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Since cell nucleus is one of the most vulnerable compartments, the maximum therapeutic
effect from a variety of locally acting agents, such as photosensitizers, alfa-emitters, Auger
electron emitters, will be expected when they get there. Therefore, the targeted delivery of
these agents into the nuclei of target tumor cells is necessary for their anticancer effects
and minimization of side effects. Modular nanotransporters (MNT) are artificial
polypeptides comprising several predefined modules that recognize target cell,
launching their subsequent internalization, escape from endosomes, and transport the
drug load to the nucleus. This technology significantly enhances the cytotoxicity of locally
acting drugs in vitro and in vivo. Epidermal growth factor receptors (EGFR) are useful
molecular targets as they are overexpressed in glioblastoma, head-and-neck cancer,
bladder cancer, and other malignancies. Here, we examined the possibility of using
internalizable anti-EGFR affibody as an EGFR-targeting MNT module for drug transport
into the cancer cell nuclei. It binds to both murine and human EGFR facilitating preclinical
studies. We showed that MNT with affibody on the N-terminus (MNTN-affibody) effectively
delivered the Auger electron emitter 111In to target cell nuclei and had pronounced
cytotoxic efficacy against EGFR-overexpressing human A431 epidermoid carcinoma
cells. Using EGFR-expressing human adenocarcinoma MCF-7 cells, we demonstrated
that in contrast to MNT with N-terminal epidermal growth factor (EGF), MNTN-affibody and
MNT with EGF on the C-terminus did not stimulate cancer cell proliferation.

Keywords: affibody, cancer, epidermal growth factor receptors, modular nanotransporters, nuclear targeting,
targeted drug delivery
INTRODUCTION

Today a great interest in pharmacology sphere is the design of drugs that have a local damaging
effect and are able to selectively uptake by the target cells (Rosenblum et al., 2018; Sobolev, 2018).
Locally acting cytotoxic agents, in particular Auger electron emitters, have great therapeutic
potential that can be used to antitumor treatment. These agents are able to damage biomolecules
in.org March 2020 | Volume 11 | Article 1761
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within a few tens of nanometers from their location but have no
effect at large distances. Different cell compartments have
different resistance to certain damaging agents; the cell nucleus
is the most vulnerable compartments to many of them. It
determines the importance of development targeted systems
for their delivery to reach a significant effect without damaging
non-target cells. This approach would minimize side effects and
increase the effectiveness of treatment with reducing the
minimum required concentration of the drug. Research in this
area, in particular, is aimed at creating different intranuclear
delivery systems conjugated with locally acting cytotoxic
compounds (such as Auger electron emitters, photosensitizers,
etc.) (Pan et al., 2018). One such approach is the creation of
conjugates with EGF, one of the natural ligands to EGFR (Reilly
et al., 2000; Cornelissen et al., 2013).

EGFR, also known as HER1 and ErbB1, has received much
attention as a marker, growth driver, and therapeutic target for
cancers (Nicholson et al., 2001; Ciardiello and Tortora, 2008; Xu
et al., 2017; Sigismund et al., 2018). EGF and several other
natural ligands activate EGFR and its downstream signaling
pathways (Wang, 2017). Induction of these pro-oncogenic
pathways stimulates cancer cell proliferation, migration,
survival, DNA-double strand break repair, and hypoxia
tolerance, mediates resistance to therapy and inhibits apoptosis
(Rodemann et al., 2007; Bussink et al., 2008, Sigismund et al.,
2018). Upregulation of this receptor may cause malignization as
EGFR plays an important role in the regulation of cell division
(Wang, 2017). Abnormal EGFR overexpression and signaling are
associated with malignant tumors of the lung (Hirsch et al.,
2009), pancreas (Lemoine et al., 1992; Ueda et al., 2004), brain
(Hicks et al., 2006), bladder (Chow et al., 1997; Hashmi et al.,
2018), breast (Wang et al., 2017), prostate (Peraldo-Neia et al.,
2011), and other cancers (Mendelsohn and Baselga, 2000;
Ciardiello and Tortora, 2008). EGFR, upon binding to its
ligand, is not only capable to activate other signaling proteins,
but is also transported inside endosomes from the surface of the
cell membrane (Sorkin and Goh, 2009). It has been shown for
tumor cells that part of ligand-bound EGF translocates into the
cell nuclei (Reilly et al., 2000; Hicks et al., 2006; De Angelis
Campos et al., 2011; Sobolev, 2018). Based on the data obtained,
numerous attempts have been made to create a drug where
EGFR would be used as a vehicle for various agents, such as, for
example, Auger-electron emitter 111In, Staphylococcal
enterotoxin A, etc. Several therapeutic approaches exploiting
EGFR for this purpose have been evaluated in vitro and in vivo
(Chen et al., 2002; Song et al., 2016; Zahaf et al., 2017; Liu
et al., 2018).

However, since the part of the EGF transported to the nucleus
is extremely small (about 7–8%) compared to the cell-bound
EGF within 4 h after adding (Reilly et al., 2000), another method
should be developed to increase the efficiency of delivery of the
cytotoxic agent to the cell nuclei. One of these developments is
the modular nanotransporters (MNT) designed in our laboratory
(Gilyazova et al., 2006; Rosenkranz et al., 2018). MNT were
designed to deliver locally acting drugs such as photosensitizers
and radionuclide-emitting short-range particles to the nuclei of
Frontiers in Pharmacology | www.frontiersin.org 2
the target cells (Sobolev, 2008; Sobolev et al., 2016; Sobolev,
2018). We used Auger electron emitters, because they combine
two important characteristics. On the one hand, Auger electrons
have a high linear energy transfer, which leads to multiple
damage of macromolecules, and on the other hand, their path
length is extremely small and in most cases does not exceed
several tens of nanometers, which greatly reduces the
cytotoxicity of Auger electron emitters for tissues if decay
occurs outside the cell nucleus (Kassis and Adelstein, 2005).

We designed an EGFR-recognizing modular nanotransporter
consisting of EGF as a ligand module for selective recognition of
target cells overexpressing EGFR, an endosomolytic module
based on the translocation domain of the diphtheria toxin, a
module containing an optimized nuclear localization sequence
(NLS) of the SV40 large T antigen for active nuclear transport by
the importin-a/b carrier protein complex (Goldfarb et al., 2004),
and a carrier module based on the E. coli hemoglobin-like
protein HMP (Rosenkranz et al., 2008). Scheme of the MNT
transport into the cell nucleus of a target cell is depicted in
Figure 1.

