or AMφs were purified by adherence as
described above.

Bacteria
All handling of M. tuberculosis strains was performed under
Biosafety Level 3 conditions with approval from the UK Health
and Safety Executive.M. tuberculosis H37Rv (gift from Professor
Brian Robertson, Imperial College London) was cultured at 37◦C
(without shaking) in Middlebrook 7H9 broth (BD Biosciences)
containing 0.2% glycerol, 0.05% tween 80 and 10% OADC
enrichment media (BD Biosciences). Mtb-LuxG13 (gift from
Professor Brian Robertson, Imperial College London) was
produced by transformation of M. tuberculosis H37Rv strain
with a bacterial luciferase encoding vector (pMV306hsp +

LuxAB + G13 + CDE, Kanr) allowing only live bacilli to
produce both the substrate (n-decanal) and co-factor (FMNH2)
required to generate light, as described previously (20). Except for
addition of kanamycin 25µg/mL (Sigma-Aldrich), Mtb-LuxG13
was cultured and harvested in the same way as M. tuberculosis
H37Rv. Bacilli were harvested during midlog (OD600nm 0.4–0.7)
growth and washed with PBS, before suspension in cell culture
medium at the desired concentration following declumping by
serial passage eight times through a blunt 26G needle (SAI
Infusion Technologies).

Macrophage Infection Assays
Mtb-LuxG13 was added to 2 × 105 freshly purified AMφs at
the appropriate multiplicity of infection (MOI) in antibiotic-
free RPMI 1640 media supplemented with 10% FCS and
2mM L-glutamine, and was incubated at 37◦C/5% CO2 in
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sterile white transparent-bottom 24-well luminometry tissue
culture plates (Berthold Technologies). Following incubation
for 2 h, AMφs were washed three times with phosphate-
buffered saline to remove extracellular bacteria, and fresh
culture medium was added. CFU counting of: (i) the inoculum
confirmed MOI; (ii) macrophage lyste confirmed the proportion
of bacilli phagocytosed, whenever sufficient AMφs were
available, as previously described (20). Serial measurements of
autoluminescence were performed by a LUMIstar Omega (BMG
LABTECH) plate luminometer during a 48–72 h incubation
period, because beyond this there was obvious cell death of AMφs
as indicated by their non-adherence and trypan blue staining.
Autoluminescence was cumulatively measured as Relative Light
Units (RLU) over 10 s via the bottom reading optic, and CFU
assay correlations were performed as previously described (20).
After 24 h of incubation, 50 µL of culture supernatant was
removed, sterilized and stored at−80◦C for cytokine bead array.

Flow Cytometry
Cells were incubated at 4◦C for 20min with Live/Dead stain
(Zombie UV Fixable Viability Kit, BioLegend) and mouse serum
(Sigma-Aldrich). After washing with PBS, cells were incubated
at 4◦C for 20min with the appropriate antibody cocktail (Panel
1: CD40 BV785, TLR2 AF700, CD200R AF647, CD119 APC-
Vio770, CD3 FITC, CD19 FITC, CD56 FITC, CD66b FITC,
CD235a FITC, CD64 PE-Cy7; or Panel 2: Sirpα APC, HLA-DR
AF700, CD206 APC-Cy7, CD3 FITC, CD19 FITC, CD56 FITC,
CD66b FITC, CD235a FITC, CD64 PE-Cy7), before washing and
fixation with 3.7% paraformaldehyde at room temperature. Data
were acquired on a BD Fortessa cytometer (BD Biosciences).
In all experiments, single stain controls were prepared using
compensation beads (OneComp eBeads, Fisher Scientific) and
were used to standardize voltage settings. At least 50,000 cells
were acquired frommacrophage samples. Samples were analyzed
after compensation was set using FlowJo (Version 10.3, Tree
Star), and gating to determine percentage positive expression was
determined using the fluorescence-minus-one principle.

