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Abstract
An emerging paradigm in immunology suggests that metabolic reprogramming
and immune cell activation and functions are intricately linked. Viral infections,
such as HIV infection, as well as cancer force immune cells to undergo major
metabolic challenges. Cells must divert energy resources in order to mount an
effective immune response. However, the fact that immune cells adopt specific
metabolic programs to provide host defense against intracellular pathogens
and how this metabolic shift impacts immune cell functions and the natural
course of diseases have only recently been appreciated. A clearer insight into
how these processes are inter-related will affect our understanding of several
fundamental aspects of HIV persistence. Even in patients with long-term use of
anti-retroviral therapies, HIV infection persists and continues to cause chronic
immune activation and inflammation, ongoing and cumulative damage to
multiple organs systems, and a reduction in life expectancy. HIV-associated
fundamental changes to the metabolic machinery of the immune system can
promote a state of “inflammaging”, a chronic, low-grade inflammation with
specific immune changes that characterize aging, and can also contribute to
the persistence of HIV in its reservoirs. In this commentary, we will bring into
focus evolving concepts on how HIV modulates the metabolic machinery of
immune cells in order to persist in reservoirs and how metabolic
reprogramming facilitates a chronic state of inflammation that underlies the
development of age-related comorbidities. We will discuss how
immunometabolism is facilitating the changing paradigms in HIV cure research
and outline the novel therapeutic opportunities for preventing inflammaging and
premature development of age-related conditions in HIV  individuals.
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Introduction
Activation of immune cells in response to infection leads to  
upregulation of metabolic pathways for energy generation as well 
as biosynthesis to support proliferation and effector molecule  
production1,2. Although the impact of key metabolic pathways on 
immune cell development, fate, and functions is well described, 
only a handful of studies have focused on determining the 
impact of pathogens on the intrinsic immune cellular metabolic  
activities3–5. Even less is known about how these metabolic per-
turbations affect immunity and how they have impacted on the 
natural history of infectious diseases, including Mycobacterium  
tuberculosis6, malaria7, hepatitis B virus8, and HIV4,9–12. The  
emergence of the field of immunometabolism has given HIV 
researchers impetus to formulate novel theories and drive new 
research directions in order to dissect fundamental mechanisms 
underlying HIV-related chronic inflammation and viral persistence, 
challenges that have eluded scientists for decades.

Challenges associated with HIV-associated 
inflammation and HIV reservoir persistence
Despite effective anti-retroviral therapy (ART), two key clinical 
challenges remain elusive. First, HIV remains in latent reservoirs 
within CD4+ T cells and possibly macrophages13–16. Thus, while 
effective treatment keeps immune deficiency at bay, residual 
HIV replication continues in tissues, including within the gut and  
brain. These tissue-resident reservoirs pose a major barrier for  
eradication and cure because once ART is interrupted, viral  
replication re-emerges. However, there is continuing debate  
regarding the contribution to the HIV reservoir of persistent viral 
production or the clonal expansion of immune cells containing 
replication-competent virus or both. Indeed, genetic characteri-
zation of HIV in HIV+ART+ patients has established that persist-
ence is driven by homeostatic proliferation and clonal expansion 
of the active and latent HIV reservoir17–19. Under physiological 
conditions, memory CD4+ T cells undergo slow turnover (basal 
homeostatic proliferation)20 but can divide rapidly in the presence 
of inflammatory cytokines (acute homeostatic proliferation)21.  
Interestingly, preferential integration of HIV has been shown to 
occur in genes that regulate cancer and cell growth18, which may 
influence viral transcription, cellular physiology, and metabolism. 
Although some studies have shown that HIV integration occurs 
randomly, though biased toward transcriptionally active genes,  
cumulative evidence supports integration site preferences by 
HIV22.