This modular nanotransporter is named DTox-HMP-NLS-
EGF (or, MNTC-EGF, where C-EGF indicates that EGF is
localized to the C-terminal in the MNT). The experiments with
this MNT were carried out on several cell lines in particular on
human A431 epidermoid carcinoma cells. It was shown that
MNTC-EGF efficiently delivered drugs to the cell nucleus of the
target cells and enhanced their cytotoxic efficacy in vitro
(Gilyazova et al., 2006; Rosenkranz et al., 2008; Slastnikova
et al., 2012a; Koumarianou et al., 2014; Slastnikova et al.,
2017b; Rosenkranz et al., 2018) and in vivo (Slastnikova et al.,
2012a; Slastnikova et al., 2012b; Slastnikova et al., 2017b;
Rosenkranz et al., 2018). Thus, in in vitro experiments it was
shown that the concentration of the drug agent (Auger electron
emitters 111In, 67Ga, 125I, or alpha-particle emitter 211At or
photosensitizers bacteriochlorin p or chlorin e6) corresponding
to 50% survival of cancer cells was up to 3000 times higher for
free chlorin e6 or corresponding to 37% survival up to 4000 times
for 125I compared to MNT-agent conjugates (Gilyazova et al.,
2006; Rosenkranz et al., 2008; Slastnikova et al., 2012a;
Koumarianou et al., 2014; Slastnikova et al., 2017b). In vivo
experiments on tumor-bearing mice proved that locoregional
injection of MNTC-EGF conjugated with 111In resulted in
significant tumor growth inhibition compared to tumor-
bearing animals receiving a corresponding dose of non-labeled
MNT or free 111In (Rosenkranz et al., 2018).

When EGF is used as a ligand in drug delivery vehicles, it can
affect cellular signaling and stimulates events leading to enhances
cancer cell proliferation (Chen et al., 2002; Kim et al., 2015). EGF
and other natural l igands induce dimerization and
autophosphorylation of EGFR (Schlessinger, 2002) and
subsequent internalization (Friedman and Stahl, 2009) of the
receptor. Downstream activation of the phosphatidylinositol-3-
kinase (PI3-K)/protein kinase B (AKT) (PI3-K/AKT pathway),
Ras and STAT signaling cascades (Citri and Yarden, 2006;
Rodemann e t a l . , 2007 ) l e ads to s t imu la t i on o f
proliferation, inhibit apoptosis, and promote migration
March 2020 | Volume 11 | Article 176
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(Seshacharyulu et al., 2012). In order to avoid ligand-mediated
activation of the downstream cascades researchers developed
alternative EGFR ligands such as EGFt, a truncated form of
human EGF (hEGF) lacking the eight C-terminal amino acids
(Panosa et al., 2015), artificial EGFR ligands such as small
antibody-like protein on the basis of Z-domain of A-protein:
anti-EGFR affibody (ZEGFR:1907) (Kim et al., 2012; Stahl et al.,
2017), and anti-EGFR nanobody (Roovers et al., 2007).

In our previous experiments we used MNT with EGF at the
C-terminus (MNTC-EGF) and revealed that it had no effect on cell
growth (Rosenkranz et al., 2018). However, as in vivo
degradation of the EGF-containing MNT potentially can lead
to EGFR-activating products, we examined the possibility of
using a newMNT with the affibody to EGFR. Affibody Z1907 does
not influence on cell proliferation (Ekerljung et al., 2012), so we
tested it as a ligand module. Based on the findings of earlier
studies (Kim et al., 2012; Kim et al., 2013), we placed the affibody
on the N-terminus of the MNT. Therefore, another reason of
creating the new MNT was a palette extension, which would
expand the possibility of modification of the MNT with
additional functional modules. MNTC-EGF and the new MNT
with EGF at the N-terminus (MNTN-EGF) served as controls. The
Frontiers in Pharmacology | www.frontiersin.org 3
effects of these MNT on the proliferation of cells overexpressing
surface EGFR were investigated. We also explored the ability of
these MNT to deliver the cytotoxic agent 111In, an Auger-
electron emitter, to target cell nuclei.
MATERIALS AND METHODS

Materials
Human A431 ep ide rmoid car c inoma and MCF-7
adenocarcinoma cells were obtained from the American Type
Culture Collection (ATCC; Manassas, VA, USA). They were
passaged in the laboratory less than 30 times. All media, cell
culture components, and 3-[4,5-dimethylthiazol-2-yl]-2,5
diphenyltetrazolium bromide (MTT) were purchased from
Paneco (Moscow, Russia). Escherichia сoli C3029 cells were
purchased from New England Biolabs (Ipswich, MA, USA).
Ni-NTA agarose was purchased from Qiagen (Hilden,
Germany). Alexa Fluor 647 succinimidyl ester was purchased
from Molecular Probes (Eugene, OR, USA). The bifunctional
chelator 2-S-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-
1,4,7-triacetic acid (p-SCN-BnNOTA) was obtained from
FIGURE 1 | A schematic diagram depicting the stages of the MNT transport to the cell nucleus of the EGFR-expressing target cells. (Reproduced with slight
modification from Sobolev, 2008 Bioessays. 2008 Mar;30(3):278-87. doi: 10.1002/bies.20715, with permission).
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Macrocyclics (Plano, TX, USA). The 111InCl3 was obtained from
Zavod Medradiopreparat (Moscow, Russia). The 125I was
acquired from the Khlopin Radium Institute (Saint Petersburg,
Russia). The 1,4-dithiothreitol (DTT) was purchased from Fisher
Scientific (Schwerte, Germany). Mini-Protean® TGX Any kD™
gels were purchased from Bio-Rad Laboratories (Hercules, CA,
USA). LB Broth Miller-Novagen, a granulated E. coli cultivation
medium, was purchased from Helicon (Moscow, Russia). EGTA
and EDTA were obtained from Serva (Heidelberg, Germany).
Isopropyl b-D-1-thiogalactopyranoside (IPTG) and Amicon
Ultracel-30K centrifugal filter units were procured from Merck
(Darmstadt, Germany). Antibodies were purchased from Abcam
(Cambridge, UK). SYBR Green was purchased from Lumiprobe
(Moscow, Russia). 1,3,4,6-Tetrachloro-3a,6a-diphenylglycouril
(Iodogen), KCl, NaHCO3, MgCl2, and CaCl2 were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Calcein was obtained
from Fluka (Munich, Germany).