Cytokine Bead Array
Culture supernatant was sterilized by 0.22µm cellulose acetate
membrane centrifuge tube filtration (Corning Inc.) before
removal from Biosafety Level 3 conditions and storage at−80◦C.
After thawing, soluble inflammatory mediator production
was quantified by multiplex cytokine bead array as per the
manufacturer’s instructions (Soluble Protein Human Flex Set, BD
Biosciences). Briefly, supernatants were incubated with cytokine
detection beads alongside a phycoerythrin-conjugated detection
protein. Recombinant cytokine was analyzed to produce a
standard curve to fit the measurements of supernatant samples,
with a lower limit of detection was 20 pg/mL for all cytokines. To
allow sample measurement to fall within upper limit of detection
for TNFα, IL6, IL8, and CCL4, it was necessary to pre-dilute
supernatants 50-fold with assay buffer. Samples were acquired on
a BD FACSVerse system, and data analyzed using FCAP Array
(Version 3.0, Soft Flow Inc.).

RNA Isolation
Lysate from AMφs was stored at −80◦C following cell
disruption with buffer RLT (QIAGEN) containing 1% β-
mercaptoethanol (Sigma-Aldrich). RNA was isolated from
lysates using RNeasy Micro Kit (QIAGEN) according to the
manufacturer’s instructions. RNA was quantified using a Qubit
2.0 Fluorimeter (Thermo Fisher Scientific). RNA samples were
assessed using a 2200 TapeStation (Agilent Technologies) and
deemed of acceptable quality if they had an RNA Integrity
Number (RIN) of greater than 8.0.

RNA-Seq
The TruSeq R© Stranded mRNA assay (Illumina Inc.) was used to
generate libraries according to the manufacturer’s protocol. The
loaded flow-cell was then paired-end sequenced (76 + 76 cycles,
plus indices) on an Illumina HiSeq4000 instrument. Finally,
the output data was demultiplexed allowing one mismatch
and converted to fastq format by bcl2fastq software (Version
2.17.1.14, Illumina Inc.). The quality of the unmapped paired-end
sequences was assessed by FastQC (Version 0.11.7, Babraham
Institute). Trimmomatic (Version 0.36) was then used to trim
sequence adaptors and low-quality reads. Reads were mapped
against the reference human genome (hg38) and counts per
gene were calculated using annotation from GENCODE 27
using STAR (Version 2.5.3). The minimum proportion of reads
that were uniquely mapped and counted into annotated genes
was 80%.

Normalization of uniquely mapped reads was calculated with
DESeq2 (Version 1.16.1) using the median of ratios method
that accounts for RNA composition and sequencing depth, after
which the software performed principal component analysis
(PCA) and calculated differential expression using the multiple
comparison correction of Benjamini-Hochberg on differentially
expressed (DE) genes in which a False Discovery Rate
(FDR) <0.05 was considered significant. Gene ontology (GO)
enrichment analysis (AmiGO2, Version 2.5) and identification
of upstream regulators of gene expression (Ingenuity Pathway
Analysis, QIAGEN, Version 44691306) were performed on DE
genes with a FDR <0.05 (Fisher’s Exact with FDR multiple test
correction) and a real fold change >2. Gene set enrichment
analysis (GSEA) was performed as described previously (21).

Statistical Analysis
Statistical analysis of in vitro functional data was undertaken
using Prism (Version 7.0, GraphPad Software). Parametric
distribution of the data was confirmed by the Shapiro-Wilk
normality test. The significance levels were set at p ≤ 0.05
and FDR ≤ 0.05.

RESULTS

Recovery of Infant Alveolar Macrophages
From Non-inflamed Infant Lungs
To obtain AMφs from infants without active clinical
inflammation we performed bronchoalveolar lavage (BAL)
during rigid bronchoscopy for the investigation of suspected
airway abnormality. Since BAL is usually performed by flexible
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TABLE 1 | Baseline characteristics and macrophage yield of participants.

Infants

(n = 20)

Adults

(n = 20)

Age, median (range) 11 months (6-23) 59 years (36-78)

Gender

Male 9 (45%) 11 (55%)

Female 11 (55%) 9 (45%)

Ethnicity

White European 18 (90%) 19 (95%)

Asian 2 (10%) 1 (5%)

Clinical indication

(n, %)

Stridor (13, 65%)

Cyanotic episodes (4, 20%)

Recurrent croup (2, 10%)

Hoarse cry (1, 5%)

Persistent cough (11, 55%)

Haemoptysis (9, 45%)

Diagnosis (n, %) Normal (11, 55%)

Laryngomalacia (6, 30%)