The vast majority of efforts related to HIV cure research have 
focused on reactivation of latently infected cells which may then 
allow immune recognition and elimination by cytotoxic T cells 
or by cytopathic effects or both. Major caveats of this approach 
have recently been discussed and include the systematic release 
of pro-inflammatory cytokines caused by latency reversal agents 
(LRAs) and the problem that US Food and Drug Administration- 
approved LRAs re-activate only a small fraction of the latent  
HIV, well below the threshold required to make any appreciable 
and clinically significant impact on the reservoir size. Aside from 
LRAs’ efficiency in shocking latently infected cells and forcing 
them to produce virus, cytotoxic T cells are functionally exhausted 
in HIV-infected individuals, thus potentially dampening the  

capacity to clear the re-activated reservoir cells. A recent report 
by Borducchi et al. showed promising results using a therapeutic 
vaccination—recombinant adenovirus serotype 26 (Ad26) prime, 
modified vaccinia Ankara (MVA)—boosted with a non-conven-
tional TLR7 agonist (as LRA) in decreasing HIV DNA levels and 
delaying viral rebound after ART interruption in a non-human 
primate model of SIV infection23. However, more data in human 
clinical trials will be needed in order to validate the potential 
of this strategy in achieving a functional cure for HIV-1 infec-
tion. Furthermore, via in vitro and ex vivo models, it has been 
shown that histone deacetylase inhibitors, disulfiram, and other  
promising LRAs impair cytotoxic T lymphocyte (CTL) killing 
of HIV-infected cells24, impact the function of primary natural 
killer (NK) cells, and have a heterogeneous mixed effect on  
antiviral activity, cytotoxicity, cytokine secretion, phenotype, and  
viability25. On the other hand, recent reports have demonstrated  
that the effects of LRAs on anti-HIV immunity in vitro do not  
necessarily reflect with accuracy the immunologic consequences 
of administration in vivo24,26. Therefore, it will be important to  
comprehensively evaluate the impact of potential HIV curative 
strategies, especially LRAs, on anti-HIV immunity in vivo.

The second critical challenge in the ART era is the increased  
prevalence of age-related comorbidities such as cardiovascular 
disease, non-AIDS cancers, bone and renal disease, and frailty in 
virologically suppressed ART-treated persons. The pathogenesis 
of these non-communicable diseases is complex but is attributable 
to a generalized phenomenon: persistent immune activation and  
inflammation. While traditional risk factors similar to those in the 
general population contribute to their development, HIV infection 
significantly augments this risk, even in virologically suppressed 
individuals. The increasing prevalence of these comorbidities, 
in both developed and resource-limited countries, indicates that 
both traditional risks and HIV-related factors must be addressed 
for effective management of the aging HIV-infected population.  
Novel approaches to better understand the mechanisms that 
drive the development of these comorbidities have arisen via 
acknowledgment of the critical role of monocyte and macrophage  
metabolism in controlling inflammation and non-communicable 
disease development27–32.

This commentary will discuss a new and arguably controversial 
HIV cure strategy—“block and lock”—used to suppress reservoir 
activation33, an emerging paradigm supported by new insights 
of metabolic regulation of latency. In addition, we will discuss  
targeting of host immune cellular machinery as an approach  
to circumvent the threat of HIV resistance against current  
treatments as well as to control chronic HIV-associated chronic 
inflammation and the related development of non-communicable 
comorbidities.

Metabolic pathways regulating T-cell and monocyte 
metabolism
Immunometabolism, the study of the interplay between  
bioenergetic pathways and immune cell functions, is increas-
ingly gaining acknowledgement as an emerging scientific 
field. In response to infection, activation of the host innate and  
adaptive immune cells is accompanied by dramatic changes in  
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cellular bioenergetics. Resting cells predominantly derive their 
energy via oxidative phosphorylation (OXphos) and shift to  
glycolysis—a metabolic remodeling called the Warburg effect—
for cell growth, proliferation, and synthesis of antimicrobial and 
pro-inflammatory effector molecules. A better understanding  
of the dynamics of these metabolic states and their specific  
functions during viral pathogenesis can lead to the development 
of immunotherapies capable of suppressing viral replication and  
combat the deleterious effects of persistent high-grade inflamma-
tion to hosts34,35.