Methods
Cell Culture
Human A431 ep ide rmoid car c inoma and MCF-7
adenocarcinoma cells overexpressing EGFR were maintained in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% calf fetal serum (CFS) and 50 mg ml−1 gentamicin at
37°C under a 5% CO2 humidified atmosphere.

Plasmid Construction and Protein Purification
A DNA fragment encoding EGF was amplified by PCR from the
6His-DTox-HMP-NLS-EGF (MNTC-EGF) gene and subcloned into
a plasmid encoding 6His-DTox-HMP-NLS (Gilyazova et al., 2006).
The product was EGF-6His-DTox-HMP-NLS (MNTN-EGF). The
anti-EGFR affibody gene was synthesized by General Biosystems
(Morrisville, NC, USA) based on a published amino acid
sequence (Stahl et al., 2017), and subcloned into 6His-DTox-
HMP-NLS. The product was the affibody-6His-DTox-HMP-
NLS (MNTN-affibody) plasmid.

E. coli C3029 cells were transformed with MNTC-EGF, MNTN-

EGF, or MNTN-affibody plasmids and grown on LB Broth Miller-
Novagen with ampicillin (100 mg ml−1) to A600 = 0.6 at 37°C.
They were induced overnight with 0.2 mM IPTG at 18°C.
Proteins were purified with Ni-NTA from the soluble fraction
of E. coli lysate as previously described (Gilyazova et al., 2006).

Binding of the MNT to the EGFR
Binding of the new MNT to EGFR was assessed on A431 cells by
a competitive radioligand binding assay with 125I-labeled EGF as
previously described using Iodogen (Rosenkranz et al., 2008;
Slastnikova et al., 2012a).

EGF and 40 MBq of radioiodide in 0.05 M sodium borate
buffer (pH 8.5) were incubated in glass vials coated with 10 mg of
Iodogen for 15 min on ice. Radioiodinated EGF was purified by
gel-filtration through a PD-10 column (GE Healthcare, Chicago,
IL, USA) that was eluted with phosphate-buffered saline
(pH 7.5).

The competitive radioligand analysis MNT binding was
accomplished with A431 cells in 48-well plates overnight at 4°C
with 1 nM of 125I-EGF and indicated concentrations of MNT in
Frontiers in Pharmacology | www.frontiersin.org 4
the DMEM medium without sodium bicarbonate supplemented
with 10 mg/ml of bovine serum albumin and 20 mM 4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid (pH 7.5). The
cells were washed four times with the same medium on ice,
lysed in 1 M NaOH for 30 min, and the radioactivity associated
with the cell lysates was measured using RiaGamma counter 1271
(LKB Wallac, Sollentuna, Sweden).

Functional Activity of the Endosomolytic Module
The ability of the new MNT to provide liposome leakage was
demonstrated on unilamellar liposomes from egg lecithin
(Khimpharmzavod, Kharkov, Ukraine) loaded with the
fluorescent dye calcein (Fluka, Munich, Germany) in
accordance with a previously published protocol (Khramtsov
et al., 2008). In brief, the unilamellar liposomes loaded with
fluorescent calcein up to the concentration of fluorescence
quenching (100 mM) were prepared by sonicating fresh lipid
suspension in 20 mM HEPES, 20 mM MES, 20 mM citrate, 150
mM NaCl, pH 7.4 (liposome buffer) until clear, using a W-181-T
sonicator (Finnsonik, Lahti, Finland; 40 kHz, 90W, 0°C, 30 min),
and passed 10 times through Durapore filters with 0.22 mm pore
diameter (Millipore, Burlington, MA, USA) to standardize
liposomes sizes. The liposomes were stored under an argon
atmosphere at 4°C for several months. PD-10-purified
liposomes were incubated with 100 nM MNT for 30 min in
liposome buffer at indicated pH (3–7.5) in triplicates after that
samples were diluted tenfold in liposome buffer, pH 7.5 and
fluorescence of leaked calcein was measured at 520 nm at
excitation wavelength 490 nm. As a positive control (100%
calcein leakage) we used addition Triton X-100 up to 0.5%.
The samples without MNT were used as background leakage.

Conjugation of Alexa Fluor 647 to MNT
Freshly prepared 9.8 mM Alexa Fluor 647 succinimidyl ester was
added in 5:1 molar excess to MNTN-EGF, MNTN-affibody, MNTC-EGF,
or ligand-free MNT solutions in carbonate buffer at pH 8.6. After
overnight incubation with gentle stirring at 4°C, the Alexa Fluor
647-labeled MNT were separated from the unreacted fluorophore
by five cycles of Amicon Ultracel-30K ultrafiltration. The
quantification of Alexa Fluor 647 MNT labeling (near 3.5 Alexa
residues per MNT for all of them) was carried out by
spectrophotometry. Alexa Fluor 647 extinction coefficient
ϵ650nm = 270,000 M–1 cm–1. The MNT protein concentration was
determined by the Bradford assay.

Flow Cytometry Studies of Alexa Fluor 647-labeled
MNT Internalization in EGFR-expressing Cells
EGFR-expressing A431 cells were seeded in 24-well plates
(2.5 × 104 cells/well), a couple days afterward the medium was
changed for a fresh one and AlexaFluor 647 labeled MNT were
added (n = 4 per each point) to a final concentration of 100 nM.
After 18-h incubation at 37°C in a 5% CO2 humidified
atmosphere, medium containing unbound MNT was removed
and the cells were washed thrice, trypsinized to detach and
remove cell-surface bound MNT, harvested, dissolved in
Hanks’ solution with CFS and analyzed by flow cytometry
using an Epics Altra Flow Cytometer (Beckman Coulter,
March 2020 | Volume 11 | Article 176
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Miami, Florida, USA). The Alexa Fluor 647 dye was excited at
633 nm, and emission was detected at 675 nm. A total of 1 × 104

gated events were collected per sample. To assess the nonspecific
uptake parallel wells (n = 4 per each point) with free EGF excess
(2 mM) were processed in the same way. Untreated cells were
used as an autofluorescence control.