Laryngeal web (1, 5%)

Tracheomalacia (2, 10%)

Normal (20, 100%)

BAL fluid instilled (mL),

median (range)

15 (5-20) 50 (40-100)

BAL fluid retrieval (%),

median (range)

20 (5-40) 40 (20-66)

AMφ yield (cells × 105),

median (range)

2.9 (1.8–18) 2.35 (1.2–13)

bronchoscopy for the investigation of infection/inflammation
(22), this required the development of a method of
instilling/recovering saline from the lower respiratory tract
(Supplementary Video 1). Using this technique, we obtained
BAL from 20 infants. We also performed BAL on 20 adults by
flexible bronchoscopy (Table 1).

None of the infants had received BCG vaccination,
while all adults had received BCG vaccination during
childhood/adolescence. None of the participants had a contact
history with an individual with Mtb or a family history of Mtb.
The QuantiFERON-TB Gold Plus assay that analyses IFNγ

release to Mtb-specific antigens was negative (IFNγ < 0.35 IU/L)
in all participants. None of the infants had a history of chronic
illness, and chronic conditions in adults included hypertension
in 8/20 (40%), hypercholesterolemia in 6/20 (20%), ischemic
heart disease in 4/20 (20%), type 2 diabetes mellitus in 4/20 (20%)
and breast cancer in remission in 2/20 (10%). In adults, 8/20
(40%) had never smoked, 6/20 (30%) identified as an ex-smoker
and 6/20 (30%) were current smokers. Procedures were well
tolerated by all participants. Macrophage viability was >98% in
all samples as assessed by trypan blue exclusion. Due to limited
cell numbers, each sample was only able to contribute to one
experiment (Supplementary Table 1).

Infant and Adult AMφs Express Similar
Levels of M1/M2 Activation Markers
AMφs are known to express a unique combination of phenotypic
markers due to the influence of the airwaymicroenvironment (2),
but few reports have described the immunophenotype of human
infant AMφs (23). We measured surface marker expression of

AMφs from seven infants and seven adults (Figure 1). There
was no significant difference in the expression of markers
reflecting classical M1-activation relevant to antimycobacterial
function: TLR2 (mycobacterial recognition), HLA-DR (antigen
presentation) (24), CD40 (co-stimulation) (25) and IFNGR1
(activation) (26). Similarly, there was no significant difference
in markers indicating alternative M2-activation: CD200R, Sirpα
and CD206 (2).

Impaired Mtb Control and Altered
Chemokine Production by Infant AMφs
To compare the ability of infant vs. adult AMφs to restrict
bacillary replication, we optimized a reporter assay that uses the
autoluminescent strainMtb-LuxG13 for use with primary human
AMφs (Supplementary Figure 1). Mtb-LuxG13 is produced
by transformation of M. tuberculosis H37Rv with bacterial
luciferase, which confers only live bacilli with the ability
to generate light (20). Bacterial autoluminescence correlated
with CFU in liquid broth culture and following infection of
AMφs (Supplementary Figures 1A–D). Infection of AMφs with
a MOI 10:1 was associated with a higher autoluminescence
(reflective of bacillary load) compared with MOI 5:1, despite a
similar proportion of phagocytosed bacilli and replication rate,
which was estimated from the fold-change in autoluminescence
(Supplementary Figures 1E,F). Consistent with its putative
biological function in mouse macrophages (5), treatment
with exogenous IFNγ was associated with reduced bacillary
replication in AMφs infected with Mtb-LuxG13, compared with
untreated cells (Supplementary Figure 1G). Therefore, our assay
yielded accurate and reliable measurements of mycobacterial
phagocytosis and capacity to restrict mycobacterial replication by
human AMφs.