All immune cells use glucose in order to produce energy to  
mount an effective immune response against pathogens. Glucose 
is metabolized via two major pathways: OXPHOS, which takes  
place in the mitochondria in order to produce the maximal  
amount of ATP, and glycolysis, which occurs in the cytosol 
and produces less ATP. Intermediates of glycolysis may be 
used as precursors for protein, lipid, and nucleotide synthesis 
which are needed by rapidly proliferating cells36. Metabolites  
of cellular metabolism may also regulate several significant  
biological processes, such as epigenetic reprogramming, 
which influences cytokine production by immune cells such as  
macrophages37. Furthermore, glycolytic enzymes such as GAPDH 
can bind to the adenylate uridylate (AU)-rich elements within 
the 3′ untranslated region (3′ UTR) of mRNA that encodes  
cytokines such as interferon-gamma (IFN-γ). Thus, by engaging  
or disengaging glycolysis through changes in its expression,  
GAPDH may control inflammatory and effector responses38.  
Aerobic glycolysis can also control IFN-γ expression independ-
ently of the 3′ UTR through increased activity of lactate dehydro-
genase by maintaining high concentrations of acetyl-coenzyme  
A (acetyl-CoA), which enhances histone acetylation and Ifng  
transcription39.

More recently, there has been an appreciation of the differential 
use of glucose and fatty acids by immune cells on the basis of 
their differentiation and activation status. This has been elegantly  
reviewed by Shehata et al.34, who highlighted that memory T cells 
predominately use glucose to fuel fatty acid synthesis (FAS), which 
is stored and later metabolized via OXPHOS to produce ATP.  
This deviates from that of effector T cells where glucose is  
predominantly metabolized via aerobic glycolysis to produce  
lactate.

Thus, although this commentary focusses on the role of glucose 
metabolism in supporting HIV reservoir persistence and inflam-
mation, other fundamental metabolic processes involving fatty  
acids40 and amino acids41 may play complementary roles. Indeed, 
glutamine uptake is increased in activated T cells to generate  
α-ketoglutarate via glutaminolysis to support the citric acid cycle 
when pyruvate and acetyl-CoA are limited34,42.

Metabolic reprogramming of functional T-cell subsets
The activation of naïve CD4+ T cells requires metabolic reprogram-
ming characterized by increased glycolysis and downregulation 
of lipid oxidation2,43–45. These activated T cells can then differenti-
ate into a variety of effector subsets, depending on the cytokine  
profile in the microenvironment46. Effector, memory, and regulatory  

CD4+ T cells exhibit a specific metabolic phenotype, sug-
gesting that metabolism is tightly linked to their functions47.  
Furthermore, recent studies have identified significant metabolic  
flexibility between the T helper 17 (Th17) and regulatory T (Treg) 
cell compartments48,49. Th17 and Treg cells represent two arms 
of an immune response, and their uniquely plastic relationship 
conditions the immune environment to shift between pro- and  
anti-inflammatory states50. With a mouse model, it was shown  
that Th17 cells could transdifferentiate into Treg cells51.

It is becoming increasingly clear that metabolism plays a  
significant role in driving these distinct differentiation programs. 
For example, the pro-inflammatory CD4+ Th1, Th2, and Th17  
lineages express high surface levels of glucose transporter 1  
(Glut1) and were highly glycolytic. Contrary to this, Treg 
cells require oxidative metabolism to fuel suppressive func-
tions and preferentially oxidize lipids which are AMP kinase  
dependent2,52,53. It is worth noting that blocking glycolysis dur-
ing in vitro Th17 differentiation favors Treg cell formation rather  
than that of Th17 cells. Furthermore, dichloroacetate (DCA), a 
promising immunosuppressive drug for the treatment of lactic 
acidosis, inhibits aerobic glycolysis in alloreactive CD4+ T cells, 
which favors differentiation toward Treg cells54.

The metabolic transcription factor hypoxia-inducible factor 1 
alpha (HIF-1α) seems to play a special role, particularly for  
Th17 cells. HIF-1α is a transcription factor regulating the expres-
sion of metabolic enzymes and an essential facilitator of the acqui-
sition of Th17 glycolytic metabolism55. HIF-1α deletion under  
Th17-promoting conditions results in a blunted upregulation of 
Glut1 and the reduced expression of crucial glycolytic enzymes 
such as hexokinase 2, glucose-6-phosphate isomerase, and lactate 
dehydrogenase as well as the generation of Th17 cells both  
in vitro and in Th17-promoting disease models in vivo56.