Confocal Laser-Scanning Microscopy Imaging
EGFR-expressing A431 cells were seeded in 24-well cell imaging
black plates with glass bottoms (1.5 × 104 cells well−1). After 2 d,
the medium was changed, and Alexa Fluor 647-labeled MNT
were added to final concentrations of 50 nM.

Prior to imaging, SYBR Green (1:10,000 dilution) was added
to the cells to visualize the nuclei. After incubation with Alexa
Fluor 647-labeled MNT, the cells were examined under the LSM-
510 Meta NLO multiphoton laser scanning microscope fitted
with a Plan-Apochromat ×63/1.4 Oil DIC lens (Carl Zeiss,
Oberkochen, Germany). SYBR Green fluorescence was
recorded at an excitation wavelength of 488 nm and an
emission wavelength bandpass of 500 to 530 nm. Alexa Fluor
647 fluorescence was recorded at an excitation wavelength of 633
nm and an emission wavelength bandpass of 650 to 710 nm. The
mean intranuclear fluorescence at 7 and at 48 h of Alexa 647-
labeled MNT toward SYBR Green were calculated using
multiphoton laser scanning microscope software.

Interactions of the MNT with a/b Importins Evaluated
by Thermophoresis
Importins a and b were obtained as previously described
(Gilyazova et al., 2006). Importin b was conjugated with Cy3
dye and separated from unbound dye on a PD-10 column (GE
Healthcare, Chicago, IL, USA). Importins were diluted in
importin buffer (pH 7.4) containing 20 mM HEPES, 110 mM
KCl, 5 mM NaHCO3, 5 mM MgCl2, 0.1 mM CaCl2, 1 mM
EGTA, and 1 mM DTT. Importin heterodimers were used at
equimolar concentrations of 50 nM. MNTN-EGF, MNTc-EGF, and
MNTN-affibody were serially diluted in buffer with a/b importins.
The initial concentrations were 1 µM for MNTN-EGF and 4 µM
for MNTN-affibody and MNTC-EGF. The strengths of the
interactions between the MNT and the a/b importins were
measured with a MonolithNT.115 instrument (NanoTemper
Technologies, Munich, Germany). The binding affinities (Kd)
were automatically interpolated from a fitted curve by
MonolithNT.115 Instruments software (NanoTemper
Technologies, Munich, Germany).

Labeling MNT With 111In Using p-SCN-Bn-NOTA
MNTC-EGF, MNTN-affibody, and MNTN-EGF were labeled in
accordance with a previously published protocol (Slastnikova
et al., 2017a). MNT were incubated with 10-fold molar excess of
the bifunctional p-SCN-Bn-NOTA chelator in conjugation
carbonate buffer at pH 8.6 (Hens et al., 2009) for 20 h at room
temperature with final concentrations of MNT ≥1.5 mg/ml. The
chelator-MNT conjugate was concentrated and separated from
excess chelator by five cycles of ultrafiltration using Amicon
Ultracel-30K. During this process, the conjugation buffer was
gradually replaced with 10 mM 4-(2-hydroxyethyl)-1-
Frontiers in Pharmacology | www.frontiersin.org 5
piperazineethanesulfonic acid (HEPES), 15 mM NaCl, pH 7.4.
All buffers used for chelator conjugation and labeling procedures
were passed through Chelex-100 resin (200–400 mesh; Bio-Rad)
to minimize adventitious metal ion contamination.

For 111In labeling NOTA-MNTC-EGF, NOTA-MNTN-affibody

and NOTA-MNTN-EGF (0.2 mg, 0.04 mg, and 0.04 mg,
respectively) in 10 mM HEPES, 15 mM NaCl, pH 7.5, was
mixed with 1 M HEPES, pH 7.5, 0.1 M citrate, pH 6.7, 1% SDS,
and 0.25 M HCl (Ultrapure Grade, Merck, Darmstadt,
Germany); then 111InCl3 in 0.048 M HCl was added. The
reaction mixture was incubated at 37°C for 1 h, and then the
reaction was stopped by adding 3 ml 0.05 M EDTA, pH 8.0,
followed by gentle mixing and incubation for 10 min at 37°C.
Finally, the pH was neutralized with 1 M NaOH. The initial
specific radioactivity of either FR-targeted 111In-MNT, obtained
using this protocol, was 2.7 GBq mg−1. As a control, 111In was
treated following the same procedures except that the NOTA-
MNT was omitted in the reaction mixture. Radiochemical yields
and 111In-MNT integrity were analyzed by Laemmli SDS-PAGE
using Mini-Protean TGX Any kD gels. Radioactivity was
detected on a Storm 865 phosphor imager (GE Healthcare,
Uppsala, Sweden). Images were analyzed by ImageQuant TL v.
5.0 software (Bio-Rad Laboratories, Hercules, CA, USA).

Cytotoxicity Studies
A431 cells were seeded in 24-well plates (2 × 104 cells well−1).
After 2 d, the media were refreshed and various dilutions of
111In-NOTA-MNT (0–6.5 MBq ml−l; 0–32 mg ml−l) were added.
The 111In (0–20 MBq mv−l) was used as a control. The cells were
incubated for 48 h at 37°C under a 5% CO2 atmosphere. Medium
containing unbound radioactivity was removed. The cells were
washed by Versene solution, trypsinized, harvested, and
resuspended in 1 ml fresh medium with 10% (w/v) CFS. For a
colony-forming assay, the cells were seeded in 25-cm2

flasks
(2,000 cells flask−1) containing DMEM/F12 supplemented with
10% (w/v) CFS. After 8 d, the colonies were stained with crystal
violet and counted. Fitting was made in accordance with «one
phase decay» algorithm using GraphPad Prism 5 software.