Using this assay, we found no significant differences in the
phagocytosis of Mtb-LuxG13 by AMφs from seven infant vs.
seven adult participants (Figure 2A). However, the fold-change
in mycobacterial autoluminescence (reflective of mycobacterial
replication) was significantly higher in infant AMφs at 24 h (p
< 0.0001) and 48 h (p < 0.0001) post-infection, compared with
adult equivalents (Figure 2B). This difference was associated
with an extended lag prior to mycobacterial replication in adult
AMφs in the first 24 h post-infection, with an estimated mean
doubling time of 58 h in adult AMφs, compared with 18 h in
infant AMφs. In addition, infant AMφs produced significantly
more CXCL8 (q = 0.007) in culture supernatants at 24 h post-
infection, but significantly less CXCL9 (q = 0.007) compared
with adult AMφs (Figure 2C). There was no significant difference
in the production of TNFα, IL6, IL1β, IL10, IL12p40, IFNγ, GM-
CSF, CCL2, CCL3, or CCL4. We conclude that infant AMφs
were less capable of restrictingMtb replication and exhibit altered
chemokine production compared with adult counterparts.

Transcriptional Disparity Between
Mtb-Stimulated Infant vs. Adult AMφs
To define why infant AMφs were less capable of controlling
Mtb replication, we performed two RNA-Seq experiments to
compare gene expression of: (i) AMφs from four infants and four
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FIGURE 1 | Infant and adult AMφs have a similar immunophenotype. (A) Representative flow cytometry plots showing gating strategy to differentiate AMφs based on

their high autofluorescence (in the 488 530/30 FITC channel) and high CD64 expression, from lineage positive cells (CD3+ T cells, CD19+ B cells, CD56+ NK cells,

CD66b+ granulocytes, and CD235a+ erythrocytes) and monocytes (low autofluorescence in 488 530/30 FITC channel, lineage negative and CD64+). (B) Flow

cytometry of AMφs from seven infant BAL samples (blue representative histogram) compared with seven adults (red representative histogram), with fluorescence

minus one (gray representative histogram). Line represents median. MFI, mean fluorescence intensity.

adults following in vitro infection withM. tuberculosisH37Rv for
24 h; and (ii) freshly isolated AMφs following 1 h adherence four
infants and four adults.

There were 768 significantly differentially expressed (SDE)
genes between infants and adults in the Mtb-stimulated samples
(Figure 3A), compared with 591 SDE genes in the freshly
isolated samples (Figure 3B). Consistent with this, the second
principal component (25% variance) separated Mtb-stimulated
samples from infant and adult participants (Figure 3A), but
there was no infant vs. adult separation in a separate PCA
of the freshly isolated samples (Figure 3B). Evaluation of SDE

genes in Mtb-stimulated infant vs. adult AMφs using gene
ontology (GO) enrichment analysis revealed over-representation
of genes involved in cellular processes and components relevant
to mycobacterial immunity (Figure 3C).

Polarized Gene Expression Affecting
Specific Functional Pathways in
Mtb-Infected AMφs
Mtb-stimulated infant AMφs exhibited lower expression of
genes that promote lysosomal maturation and mycobactericidal
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FIGURE 2 | Impaired control of Mtb by Infant AMφs. (A) Phagocytosis of Mtb-LuxG13 by AMφs from seven infants and seven adults after 2 h of incubation at MOI

5:1. Proportion of phagocytosed bacteria assessed by measurement of autoluminescence after removal of extracellular bacilli with PBS washes, as a percentage of

autoluminescence before PBS washes. Each data point represents a single observation from a single participant. Bar denotes median; (B) Ability of AMφs to restrict

replication of Mtb-LuxG13. Data points represent mean (bar = SD) of AMφs from seven infants (empty circles) compared with seven adults (filled circles), and line

shows fold-change in autoluminescence calculated from serial measurements relative to zero time point, following 2 h of incubation with Mtb-LuxG13 at MOI 5:1.

Significance determined by 2-way ANOVA and denoted by ****(p < 0.0001); (C) Soluble inflammatory mediator production in culture supernatants by infant vs. adult

AMφs at 24 h post infection with Mtb-LuxG13. Significance determined by Mann-Whitney test. Statistically significant results denoted by **(q < 0.01) and after

correction for multiple comparisons by Benjamini-Hochberg method.

activity in comparison with adult equivalents (Figure 4A).
Consistent with the established role of IFNγ in initiating a
transcriptional program that results in mycobacterial killing, we
found that Mtb-stimulated infant AMφs also exhibited lower
expression of genes involved the cellular response to IFNγ,
including JAK2 and STAT1 (Figure 4A). Congruent with this, IPA
Upstream Regulator analysis predicted that inhibition of IFNγ

in infant AMφs was the most statistically significant (overlap p-
value = 1.03E-51, activation z-score = −2.8) upstream factor
responsible for the pattern of Mtb-stimulated SDE genes that we
had observed.