Pyruvate dehydrogenase (PDH) is another important checkpoint 
for Th17 cell- or Treg cell-specific metabolic pathway decisions57.  
The conversion of cytosolic pyruvate into mitochondrial acetyl-
CoA for oxidative metabolism is catalyzed by PDH and is  
inhibited by PDH kinase (PDHK). PDHK is regulated by hypoxia 
and HIF-1α and promotes the generation of lactate by suppress-
ing pyruvate oxidation58. Through a detailed metabolic analysis,  
Gerriets et al. identified that an isoform of PDHK, PDHK1, is  
predominantly expressed in Th17 cells and at low levels in Treg 
cells but not in Th1 cells57. The inhibition of PDHK1 by DCA can 
suppress glycolysis and selectively suppress Th17 generation57.

De novo FAS was also shown to be essential for the generation 
of Th17 cells in contrast to Treg cells. Accordingly, the inhibition 
or deletion of acetyl-CoA carboxylase 1 (ACC1), a key enzyme  
for de novo FAS, resulted in an impaired Th17 differentiation, 
whereas Treg cells were induced. Moreover, blocking ACC1  
activity induced a shift from Th17 toward Treg cell induc-
tion under Th17 culture conditions, together suggesting that  
engagement of FAS is indispensable for Th17 but not Treg cell  
induction59. Data are lacking regarding the impact of HIV infec-
tion on the modulation of metabolism in these functional  
T-cell subsets and how this may influence HIV pathogenesis. 
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The diverse players involved in metabolic programming  
of these subsets offer  tremendous therapeutic targets that could 
alter HIV disease outcomes. Yet they highlight a fine balance 
between conflicting arms of the immune system that must be  
considered when administering metabolic-modulating drugs.

HIV disrupts glucose metabolism in immune cells
Immune cells rely on OXPHOS for efficient glucose metabolism 
in order to generate ATP for survival and function. Early work 
by Sorbara et al. has shown that HIV-1-infected H9 T-cell lines  
exhibit a 10-fold increase in the expression of Glut1 within 4 
days of inoculation60, and replication of HIV-1 in primary CD4+ 
T cells increases glycolytic flux11. Interestingly, Trautmann et al. 
have demonstrated that the susceptibility of HIV-specific CD8+ 
T cells to apoptosis in early HIV infection was associated with a 
metabolic state in which these cells exhaust their mitochondria  
to sustain their proliferation61. Although functional metabolic 
assessment was beyond the scope of their work, it appeared that 
apoptosis was PI3Kinase–Akt dependent.

Work from our group has shown that CD4+ T cells and monocytes 
obtained from HIV+ treatment-naïve and ART-treated patients 
exhibit a glycolytic phenotype4,9,62 essential for the maintenance 
of CD4+ T-cell activation63 and monocyte/macrophage pro- 
inflammatory cytokine production64. Cellular immune activation 
in response to infections results in the trafficking of Glut1, the  
major glucose transporter in immune cells, to the cell surface as 
the first and major committed step in glucose metabolism. This 
is followed by increased glucose uptake and elevated lactate  
production, a glycolysis signature, shared by cancer cells in which 
aerobic glycolysis predominates even in the presence of sufficient 
oxygen, called the Warburg effect. This metabolic reprogramming 
is coordinated by the mechanistic target of rapamycin (mTOR), 
a critical regulatory kinase that serves as a key checkpoint and  
therapeutic target for several cancers and inflammatory and  
autoimmune disorders65,66.

Intracellular pathogens have a sweet tooth for survival
Metabolic re-programming is not exclusive to cancers or HIV 
infection. Other intracellular pathogens exploit host metabolic  
machinery to avoid immune surveillance. For example, the Zika 
virus, associated with human congenital fetal anomalies, diverts 
host cell resources and reprograms metabolic processes to sup-
port RNA metabolism, ATP production, and glycolysis. This  
metabolic state is conducive for Zika virus replication67 and may 
control access to nutrients (for example, glucose), a requisite for 
endothelial growth within the placenta and fetal development68. 
Non-viral pathogens such as Plasmodium berghei, a malarial  
parasite of rodents, augment glucose uptake via Glut1 activity 
and surface localization in infected hepatic cells as an adaptive  
response for survival69. A comparable dynamic interplay between 
immune cell metabolism and HIV persistence and inflammatory 
responses has drawn intense attention lately and will be the focus  
of the remaining discussion34,70.