111In-NOTA-MNT Accumulation in the Nuclei
A431 cells were seeded in 12-well plates (5 × 105 cells well−1)
containing DMEM supplemented with 10% CFS. After 2 d, the
media were refreshed and various dilutions of 111In-NOTA-
MNT (0.6 MBq ml−1; 1.9 mg ml−1) were added. The cells were
incubated for 2 h at 37°C under a 5% CO2 atmosphere. The
plates were cooled and the media containing unbound
radioactivity were removed. The cells were washed by Versene
solution, trypsinized, and harvested. The wells were washed with
ice-cold DMEM containing 10% (w/v) CFS, and the rinsate was
added to the cells samples. The cells were then centrifuged in an
Eppendorf centrifuge 5415R at 200 × g and 4°C for 7 min,
resuspended in 500 ml cold fresh medium with 10% (w/v) CFS,
and re-centrifuged. The supernatant was removed, and the cells
were resuspended in 300 ml ice-cold hypotonic buffer (25 mM
Tris-HCl (pH 7.5), 5 mM KCl, 0.5 mM DTT, 1 mM PMSF, and
0.15 U ml−1 aprotinin) and expanded on ice for 20 min. The
mixture was homogenized on ice with a Dounce homogenizer
March 2020 | Volume 11 | Article 176
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(15 strokes). Nuclei were pelleted by centrifugation at 600 × g
and 4°C for 12 min. Pelleted nuclei were washed 5× in
300 ml·wash−1·tube−1 ice-cold isotonic buffer (0.25 M sucrose, 6
mMMgCl2, 10 mM Tris-HCl (pH 7.4) 0.5% (w/v) Triton X-100,
1 mM PMSF, and 0.15 U ml−1 aprotinin) to remove
cytoplasmic membranes.

Nuclear purity was confirmed by microscopic evaluation. The
nuclei were resuspended in a Versene solution and incubated on
ice for 15 to 30 min to reduce clumping. The suspension was
centrifuged at 600 × g and 4°C for 12 min, and the nuclear yield
was determined using counting chambers.

Sample radioactivity was measured with a RiaGamma
counter 1271 (LKB Wallac, Sollentuna, Sweden). The
percentages of activity in the nuclei relative to the total
intracellular activity were calculated for all 111In-NOTA-MNT.

Nuclear purity was evaluated by western blot using antibodies
against a-tubulin (a cytoplasmic marker) and nibrin (NBS-1; a
nuclear marker).

Cell Proliferation
MCF-7 cells were seeded in 24-well plates (8 × 103 cells well−1) at
day 0 in DMEM supplemented with 0.5% (w/v) CFS. After 1 d,
the medium was refreshed with 2 ml DMEM and 0.5% CFS per
well. MNTC-EGF, MNTN-affibody, MNTN-EGF, MNT without ligand
module (MNTw/l), and human EGF were added to the cells to a
final concentration of 100 nM. The media were not changed
during the experiment. Cell growth at the indicated time points
was estimated using 0.2 ml of MTT. The resultant formazan
crystals were solubilized in 2 ml of 96° ethanol:DMSO (1:1) per
well. Absorbances and the background were read at 570 and 650
nm, respectively, on a Biotek Synergy 4 microplate reader
(Winooski, VT, USA).
Frontiers in Pharmacology | www.frontiersin.org 6
Statistics
The data were analyzed using GraphPad Prism 5 software
(GraphPad Software Inc., San Diego, CA, USA). Data on the
plots represent mean values, with bars indicating the standard
error of the mean of repetitive values. The significance of the
difference was evaluated using the Mann–Whitney U-test or
Tukey multiple comparison test. The differences were significant
when P < 0.05.
RESULTS

Here, we produced and characterized MNTN-affibody, the new
EGFR-binding MNT. Within the previously created and
characterized MNTC-EGF (Gilyazova et al., 2006), we
transferred its ligand module from C-terminus to N-terminus
and replaced EGF with the Z1907 affibody (Kim et al., 2012).
MNTN-EGF was also derived from the MNTC-EGF (Figure 2A).
The sequences of these MNT are shown in Supplements 1.

Purity of isolated and purified MNTN-affibody, MNTC-EGF and
MNTN-EGF was evaluated by Laemmli SDS PAGE, it was > 85%
for all MNT. SDS-PAGE gel of MNTN-affibody andMNTN-EGF was
shown in Figure 2B.

The binding of MNT to EGFR was evaluated with an EGFR-
expressing human A431 epidermoid carcinoma cell line. The
dissociation constants for MNTN-EGF and MNTN-affibody were
interpolated from displacement curves (Figure 3) and were
37.5 ± 5.9 nM and 34.7 ± 4.1 nM, respectively. These values
are close to those of the prototypical MNTC-EGF (29.3 nM)
(Rosenkranz et al., 2008) and indicate the ability of the new
MNT to specifically bind to the EGFR, that is necessary for
receptor-specific recognition of the target cells.
FIGURE 2 | Characteristics of the MNT. (A) A schematic diagram depicting structure of the new MNTN-affibody and MNTN-EGF and previously described MNTC-EGF.
(B) SDS-PAGE gels of MNTN-affibody (lane 1), MNTN-EGF (lane 2), MNTC-EGF (lane 3) and unstained protein markers (lane M).
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The propensity of MNT to make membrane pores via the
endosomolytic module was tested using calcein-loaded
liposomes at various pH. Maximum pH-dependent calcein
leakage (Figure 4) was observed at pH = 5.5 for all three
assessed MNT. This weakly acidic internal pH corresponds to
that of the endosome (Canton and Battaglia, 2012). Accordingly,
relocation and change of the ligand module do not influence
endosomolytic activity of the DTox module, and the new
MNT are potentially able to escape from endosomes before
fusion of late endosomes with lysosomes and subsequent
lysosomal degradation.

The ability of the Alexa Fluor 647 labeled MNT to internalize
into the target EGFR-expressing cells was shown using the flow
cytometry method. Since the cells incubated with MNT were
washed and trypsinized, the detected fluorescence signal
corresponded to internalized part of the MNT. For the cells
incubated with EGFR-binding MNT, fluorescence intensity value
Frontiers in Pharmacology | www.frontiersin.org 7
corresponding to the maximum of cell amount significantly
differs from fluorescence intensity value for non-incubated
cells (autofluorescence). The smaller difference in the signal for
MNTw/l from autofluorescence indicates that MNTw/l transport
into the cell was significantly worse than that with MNTN-affibody,
MNTN-EGF, and MNTC-EGF (Figure 5). Addition of 2 mM free
EGF to the medium significantly reduced the average
fluorescence intensity for EGFR-binding MNT that indicates
the importance of the contribution of receptor-mediated
transport. The significance of the difference was evaluated
using the Mann–Whitney U-test.