We also examined all SDE genes encoding chemokines and
found that Mtb-stimulated infant AMφs exhibited a lower
expression of all genes encoding mononuclear chemoattractants
compared with adult equivalents (Figure 4B). In contrast,

Mtb-stimulated infant AMφs also displayed higher expression of
all genes encoding neutrophil chemoattractants compared with
adult equivalents (Figure 4B). Of the chemokines measured in
culture supernatants, a similar trend was observed for CXCL8
which was higher in infants, and CXCL9 which was lower in
infants (Figure 2C and Supplementary Figure 2).

Overall the infant vs. adult gene expression differences in
Mtb-stimulated AMφs (lysosome function, mycobactericidal
activity, response to IFNγ and chemokine expression) appeared
relatively specific, because there was no clear infant vs. adult
pattern of gene expression among enriched GO terms for
other important antimycobacterial functions such as the
regulation of innate cytokine production (IFNγ, IL12, TNF,
IL6, and IL1β) and cell death (Supplementary Figure 3A).
There was also no clear infant vs. adult pattern of
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FIGURE 3 | Transcriptional disparity between Mtb-stimulated infant vs. adult AMφs. RNA-Seq of infant vs. adult AMφs following (A) infection with Mtb H37Rv at MOI

5:1 for 24 h; and (B) adherence of freshly isolated cells for 1 h. For volcano plots (left), blue dots represent genes that were significantly (FDR < 0.05) differentially

expressed (SDE) more highly in infants [log2(fold change>1 infant expression/adult expression)], and red dots represent genes that were SDE more highly in adults

[log2(fold change<-1 infant expression/adult expression)]. For Principal Component Analyses (right), blue dots represent each individual infant participant and red dots

represent each individual adult participant. (C) Gene ontology (GO) enrichment analysis of SDE genes in Mtb-stimulated infant vs. adult AMφs showing significantly

enriched GO terms for cellular processes (top) and cellular components (bottom).

expression of genes encoding Mtb phagocytosis receptors
(Supplementary Figure 3B) (29–31).

We also tested whether the gene expression exhibited by
Mtb-infected infant or adult AMφs may be concordant with
previously published transcriptomic studies of Mtb-stimulated
macrophages (27, 28), using Gene Set Enrichment Analysis
(GSEA). We found significant overrepresentation of genes that
have previously been associated with infection of AMφs with
Mtb H37Rv vs. the avirulent strain H37Ra (p= 0.03) (Figure 4C,
Supplementary Table 2) as well as genes associated with severe
clinical TB (p = 0.048) (Figure 4D, Supplementary Table 3) in

our transcriptomic data of Mtb-infected infant AMφs, relative to
adult equivalents.

We then examined RNA-Seq data from the freshly isolated
samples to ascertain whether differential infant vs. adult gene
expression in the steady state condition might predict the
differences that we had observed in the Mtb-stimulated samples.
Of the 13 SDE genes encoding chemokines in theMtb-stimulated
samples, two neutrophil chemoattractants (CXCL1 and CXCL2)
were significantly more highly expressed in freshly isolated
infant AMφs compared with adult equivalents. Of the 26 Mtb-
stimulated SDE genes involved in IFNγ signaling, lysosome
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FIGURE 4 | Polarized gene expression affecting specific functional pathways in Mtb-infected AMφs. (A) Expression profile of SDE genes in Mtb-stimulated infant vs.

adult AMφs involved in lysosome function (GO: 0000323), response to bacterium (GO:0009617) and cellular response to IFNγ (GO: 0071346); and (B) Expression

profile of all SDE genes encoding chemokines in Mtb-stimulated infant vs. adult AMφs. Scale intensity represents Z-score. (C) Enrichment of 36 genes in the

transcriptome of Mtb-stimulated infant/adult AMφs previously shown to be upregulated in AMφ in response to H37Rv Mtb relative to the avirulent H37Ra Mtb strain in

(27); and (D) Enrichment of 12 genes in the transcriptome of Mtb-stimulated infant/adult AMφs previously shown to be upregulated in Mtb-stimulated

monocyte-derived macrophages from patients who had previously recovered from TB meningitis and pulmonary TB, relative to equivalents from patients with latent

TB (28). GSEA plots showing all genes from Mtb-stimulated dataset ranked horizontally from highest differential expression in infants (red) to highest differential

expression in adults (blue). The enrichment profile (green line) shows the degree of overrepresentation of previously published sets of genes (vertical black lines).