Mining the host metabolic machinery for a new 
potential HIV drug class
The mTOR is an important regulator of glucose metabolism and 
connects cell growth, energy balance, and aging to metabolic 
processes. This serine/threonine kinase comprises two distinct 
complexes: mTORC1, which is highly sensitive to the immuno-
suppressant agent rapamycin, and mTORC2, which is sensitive 
to rapamycin only when chronically exposed. Dual suppression 
of these two complexes by the mTOR inhibitor INK128 sup-
presses HIV entry and transcription in vitro and inhibits multidrug- 
resistant HIV in preclinical models71. This observation opens up 
opportunities for the design of new combinatorial therapies to  
treat HIV-infected persons who have failed currently available 
ART regimens. However, concerns have been raised regarding  
potentially undesirable consequences of metabolic inhibitors 
on CD8+ T-cell functions and facilitating memory CD4+ T-cell  
formation and hypothetically increasing reservoir size (Steven 
Deeks, personal communications). Recently, these fears have 
been partially counteracted by evidence showing that metabolic  
inhibitors targeting mTOR pathways may have favorable immu-
nomodulatory effects, including enhanced antiviral responses72. 
Furthermore, mTOR inhibitors have been shown to facilitate  
memory CD8+ T-cell formation in vivo using murine and non-
human primate models and exhibit unique differences in metabolic 
machinery between CD4+ and CD8+ T cells73. Thereby, mTOR 
inhibitors are gaining increasing interest. However, their full  
impact on the formation of memory CD4+ T-cell subsets carrying 
replication-competent virus needs to be carefully evaluated  
in vivo.

Metabolic inhibition to “block and lock” the HIV 
reservoir
The setbacks from clinical trials employing the “kick and kill” 
approach to eradicate HIV74,75 have forced researchers to re-think 
and explore alternative cure strategies, including the provocative 
“block and lock”76 and “starve”36,77,78 approaches. These methods 
attempt to control viral persistence by metabolic suppression 
of cells harboring HIV proviral DNA to subdue reactivation 
and homeostatic proliferation of reservoir cells. Recent data by  
Heredia et al. have brought support to this shifting chain of  
thought by demonstrating that HIV hyperactivates mTORC1 
activity in a PI3Kinase-dependent manner promoting the  
synthesis of biomolecules for virion production and latent viral  
reactivation71. Furthermore, inhibition of mTORC1 or PI3Kinase 
can successfully inhibit viral replication and viral reactivation as 
a result of a decrease in cellular biosynthesis3,79. A confirmatory 
role of the involvement of mTOR in controlling HIV latency was 
also established by employing a genome-wide screen approach  
by Verdin et al., who used different HIV latency models and 
HIV-infected patient primary cells76. They have shown that the 
dual mTOR inhibitors Torin1 and pp242, which both target the 
two mTOR complexes (mRORC1 and mTORC2), strongly sup-
pressed latent HIV reactivation following potent CD4 T-cell  
activation through the T-cell receptor76. Furthermore, inhibition 
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of these complexes abrogated both Tat-dependent and Tat- 
independent transactivation of the HIV promotor76. Thus, whereas 
the “block and lock” predominantly focusses on limiting the  
transcription of latent HIV DNA through mTOR suppression, the 
“starve” model earlier proposed by Palmer et al. posits subdu-
ing the metabolic activity of reservoir cells to limit homeostatic  
proliferation while controlling the metabolic state within T cells 
and macrophages, essential for viral infectivity36,78.