The intranuclear localizations of MNT labeled with Alexa
Fluor 647 were viewed in A431 cells under confocal laser
scanning microscopy. For all types of MNT with EGFR ligand
modules, the Alexa Fluor 647 signal was visible within the nuclei
from 7–48 h incubation. For MNTw/l, there was no substantial
signal in the nuclei (Figures 6A, B). The intranuclear signal
intensity increased from 7 h to 48 h for all EGFR-binding MNT
(Figure 6C). The data obtained indicate the ability of new MNT
to transport into the nuclei of the target cells and accumulate
there in process of time.

The binding affinity of MNT for the importin-a/b carrier
protein complex reflects the functional activity of the NLS
module responsible for nuclear MNT import. The dissociation
constant (Kd) for MNTN-affibody binding to the a/b importin
heterodimer is 117 ± 29 nM (Figure 7A). It was automatically
calculated from the interaction thermophoresis curve and closely
approaches the value for MNTC-EGF (127 ± 15 nM; Figure 7C).
In contrast, the value for MNTN-EGF is 15.8 ± 7.6 nM
(Figure 7B).

We demonstrated that the transfer and replacement of the
ligand module did not affect to the functional activity of the
remaining modules, and new transporters are able to reach the
target compartment — the cell nucleus. On this basis, it seemed
important to evaluate the cytotoxic effect of Auger electron
emitter 111In, transported by new MNT to the nuclei of target
cells. We used unbound 111In as a control. Figure 8 shows
FIGURE 3 | Displacement curves for [125I]iodo-EGF by MNTN-EGF (A) and MNTN-affibody (B) from EGFR on A431 cells. [125I]iodoEGF (1 nM) and MNT at the indicated
concentrations were added to the cells and incubated at 4°C for 20 h. Error bars represent standard errors of the mean (SEM; n = 3).
FIGURE 4 | MNTC-EGF, MNTN-affibody, and MNTN-EGF induced leakage from
egg yolk phosphatidyl choline liposomes loaded with fluorescent calcein to
the fluorescence quenching concentration. The appearance of fluorescence
indicates liposome leakage. Error bars are SEM (n = 4).
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clonogenic survival plots of A431 cells after 48 h incubation with
serial dilutions of 111In-NOTA-MNTC-EGF,

111In-NOTA-
MNTN-affibody,

111In-NOTA-MNTN-EGF (0–6.5 MBq ml−1) and
free 111In (0–20 MBq ml−1). The cytotoxicity of 111In delivered
by any 111In-NOTA-MNT far exceeds that of control 111In. The
111In-NOTA-MNTC-EGF and 111In-NOTA-MNTN-affibody have
similar cytotoxicity. The slopes of the curves for 111In-NOTA-
MNTC-EGF and 111In-NOTA-MNTN-affibody differ significantly
from the slopes of the curves for control 111In and 111In-NOTA-
MNTN-EGF according to the Tukey multiple comparison test (P <
0.05). The 111In activity levels of 111In-NOTA-MNTC-EGF and
111In-NOTA-MNTN-affibody that reduced clonogenic efficiency to
37% (A37) of the control were 0.2± 0.05 MBqml−1 and 0.15± 0.04
MBq ml−1, respectively. In contrast, that was 0.6 MBq ml−1 ±
0.05 for 111In-NOTA-MNTN-EGF A37 and 11.00 ± 2.00 MBq ml−1

for free 111In.
As 111In Auger electrons have extremely short ranges, their

cytotoxicity was highest when they were localized in the nucleus
(Li et al., 2015; Slastnikova et al., 2017a). Thus, we measured the
ability of 111In-NOTA-MNT to accumulate in the nuclei. As
shown in Figure 9, 111In was delivered to A431 nuclei by all
EGFR-targeted MNT. The purity of the nuclear fractions was
validated by western blot (Supplements 2).

The percentages of total intracellular radioactivity in the
nuclei slightly differed between the various 111In-NOTA-MNT.
For 111In-NOTA-MNTN-affibody, it was 39 ± 18%, for 111In-
NOTA-MNTC-EGF it was 49 ± 3%, and for 111In-NOTA-
Frontiers in Pharmacology | www.frontiersin.org 8
MNTN-EGF it was 57 ± 12% (Figure 9). The significance of the
difference was evaluated using the Mann–Whitney U-test. No
statistically significant difference between the MNT was found.

We investigated the effects of MNT on cell proliferation. It
was previously shown that several cell lines, like A431 andMDA-
MB-468 are atypical (Kawamoto et al., 1983; Armstrong et al.,
1994; Bromberg et al., 1998). They have a feature that
distinguishes them from most other EGFR-expressing cancer
cell lines. For these cell lines activation of EGFR leads to
inhibition of the tumor cell proliferation, whereas for other
types of tumor cells, such as MCF-7, activation of EGFR, on
the contrary, leads to the induction of cell growth. We used the
cell line, that does not have the feature in order to examine the
ability of the MNT to induce cell proliferation relative to the
control free EGF. We showed that the growth rate of MCF-7
cancer cell line greatly increased after a few days incubation with
EGF and MNTN-EGF compared to control cells. Therefore, these
agents possessed pro-oncogenic effect. On the other hand,
incubation with MNTN-affibody and MNTC-EGF had no
statistically significant impact on MCF-7 proliferation
(Figure 10).
DISCUSSION

