
3470  |  A. R. Cohen	 Molecular Biology of the Cell

Extracting meaning from biological imaging data
Andrew R. Cohen
Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA 19104

ABSTRACT  Biological imaging continues to improve, capturing continually longer-term, rich-
er, and more complex data, penetrating deeper into live tissue. How do we gain insight into 
the dynamic processes of disease and development from terabytes of multidimensional im-
age data? Here I describe a collaborative approach to extracting meaning from biological 
imaging data. The collaboration consists of teams of biologists and engineers working to-
gether. Custom computational tools are built to best exploit application-specific knowledge 
in order to visualize and analyze large and complex data sets. The image data are summa-
rized, extracting and modeling the features that capture the objects and relationships in the 
data. The summarization is validated, the results visualized, and errors corrected as needed. 
Finally, the customized analysis and visualization tools together with the image data and the 
summarization results are shared. This Perspective provides a brief guide to the mathematical 
ideas that rigorously quantify the notion of extracting meaning from biological image, and to 
the practical approaches that have been used to apply these ideas to a wide range of applica-
tions in cell and tissue optical imaging.

INTRODUCTION
What is meaning? From a mathematical perspective, this question 
has been eloquently answered by a trilogy of papers on meaningful 
information (Gacs et al., 2001; Vereshchagin and Vitanyi, 2004; 
Vitanyi, 2006). This mathematical formulation of meaning will be 
described briefly later. From my perspective as a computer engineer 
whose passion is analyzing biological images of live cell and tissue 
obtained by optical microscopy, the answer is more direct. Simply 
put, there are three steps to extracting meaningful information from 
imaging data. First, the data must be summarized concisely (Cohen 
et al., 2009). Next this summary must be validated (Winter et al., 
2011; Wait et al., 2014). Finally, the data need to be shared. In the-
ory, these steps apply to any type of data (Li and Vitanyi, 1997). In 
practice, they have been applied to a wide range of applications 
using time-lapse phase and/or fluorescence microscopy. This 
Perspective will describe these steps in detail.

To accomplish summarization, validation, and sharing for bio-
logical imaging data, computational tools are required. Visualizing 

the data together with summarization results is key. Quite often, this 
visualization is both the means and the end for making imaging data 
meaningful. Visualizing image data can be difficult, particularly as 
the dimensionality of the data grows. In imaging, dimensions are 
first spatial. A pixel, or picture element, is at location (x, y) for two-
dimensional (2D) images. A voxel, or volume element, is at location 
(x, y, z) for three-dimensional (3D) images. In time-lapse imaging, a 
voxel location is specified as a spatiotemporal (four-dimensional) 
point, (x, y, z, t). In fluorescence microscopy, we add a spectral chan-
nel λ to represent different imaging channels, and the data are five 
dimensional (5D; x, y, z, t, λ). As dimensionality continues to grow, 
visualization becomes even more important for extracting meaning 
and value from our imaging data. Visualizing complex image data 
together with summarization results is a challenge that requires so-
phisticated hardware and software solutions (Peng et al., 2014; Wait 
et al., 2014).

Another challenge is the size of the data set. Current-generation 
time-lapse microscopes include integrated incubation and can typi-
cally acquire 100 movies or time-lapse image sequences in a single 
experiment. Each movie can consist of thousands of images. In our 
ongoing work analyzing stem cell image sequence data, a single 
data set of 200 movies requires 350 gigabytes (GB) of image data or 
more. This is obviously too much data to analyze by hand or by 
eye—we must turn to computational analysis. There are many soft-
ware packages for working with smaller and less complex image 
data sets (Eliceiri et al., 2012), but here I focus on software solutions 
custom written for the specific characteristics of the image data in 
order to best summarize the data in the context of a particular 
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used for different image channels, each with carefully chosen pa-
rameters to match the imaging and noise characteristics. After 
denoising, the images are segmented to identify the individual 
objects.

Segmentation, or delineation of individual objects, is a two-
step task. First, a threshold divides the image into foreground and 
background regions. The foreground contains the important ob-
jects. Thresholding picks an intensity value to separate the two 
regions. Picking this value automatically, called adaptive thresh-
olding, is one of the very few easy tasks in image analysis (Otsu, 
1979). If the objects in your image are not touching each other, 
then congratulations! You are done with segmentation; your re-
sults should be near perfect. It is more likely that your objects will 
be in contact, at least occasionally, and more sophisticated seg-
mentation is needed.