Analysis performed using GSEA software (Version 6.3, Broad Institute).

function and mycobactericidal activity, none were differentially
expressed in freshly isolated infant vs. adult AMφs. Therefore,
the infant vs. adult differences in gene expression observed
in Mtb-stimulated AMφs were not observed in the steady
state condition.

We also undertook GO enrichment analysis of the SDE
genes from freshly isolated samples to identify other areas of
cellular functioning that may differ between infant and adult
AMφs in steady state conditions. This unexpectedly revealed
significant enrichment (FDR 4.78E-07) of genes involved in
regulation of cell cycle, in which freshly isolated infant AMφs
exhibited higher expression of genes involved in both the positive

and negative regulation of cell cycle, compared with adult
equivalents (Supplementary Figure 4).

DISCUSSION

We provide the first clinically relevant comparison of infant
vs. adult human AMφs. Following Mtb infection, infant AMφs
were less able to restrict mycobacterial replication, despite
similar degrees of bacterial phagocytosis. They also exhibited
reduced expression of genes involved in lysosome function,
mycobactericidal activity and response to IFNγ. Furthermore,
Mtb-stimulated infant AMφs also exhibited lower expression of
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chemokines that recruit mononuclear cells and exhibited higher
expression of chemokines that recruit neutrophils. Our results
are consistent with historical autopsy studies of untreated infants
with TB, in whom granulomas are characterized by bacillary
outgrowth, fewer mononuclear cells and increased neutrophils
(8, 9). The clinical relevance of our data is further illustrated by
enrichment of a previously described set of genes associated with
disseminated TB in the transcriptome of our Mtb-stimulated
infant AMφs (28).

The key role of IFNγ in mycobacterial immunity has been
defined in part by monogenic defects in the “IFNγ/IL12 circuit”
that cause susceptibility to avirulent mycobacterial infection,
collectively termed Mendelian Susceptibility to Mycobacterial
Disease (32). Functionally, ligation of the IFNγ receptor of
Mtb-infected murine macrophages results in antimycobacterial
effector action such as ROS production, phagolysosome
maturation, autophagy and cytokine/chemokine production (5).
However, few previous studies have tested the effect of exogenous
IFNγ on Mtb replication in human primary AMφs (15, 33).
Using an autoluminescent reporter assay, we demonstrate a
reduced rate of Mtb replication in IFNγ-treated AMφs from
adult participants. Importantly, our data also show that infant
AMφs may be intrinsically less responsive to IFNγ compared
with adult equivalents, and that IFNγ is a master regulator of
the transcriptional differences observed. The unresponsiveness
of infant AMφs to IFNγ might be caused by their lack of
exposure to viral infections, which have been shown to drive
training and “innate macrophage memory” through CD8+
T cell-mediated priming of AMφs by IFNγ (4). Infant AMφs
also exhibited lower expression of the IFNγ-stimulated gene
(ISG) CYBB, which encodes a membrane-bound subunit of the
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
system responsible for ROS production, mutations of which
are associated with susceptibility to mycobacterial infection
(34). In addition, infant AMφs exhibited lower expression of
genes involved in antimycobacterial phagosome maturation
(DRAM2 and UVRAG) that are not known to be ISGs (35).
Alongside this, infant AMφs exhibited lower expression of genes
involved in lysosome functioning (ACP5 and FUCA1), including
cholesterol breakdown (LIPA) and efflux (ABCA2) (36–38).
Mtb preferentially utilizes host cholesterol as a fuel source
and reduced cholesterol breakdown may lead to intracellular
persistence of bacteria (39). Furthermore, lysosomal dysfunction
is associated with impaired macrophage migration (40), which
may lead to poorer containment of Mtb (14).