EGFRs are highly convenient for the targeted delivery of various
drugs into cancer cells. A number of drug delivery vehicles were
FIGURE 5 | Intracellular accumulation of Alexa 647 labeled MNT measured by flow cytometry. Flow cytometry histograms of A431 cells, cells incubated with
MNTN-affibody, MNTN-EGF, MNTC-EGF or with control MNTw/l for 18 h with or without free EGF (2 mM). Untreated cells served as autofluorescence controls. Error bars
represent standard errors of mean (n = 4).
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produced for this purpose and evaluated in vitro and in vivo
[(Chen et al., 2002; Lu et al., 2005; Liu et al., 2010; Song et al.,
2016; Slastnikova et al., 2017b; Zahaf et al., 2017; Rosenkranz
et al., 2018), etc.]. The main areas of EGFR-targeted drug therapy
include: (1) development of drugs based on anti-EGFR
Frontiers in Pharmacology | www.frontiersin.org 9
antibodies binding to the extracellular EGFR domain,
preventing ligand binding, and interrupting signal cascades
(Herbst, 2004; Friedman and Stahl, 2009; Scott et al., 2012); (2)
tyrosine kinase inhibitors binding to the intracellular EGFR
domain and inhibiting the downstream effects of EGFR ligand
FIGURE 6 | Intranuclear distribution of MNTC-EGF, MNTN-affibody, MNTN-EGF, and MNT without ligand module (MNTw/l), labeled with Alexa Fluor 647, and visualized by
confocal laser scanning microscopy inside A431 cells. (A) Confocal laser scanning microscopy images across the nuclei of A431 cells incubated for 7 and 48 h with
50 nM Alexa 647-labeled MNT. Alexa Fluor 647 fluorescence corresponding to MNT is in red pseudo-color. Nuclei were counterstained with SYBR Green (blue
pseudo-color). (B) Confocal laser scanning microscopy images across the nuclei of A431 cells incubated for 48 h with 50 nM Alexa 647-labeled MNTN-affibody and
with MNTw/l as a control. Alexa Fluor 647 fluorescence corresponding to MNT is in red pseudo-color. Nuclei were counterstained with SYBR Green (blue pseudo-
color). (C) Mean intranuclear fluorescence intensity of Alexa 647-labeled MNT following 7 and 48 h incubation. Error bars are SEM (n = 90–134).
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binding (Herbst, 2004; Dassonville et al., 2007; Gazdar, 2009);
and (3) delivery of drugs to cancer cells by fusion constructs
containing EGF (Scott et al., 2012). However, several factors
reduce EGFR-dependent treatment efficacy.

Most preclinical studies are conducted on xenograft models
using immunodeficient mice (Cai et al., 2007; Eiblmaier et al.,
2008; Liu et al., 2010). The relative efficacies of drugs targeting
EGFR and tested on xenograft models could significantly
decrease in the transition to clinical trials (Troiani et al., 2008;
Day et al., 2015). Antibodies often have low interspecies cross-
reactivity. Poor translation of results from xenograft to clinical
trials may be especially severe for monoclonal anti-EGFR
antibodies (Weller et al., 1987; Burgess, 2008).

Ant i -hEGFR ant ibodies bind to xenograf t ce l l s
overexpressing hEGFR. When the drug is administered to
humans, however, most of the antibodies bind to liver cells
resulting in the decreased proportion of antibodies reaching the
tumor cells (Burgess, 2008). Consequently, drug efficacy is
compromised, the incidence and severity of side effects
dramatically increase, and therapy is adversely affected.
Moreover, drug efficacy may be relatively overstated in
immunodeficient animals with xenografts (Frese and Tuveson,
2007; Cekanova and Rathore, 2014). Thus, there is a growing risk
that newly developed drugs may fail the clinical trial stage
(Sharpless and Depinho, 2006; Ocana et al., 2010). Attempts
have been made to overcome these limitations such as the
creation of the Cetuximab analogue anti-mouse EGFR mAb
7A7 (Garrido et al., 2004). In contrast, efforts have failed in the
development of simple models for preclinical studies of drugs
exhibiting the same properties as human analogues such as 7A7
(He et al., 2018).

An alternative remedial approach is to develop a drug that
binds mouse and human EGFR equally well. It would facilitate
the accurate assessment of drug pharmacokinetics (Haeri and
Osouli, 2017). The hEGFs have high binding affinities for hEGFR
and mEGFR (Groenen et al., 1994; Elleman et al., 2001). Thus,
the use of hEGFR as a ligand module would improve and
harmonize therapeutic agent biodistribution in preclinical and
clinical studies.

However, upon its interaction with EGFR on tumor cells, EGF
induces receptor dimerization and autophosphorylation which
activate several downstream kinase cascades. This leads to
complex of prooncogenic effects such as cancer cell
proliferation, migration, survival, DNA-double strand break
repair, hypoxia, mediates radioresistance and inhibits apoptosis
(Rodemann et al., 2007; Bussink et al., 2008). Hence, we selected
affibody (ZEGFR:1907) as a ligand for MNT.

The affibody has shown strong binding affinity to EGFR with
good specificity (Qi et al., 2012); it is significantly smaller (~ 7 kDa)
(Orlova et al., 2007: Tolmachev et al., 2009), compared to
multidomain antibodies (~ 150 kDa), ScFv (~ 28 kDa) and
single-domain antibodies - nanobodies (~ 15 kDa) (Slastnikova
et al., 2018). It has equal affinity for both mEGFR and hEGFR
(Friedman et al., 2008; Qi et al., 2012) and does not induce receptor
autophosphorylation and cell proliferation (Beuttler et al., 2009;
FIGURE 7 | Interaction curves of MNTN-affibody (A), MNTN-EGF (B), and
MNTC-EGF (C) with a/b importins. Binding of serial MNT dilutions with a/b
importin heterodimer was measured by thermophoresis. Binding affinity (Kd)
was automatically interpolated from a fitted curve by MonolithNT.115
Instruments software. Error bars are SEM (n = 3–9).
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Nordberg et al., 2010; Ekerljung et al., 2012). In addition, affibody
molecules tolerate modifications and conjugations with retained
high-target affinity, and the absence of disulfide bridges in the
structure make them convenient to be used as a part of complex
molecules (Friedman et al., 2008).Therefore, the affibody can be
successfully used to deliver cytotoxic agents to the nuclei of cancer
cells with EGFR expression.