After thresholding, separating touching objects is the second 
segmentation step. Separating touching objects is far and away the 
hardest task you face. If you are using 2D imaging to look at 3D 
objects, they can overlap partially or completely. This overlap is 
called occlusion. Occlusion can make it impossible for even a hu-
man domain expert (that’s you) to manually segment the objects. If 
you have time sequence data, incorporating temporal context to 
improve the low-level image processing tasks has been widely used 
with good success (Cohen et al., 2010; Winter et al., 2011). As a rule 
of thumb, if you can see the correct segmentation by eye, an algo-
rithm will often, although not always, be able to extract the correct 
answer. Similarly, if you are unable to determine the correct segmen-
tation by eye, the algorithm will rarely, although not never, extract 
the correct answer. After segmentation, if you have time sequence 
data, tracking is next.

Tracking establishes temporal correspondences between seg-
mentation results. Simpler tracking algorithms establish these cor-
respondences between pairs of image frames (Clark et al., 2011). 
More sophisticated algorithms solve the correspondence over 
multiple image frames simultaneously, often achieving signifi-
cantly better accuracy. For biological applications, our multitem-
poral association tracking is a multiframe tracking solution that 
has proven widely effective for tracking organelles and stem cells 
(Winter et al. 2011, 2012; Chenouard et al., 2014; Mankowski, 
2014). If you capture images frequently enough, so that, for ex-
ample, objects overlap by 50% or more between frames, and the 
segmentation is reliable, tracking should be straightforward. For 
image sequences with proliferating cells, one additional task is to 

biological question. One of the key challenges in biological image 
analysis is the lack of computational tools for interactively and col-
laboratively summarizing, visualizing, and validating image data. 
Figure 1 shows an overview of the summarization, validation, and 
sharing steps.

The notions of “concise” and “meaningful” as used here are not 
qualitative measures. Algorithmic information theory (AIT) is a theo-
retical framework for image understanding that provides mathe-
matical and computational techniques to quantify how concise a 
representation is possible and how well a model captures the 
meaningful information from a given digital object. The foundation 
of AIT is Kolmogorov complexity (Li and Vitanyi, 1997). The 
Kolmogorov complexity of a digital object, a movie, an experiment, 
or a data set gives a measure of the most concise possible descrip-
tion of the object. Think of it as the file size in bytes that the perfect 
file compression algorithm would achieve on the given data. AIT 
also characterizes the relationship between data and models. Ran-
domness deficiency measures how much meaningful information a 
model has extracted from the data (Cohen et al., 2009). AIT gives 
the capability to quantify how well our summary represents the 
image data.

A CONCISE AND MEANINGFUL SUMMARY OF THE 
IMAGE DATA
The first step is to summarize the data, to find a more concise repre-
sentation compared with the hundreds of gigabytes of images. The 
tasks associated with summarization include denoising, segmenta-
tion, tracking, lineaging, and modeling. The best approaches to 
summarizing image data will exploit information in both directions 
among these tasks. Not every application will require all of these 
tasks. For example, image compression algorithms have been used 
to quantify the developmental potential of stem cells from single 
image frames (Zhang et al., 2012).

Denoising algorithms need to be matched to the specific 
characteristics of the images. One of the simplest and most ef-
fective denoising approaches is the median filter. This robust es-
timator is particularly good at removing the ubiquitous “salt and 
pepper” noise. More complicated approaches model the imag-
ing noise and the background structure separately and use a 
combination of filters (Michel et al., 2007). As the first task in the 
summarization step, denoising is highly specific to the imaging 
conditions. In a recent paper on visualization and analysis of 5D 
images (Wait et al., 2014), different denoising algorithms were 

FIGURE 1:  Interactive and collaborative use of the image data, together with the summarization results and the 
visualization and analysis code. Left to right, single image from a 2000-frame sequence, same image with segmentation 
and tracking results overlaid, lineage tree with time as the vertical axis (top) and statistical model (bottom) and open 
source code fragment. The arrow on the bottom shows the progression from image data to source code, with 
summarization results falling in the gray area.
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ambiguity in the summarization results is another very active re-
search area.

SHARING THE RESULTS
Like everything else in science, the real value of our images and 
summarization methods and results comes when others can use 
them. Many software tools, including most of the ones mentioned in 
this Perspective, are provided open source. Generally “open source” 
means that you are allowed to download, use, and modify the code 
as you like. Redistribution is generally allowed, but with varying re-
strictions. One limitation is that if image data are not available, there 
is no practical way to visualize the results. Without the ability to visu-
alize summarization results together with the image data, it becomes 
impossible to reuse the results with any confidence. It is also difficult 
to evaluate the quality of the code. Data and code need to go 
together.