As the first cells to be infected by Mtb, AMφs are key
producers of chemokines (5). Recruitment of mononuclear cells
is non-redundant in mycobacterial immunity and granuloma
formation (41). For example, Ccr2−/– and Cxcr3−/– mice
exhibit decreased monocyte and lymphocyte recruitment and
dysfunctional granuloma formation (42, 43). In particular,
chemokines that signal through CXCR3 (CXCL9, CXCL10, and
CXCL11) recruit protective IFNγ-producing T helper type 1 cells
(42). We observed that infant AMφs displayed lower expression
of all seven SDE genes encoding mononuclear chemokines that
signal through three receptors: CCR1 (CCL7, CCL8, CCL13),
CCR2 (CCL2, CCL7, CCL8, CCL13), and CXCR3 (CXCL9,

CXCL10, CXCL11) (41). We also show that infant AMφs display
higher expression of genes encoding chemokines that attract
neutrophils through CXCR1 and CXCR2 (CXCL1, CXCL2,
CXCL5, CXCL6, PPBP, CXCL8). Neutrophil accumulation may
be detrimental, as demonstrated by observations of Mtb-infected
necrotic neutrophils promoting mycobacterial outgrowth,
and improved survival of Mtb-infected mice if neutrophil
infiltration is inhibited (44, 45). Vulnerability to severe TB and
dysfunctional granuloma production in infants may therefore
partly occur through disordered chemokine production by
their AMφs.

We found that unstimulated infant AMφs exhibited higher
expression of genes involved in both the positive and negative
regulation of cell cycle compared with adult equivalents. Early
childhood is a period of rapid structural change in the lung,
including exponential increase in the number of alveoli (46).
Investigators estimate that each alveolus contains up to five
AMφs (47), and so the dominance of cell cycle associated genes
may reflect macrophage expansion to fill the developing niche.

The main limitation of this study is the small number
of participants. A greater number of participants may help
with understanding the variability within the infant and
adult participant groups. Adult participants should ideally be
relatively young, as macrophage function may be impaired in
older adults. Furthermore, we cannot rule out if macrophage
function was confounded in some participants by exposure to
cigarette smoke, inhalational anesthesia, or gastro-esophageal
reflux which commonly co-exists with laryngomalacia (48–50).
Another potential source of confounding in our study was
that adults, but not infants, had received BCG vaccination,
which has been shown to educate hematopoietic stem cells
to produce trained monocytes and macrophages (51). Despite
these limitations we were able to elicit statistically significant
functional and transcriptomic differences between infant and
adult AMφs. Now that feasibility of sampling is demonstrated,
our data should prompt future studies that comprehensively
compare infant and adult lung microenvironments, in particular
factors known to affect early control of Mtb infection such as
interstitial macrophages, dendritic cells, alveolar epithelial cells,
respiratory microbiota and soluble factors/opsonins (14, 52, 53).
Ideally, these studies would also define further the extent of
infant AMφ dysfunction in mycobacterial immunity, including
areas that we did not specifically assess functionally (e.g., cell
death, response to IFNγ, phagolysosomal maturation, autophagy,
eicosanoid production) as well as mechanistic studies to better
understand the relevance of infant AMφ dysfunction described
in our data (e.g., chemokine production) (5). This work should
also assess the expression of bacterial virulence factors in Mtb-
infected infant AMφ compared with adult equivalents, given our
finding that a previously determined transcriptomic signature of
mycobacterial virulence was significantly enriched in our Mtb-
stimulated infant AMφ transcriptomic data (27). Non-human
primate models could explore whether the observed pattern
of AMφ dysfunction in the human infant results in delayed
recruitment of mononuclear cells, impaired Th1 immunity and
granuloma formation, and increased haematogenous spread of
bacilli (54).

Frontiers in Immunology | www.frontiersin.org 9 March 2020 | Volume 11 | Article 486

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Goenka et al. Mycobacterial Immunity of Infant Alveolar Macrophages

Novel and fundamental insights into mycobacterial
immunity are required to overcome the current impasse in
TB vaccination and therapeutics. Taken together, our results
provide the first evidence that age-dependent differences
in AMφ function may contribute to clinical vulnerability
to TB. Improved understanding of the age-dependent
microenvironmental factors that may drive trained immunity
of AMφs may inform the design of novel therapeutics
with broad clinical applications against infectious and
allergic disease.
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