Although the affibody on its own does not induce receptor
autophosphorylation and cell proliferation, it seemed important
to verify this for MNTN-affibody. MNT with EGF at the N- and C-
termini and free EGF were used as controls. We investigated the
effects of MNT on cell proliferation on the non-atypical cell
model MCF-7, for which activation of EGFR leads to mitogenic
effect. We used A431 cell line for the other experiments, since the
results for the previously described MNTC-EGF were obtained on
Frontiers in Pharmacology | www.frontiersin.org 11
this cell line (Gilyazova et al., 2006; Rosenkranz et al., 2008;
Slastnikova et al., 2012a; Koumarianou et al., 2014; Slastnikova
et al., 2017b; Rosenkranz et al., 2018), however for A431
activation of EGFR leads to inhibition of the tumor cell
proliferation (Kawamoto et al., 1983; Bromberg et al., 1998).
We showed that MNTN-affibody did not affect cell growth (Figure
10), that was consistent with the properties of this affibody
(Friedman et al., 2008; Beuttler et al., 2009; Ekerljung et al.,
2012). MNTC-EGF and MNTN-EGF presented with different effects
on MCF-7 proliferation depending on the position of the EGF-
ligand module. Similar effects were reported for other EGF-
containing chimeric constructs (Kim et al., 2015). МNТN-EGF

may interact with EGFR like an epigen ligand whose C-terminal
sequence is long compared with that of EGF. The epigen initiates
EGFR dimerization which is relatively unstable but induces cell
FIGURE 8 | Cytotoxicity of 111In delivered by EGFR-targeted MNT. A431 cells were exposed for 48 h to various activity levels of 111In-NOTA-MNT or control 111In.
Cells were seeded for a colony-forming assay at a density of 2,000 cells flask−1. After 8 d, the colonies were stained and counted. Solid lines represent data fitted to
a mono-exponential model. Error bars are SEM (n = 3–6). Due to small values, in some cases, error bars merge with the symbols. Dotted lines represent 95%
confidence intervals for each MNT and control 111In.
FIGURE 9 | Intranuclear accumulation efficiency of 111In-NOTA-MNT. A431 cells were incubated with 111In-NOTA-MNT (0.6 MBq ml−1; 1.9 mg ml−1) for 2 h.
Percentage of intranuclear accumulated activity relative to whole intracellular accumulated activity. Error bars are SEM (n = 3).
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proliferation (Kochupurakkal et al., 2005; Freed et al., 2017).
Nevertheless, this comparison may be inaccurate as we did not
study the steric mechanisms of MNT interaction with EGFR.
Here, we focused on the characteristics of MNT that pertain to
the development of targeted drug delivery platforms.

All of the MNT examined here specifically bound at similar
Kd to EGFR and were then internalized by receptor-specific
mechanism (Figures 3, 5, and 6). The MNT-receptor complex
underwent endocytosis and the MNT was enclosed in the
endosome. The endosomolytic module was active at pH ~5.5
according to the liposome-based experimental model (Figure 4).
This pH corresponds to that previously obtained for MNTC-EGF

(Gilyazova et al., 2006).
All MNT specifically bound to the a/b importin heterodimer

responsible for nuclear import because of the activity of the NLS
module. MNTN-affibody and MNTC-EGF had similar dissociation
constants with the a/b importin heterodimer whereas that of
MNTN-EGF was comparatively lower (Figure 7). We suggested
that this may be due to steric features for these molecules. We
also showed that the signal from all EGF-binding MNT
molecules is detected inside target cell nuclei (Figures 6 and 9)
and it changes over time (from 7 to 48 h incubation), while for
MNTw/l it remains equally low (Figure 6C).

In this study, we selected the Auger electron emitter 111In as
the cytotoxic agent, which has a local damaging effect. The range
of its Auger electrons is several tens of nanometers. Thus, 111In is
suitable for nucleus-targeted therapy (Kassis, 2004). When 111In
was delivered into the nuclei of target cancer cells via MNT, its
cytotoxicity was markedly greater than that of the free 111In used
as a control. These data correspond to those previously reported
(Slastnikova et al., 2017b; Rosenkranz et al., 2018). However,
111In-NOTA-MNTN-affibody and 111In-NOTA-MNTC-EGF

demonstrates higher cytotoxicity than 111In-NOTA-MNTN-EGF
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(Figure 8). The lowest cytotoxicity of 111In-NOTA-MNTN-EGF

may be explained by the oppositely directed effect of this type of
MNT on the target cells, because of EGF in this version of MNT
apparently may activate EGFR and induce signaling cascades,
which leads to cell survival cell cycle progression, inhibition of
apoptosis, etc. (Rodemann et al., 2007; Bussink et al., 2008,
Sigismund et al., 2018). This is evidenced, in particular, by the
stimulation of cell proliferation by this MNT.

Based on the results of the present study, we consider
MNTN-affibody as a promising vehicle for anticancer agents for
targeted therapy. It successfully delivers 111In inside target cell
nuclei and result in cancer cell death.

The obtained data provide the basis for future experiments
both in vitro and in vivo. In vitro study of further other possible
types of cellular response to interaction with MNT, such as the
level of double-strand DNA breaks (DSB) and apoptosis will be
valuable. In vivo the effects of the new MNT should be evaluated.
Prolonged intratumoral retention of 111In-NOTA-MNTC-EGF

with t1/2 = 4.1 ± 0.5 days as well as significant dose-dependent
tumor growth delay (up to 90% growth inhibition) after
intratumoral administration of 111In-NOTA-MNTC-EGF

(Rosenkranz et al., 2018) permits us to suggest the similar in
vivo characteristics for this new MNT. Further modifications of
the MNT aimed at reduction of its immunogenicity can provide
a basis for efficient systemic use of the regarded MNT.
CONCLUSION

A new MNT with an affibody ligand was designed and
characterized. MNTN-affibody specifically binds to EGFR.
MNTN-affibody accumulated inside the target cells wherein it
was transported into the nuclei. MNTN-affibody delivered the
FIGURE 10 | Effects of MNT on cell proliferation. MCF-7 cells were exposed for 5–9 d to 100 nM MNT or free EGF in medium with 0.5% serum. MNT and EGF
were added 1 d after seeding. Cell proliferation was analyzed every 24 h by MTT assay starting at day 6. Proliferation values for untreated cells were set as 100% for
each day. Other values were calculated as relative cell proliferation vs. corresponding values for untreated cells. Data points are represented as means ± standard
deviation (SD) (n = 4).
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Auger electron emitter 111In into the target cell nuclei. The
cytotoxicity of 111In delivered by MNTN-affibody was far greater
than that of free 111In. Unlike EGF and MNTN-EGF, however, it
does not induce target cell proliferation. Taken together, these
results suggest that MNTN-affibody is a promising targeted
drug delivery therapy against cancers characterized by
EGFR overexpression.
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