mTOR and latency-reversing agents: toward an HIV 
cure
Recent work by Siliciano’s group has provided an experimental  
model supporting an interesting combination approach by which 
mTOR drugs could mitigate LRA-mediated inflammatory  
responses and toxicity while maximally reactivating the HIV  
reservoir80. In their in vitro latency model, rapamycin did not 
inhibit HIV reactivation in a dose-dependent manner in activated 
CD4+ T cells from individuals on suppressive ART. These results 
are compatible with the finding that rapamycin inhibits mTORC1 
but not mTORC2. The action of rapamycin on mTORC1 causes 
repression of the basal transcription of HIV long-terminal repeat 
(LTR) without affecting Tat-mediated transactivation of the virus81. 
Inhibition of mTORC2, on the other hand, appears to inhibit 
both basal transcription and tat-mediated HIV transcription71.  
However, rapamycin drastically reduced the secretion of pro-
inflammatory cytokines and suppressed the proliferation of  
CD4+ T cells from these patients. Furthermore, rapamycin reduced 
the expression of the T-cell exhaustion marker PD-1 while  
preserving basal CTL-mediated killing of infected cells80.  
However, other pro-inflammatory factors produced by activated  
CD4+ T cells (for example, inflammatory lipids such as  
ceramides) may result in clinically deleterious inflammatory 
responses that may not be diminished by mTOR inhibitors.  
Nonetheless, the observational study by Stock et al., in which  
rapamycin treatment of HIV+ kidney transplant recipients  
caused reduced frequency of T cells harboring HIV DNA, will 
likely encourage clinical trials aimed at specifically examining  
the effects of mTOR inhibitors and their impact on the HIV  
reservoir size82.

Importantly, the impact of these and other glucose metabolic  
inhibitors (for example, those targeting specific PI3Kinase  
isoforms, Glut1, and hexokinase II) on potential long-term  
remission in ART-treated virologically suppressed HIV+ individu-
als should be carefully evaluated. In addition, it is likely that a  
multidisciplinary approach that includes a combination of  
therapies will be necessary to achieve HIV eradication or  
ART-free sustained HIV control. Recently, the success of immu-
notherapy targeting the inhibitory receptors PD-1, CTLA-4, and 
other immune-negative checkpoints in recovering T-cell immunity  
has promoted interest in using similar strategies to achieve HIV 
eradication.

T-cell exhaustion is a process that depends on metabolic changes 
driven by signaling through these negative immune checkpoints83; 
it has been shown that blocking immune checkpoints has  

differential effects on cell metabolism, depending on which  
molecule is targeted by the blockade84,85. Therefore, evaluation of 
the impact of immune checkpoint blockade therapy on cellular 
immunometabolism machinery may have relevance in the setting 
of HIV. Furthermore, combining immunotherapy and metabo-
lism-based therapies can be another potential targeted strategy  
and warrants further investigation.

Metabolic rewiring of monocytes/macrophages primes 
host inflammatory and defense mechanisms
Like activated T cells, Glut1 is the main inflammatory-responsive  
glucose transporter on activated monocytes and allows high  
glucose uptake required to fuel glycolysis. We have shown that, in 
ART-treated HIV-infected patients, Glut1 is profoundly increased 
on pro-inflammatory monocytes9. Also, Freemerman et al. have 
found that inflammatory M1 macrophages have overwhelmingly  
high glycolytic activity and Glut1 expression via in vitro  
experiments using murine macrophages64.

However, cytokine production by M2 polarized human macro-
phages has also been shown to rely on glycolytic metabolism 
in addition to fatty acid oxidation (FAO). Control of this glyco-
lytic state provides the metabolic basis by which interleukin-10 
(IL-10) exerts its anti-inflammatory effects. For example, IL-10 
opposes lipopolysaccharide (LPS)-induced glucose uptake and  
glycolysis in macrophages and promotes OXPHOS in an mTOR-
dependent manner30. However, it should be noted that, unlike 
LPS alone, complex microbial stimuli can induce specific meta-
bolic reprogramming that involves upregulation of OXPHOS,  
glycolysis, and FAO to prime host defense mechanisms, including 
cytokine production and phagocytosis.