New hardware and software infrastructure designed for viewing 
and interacting with complex data over the Internet continues to 
improve. Recently HTML5 and WebGL standards have been devel-
oped. These standards provide a widely available framework for 
high-performance interactive and distributed applications, exactly 
what we need to make our imaging data and summarization results 
ubiquitously available. Even for large imaging experiments, an 
“open data” approach is feasible. For the stem cell image data ex-
ample described earlier, the 350 GB of image data can be lossy 
compressed (e.g., JPEG) down to <10 GB. This is a reasonable 
amount of data to download. Although lossy compression should 
never be used in segmentation or denoising, it is perfectly accept-
able for visualizing and validating the summary. There is no technical 
hurdle to providing open source code together with all of the image 
data and the summarization results.

CONCLUSION
The best way to show the importance of the biology, the beauty of 
the imaging, and the truth of the summarization is to show all of the 
data together with the summarization results. The size and com-
plexity of our imaging data will continue to grow, incorporating new 
imaging modalities and additional data types. Collaboration be-
tween teams of biologists and engineers will be needed to design 
experiments and guide the analyses of these rich data. To realize 
the full potential of our imaging data to provide insight into funda-
mental questions in biology and medicine, we must enable all of 
the data to be visualized together with the validated summarization. 
Extracting meaningful information from biological imaging data will 
require leveraging the best capabilities of interdisciplinary teams of 
human domain experts working together with sophisticated com-
putational hardware and software. The success of our methods will 
be measured by how easy it is to reuse our techniques and build on 
our results. The future of biological imaging has never looked 
brighter!

establish the parent–daughter relationship or lineage (Al-Kofahi 
et al., 2006; Winter et al., 2011; An-An et al., 2012). The results of 
the segmentation, tracking, and lineaging algorithms, taken to-
gether, are referred to as the dynamic phenotype (Cohen et al., 
2009). The dynamic phenotype is a far more concise representa-
tion compared with the image data, but it is not the ultimate goal. 
For the example described earlier, starting with 350 GB of image 
data, the dynamic phenotype still contains a considerable 2 GB of 
data. To extract meaning from the image data, we must fit a model 
to these data.

The final step of summarization is to model the dynamic pheno-
type. A model, in both the mathematical (AIT) and biological senses, 
is a concise representation of our data. The simplest models are 
statistical. In unsupervised approaches to AIT, models are based on 
clustering, or partitioning the data based on, for example, meaning-
ful differences in behavior. More complex models span the fields of 
physics, pattern recognition, machine learning, and so on and can 
typically include domain- or application-specific knowledge. For ex-
ample, generative models learn simulation parameters from the im-
age data and are scored by how well they recreate object behaviors 
(Peng and Murphy, 2011). The current state of the art in AIT gives a 
theoretical basis for analyzing distinct classes of models, including 
finite sets, recursive functions, and probability distributions (Vitanyi, 
2006), and a practical set of tools for unsupervised (Cohen et al., 
2009) or semisupervised (Cohen et al., 2010) analyses based on AIT 
principles. Of importance, these practical applications of AIT for 
summarization and modeling have consistently found that the algo-
rithmically meaningful characteristics of the image data were also 
biologically meaningful. Integrating new types of models into the 
AIT framework will be another very active research area moving for-
ward. Although AIT provides rigorous tools to characterize the rela-
tionships between data and models, ultimately the judgment of the 
biologists and engineers most familiar with the application must be 
brought to bear.

VALIDATING THE SUMMARY
Validation is the next step after summarization. There is no com-
pletely computational approach to extracting meaningful informa-
tion from image data. Summarization algorithms for complex data 
will always require human assistance, at the very least to provide 
domain knowledge on the imaging and application characteristics. 
There is also often the need to correct any errors in some parts of 
the automatically generated summarization. This is the validation 
step.

AIT is robust to segmentation and denoising errors, but for some 
applications, any tracking errors can render the summary invalid 
(Cohen et al., 2009). Tools like LEVER (Winter et al., 2011) have been 
developed to allow users to correct any errors in the automated 
segmentation, tracking, and lineaging. The guiding principle be-
hind such approaches is to minimize the amount of human effort 
required to correct any errors. In LEVER, this is accomplished by 
learning from user-provided corrections to automatically correct re-
lated mistakes. The validation incorporates the ability to correct er-
rors, automatically using the information provided by the human 
observer to update the summary. One significant challenge is how 
to handle the visual ambiguity inherent in biological images. There 
are two ways to handle the situation in which human observers are 
unable to determine, or to agree on, a ground truth. Either the data 
must be discarded, or it must be marked as ambiguous in the sum-
marization so that subsequent analysis can determine how best to 
handle the ambiguity. The question of how to best integrate human 
expertise into the data summarization process and to manage 
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