Immunometabolism offers new opportunities to control 
inflammation and age-related comorbidities in ART-
treated HIV+ individuals
In our earlier work, we indicated that cell-surface Glut1 levels on 
pro-inflammatory monocytes (the intermediate CD16+ monocyte 
subset) correlated significantly with inflammatory plasma  
biomarkers of inflammation and cardiovascular disease risk9. 
Furthermore, Glut1-expressing monocytes exhibit higher levels  
of intracellular tumor necrosis factor (TNF) compared with  
Glut1-negative cells9. However, although several models have  
been proposed to connect monocyte glucose metabolic dysfunc-
tion with age-related comorbidities36,86, experimental evidence has  
only recently come together to support these models.

Analysis of monocytes from HIV-infected participants enrolled 
in the Women’s Interagency HIV Study showed that the fre-
quency of circulating Glut1-expressing intermediate monocytes is  
significantly elevated in those with subclinical cardiovascular  
disease10. Furthermore, in a group of aging HIV+ men on suppres-
sive combined ART, frailty (evaluated using the Frailty Index) 
was associated with Glut1 expression on total monocytes87.  
Since monocyte metabolic activation may contribute to the  
development of age-related comorbidities such as atherosclerosis 
in ART-treated HIV+ persons, Glut1 is potentially a novel target to  
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limit inflammation. One may argue against the use of metabolic 
inhibitors as potential immunomodulators in the context of inflam-
matory diseases such as HIV infection in fear of deleterious 
side effects. However, it is worth noting that glucose uptake by  
insulin-sensitive cells such as adipocytes and myocytes is  
controlled by other glucose transporter isoforms (for exam-
ple, Glut4), which are less responsive to inflammatory signals  
compared with Glut188. Furthermore, specific PI3Kinase isoforms  
such as PI3Kγ and PI3Kd which control mTOR and glucose 
metabolism are restricted to immune cells, thereby circumvent-
ing or limiting potential side effects. The unwavering interest in  
immunometabolism by biotechnology companies and the current  
intersection between immune cell metabolism and the cancer  
field now provide great opportunities for re-purposing some  
cancer drugs to treat pathogen-driven inflammatory and non- 
communicable diseases36,89.

Key points and conclusion
Lack of knowledge regarding the precise mechanisms underlying  
viral persistence and chronic inflammation in HIV infection 
has hampered the development of host-directed therapies to  
eradicate the HIV reservoir and control chronic inflammation 
in HIV-infected persons. Recent work has exposed previously  
unrecognized alterations in cellular energy metabolism in immune 

cells in HIV+ individuals. In addition, the critical role of glucose  
metabolism, regulated by Glut1 and mTOR, in controlling 
HIV replication, latency, and inflammatory responses has been  
established (Figure 1).

More studies evaluating different classes of glucose metabolic 
inhibitors directed against immune cells are warranted to justify 
their use in HIV-infected individuals. Furthermore, modulat-
ing glucose metabolic activities could be either beneficial or 
detrimental depending on the infection stage in which they are  
administered34,90. It will also be important to delineate the  
additional pathways that control glucose metabolism, including 
mitochondrial biogenesis, as additional therapeutic target options. 
The main challenge in identifying new metabolic networks will 
be the adoption of new technologies to interrogate metabolism 
in small blood samples typically available from clinical testing.  
New technologies such as the Seahorse extracellular flux analyzer 
have helped to revolutionize the field; however, the readout gives 
only a global snapshot of oxidative and glycolytic metabolism. 
In order to fully address the complex questions of how metabolic 
remodeling of immune cells contributes to the course of HIV  
infection, additional technologies, such as those employing  
multiparametric techniques to study specific subpopulations of 
immune cells (reviewed in 28), are needed.

Figure 1. CD4+ T cells reprogram glucose metabolism during infection from oxidative phosphorylation (OXphos) toward glycolysis 
marked by increased cell surface Glut1 and mTOR activation. (a) mTOR regulates HIV transcription critical for viral reactivation and ongoing 
replication. Glycolysis regulated by mTOR provides precursors for DNA and cell wall synthesis which support homeostatic proliferation of 
infected CD4+ T cells. (b) Similar to CD4+ T cells, mTOR/PI3Kinase regulates monocyte/macrophage Glut1 cell surface expression and 
metabolism. A metabolic shift toward glycolysis supports pro-inflammatory cytokine production in monocytes/macrophages. Glut1, glucose 
transporter 1; mTOR, mechanistic target of rapamycin.
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