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Abstract
Purpose Ceftazidime–avibactam is a novel β-lactam/β-lactamase inhibitor combination recently approved in Europe and the
USA for the treatment of adults with hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP), among
other indications. In the phase III REPROVE trial (NCT01808092), ceftazidime–avibactam demonstrated non-inferiority to
meropenem for the treatment of patients with nosocomial pneumonia (NP), including VAP. As ceftazidime–avibactam was not
studied in patients with NP prior to REPROVE, selecting an appropriate dosage regimen in the “perfect storm” of NP required
careful consideration of potential determinants and confounders of response specific to the NP patient population.
Methods This review describes the series of preclinical studies and pharmacokinetic/pharmacodynamic (PK/PD) analyses that
supported ceftazidime–avibactam dosage selection for patients with NP/VAP (2000/500 mg by 2-h intravenous infusion every 8
h, adjusted for renal function). In parallel, important considerations for antibiotic dosage selection in patients with NP are
highlighted, including adequate drug penetration into the lungs, the suitability of murine-derived plasma PK/PD targets, evalu-
ation of MIC distributions against clinical bacterial isolates from patients with NP, and consideration of PK in patients with NP,
who are often critically ill. These analyses also supported the European approval of ceftazidime–avibactam for adults with HAP,
including VAP, before the completion of REPROVE.
Conclusions This work serves as a successful practical example of dosage design for a new antibacterial drug therapy in the
indication of NP, including VAP, where previous drug therapies have failed, possibly as a result of evaluation of too few variables,
thereby limiting the accuracy of pharmacodynamic predictions.
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Introduction

Nosocomial pneumonia (NP), also referred to as hospital-
acquired pneumonia (HAP), accounts for approximately
15% of hospital-acquired infections [1], and ventilator-
associated pneumonia (VAP), a subgroup of NP, is among
the most common infections in intensive care units [2, 3].
NP, and particularly VAP, are associated with high morbidity
and mortality rates [4, 5], and in many regions, antimicrobial
resistance is making these infections increasingly difficult to
treat [5]. Pseudomonas aeruginosa and Enterobacteriaceae
including Klebsiella pneumoniae and Escherichia coli are
the most frequently isolated Gram-negative bacteria from hos-
pitalized patients with pneumonia worldwide, of which many
show reduced (< 90%) susceptibility to commonly used anti-
microbials for pneumonia such as third-generation cephalo-
sporins, thereby increasing reliance on carbapenems [6–8].
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Unfortunately, the increasing resistance among clinically im-
portant Gram-negative bacteria in recent decades has occurred
in the context of declining development of new antimicrobial
therapies, particularly those targeting Gram-negative bacteria
[9]: between 2005 (approval of tigecycline) and 2017 (approv-
al of ceftazidime–avibactam), no new treatments were ap-
proved for NP/VAP due to Gram-negative bacteria.

NP represents a “perfect storm” for antimicrobial drug ther-
apy for various reasons. First, as the infection occurs in the
lungs, there is a potential for delayed or insufficient free drug
penetration to the infection site. Second, there is evidence that
bacteria isolated from patients with NP/VAP are less suscep-
tible to antibacterial agents than isolates of the same species
from other infections; such increased minimum inhibitory
concentrations (MICs) have adversely influenced the out-
comes of some clinical trials of new drugs in this population
[10, 11]. Third, the reduced susceptibility of these bacteria to
currently available antibiotics [6] can be compounded by the
rapid elimination of renally cleared agents in some patients
due to augmented renal clearance (ARC) [12]. Finally, alter-
ations in organ function and hemodynamics in critically ill
patients with NP can result in wide variability in antibiotic
pharmacokinetics (PKs) and thus affect the ability to achieve
therapeutic concentrations [13–15].

As highlighted by Ambrose and colleagues [10], for spon-
sors of new antimicrobial candidate therapies for NP/VAP,
careful consideration of PK/pharmacodynamic (PD) determi-
nants and confounders of response is required to ensure ap-
propriate dosage regimen selection before starting clinical tri-
als. The pitfalls of developing drugs for use in pneumonia
without accounting for the above factors have been demon-
strated for other antimicrobial therapies. The decreased
in vitro activity of daptomycin against Gram-positive bacteria
in the presence of pulmonary surfactant was suggested as a
possible explanation for its failure in clinical trials for
community-acquired pneumonia [16]. Initial preclinical stud-
ies of ceftobiprole assessed penetration of the drug into mouse
but not human epithelial lining fluid (ELF), the fluid layer
covering the mucosae of the alveoli and of the small and large
airways [17]. The median ceftobiprole area under the curve
(AUC) ratio for ELF/plasma was 0.69 in mice, whereas the
ratio in humans was subsequently found to be only 0.15,
resulting in an underestimation of the effective dosage re-
quired for phase III trials in patients with NP. Moreover, fail-
ure to consider ARC when determining dosages may also
result in the failure of clinical trials. For example, in trials of
doripenem, tigecycline, and ceftobiprole, ARC was implicat-
ed as a factor in their relatively low efficacy [18].

In this narrative review, we describe how the ceftazidime–
avibactam dosage regimen was selected for the treatment of
patients with NP, including VAP, and highlight important con-
siderations for selecting antibiotic dosage regimens for this
indication. Reviewing these considerations may be

instructive, because other antibacterial drugs have failed to
demonstrate adequate efficacy in NP/VAP, possibly as a con-
sequence of such analyses being incomplete prior to clinical
trials [10].

Ceftazidime–avibactam: development
overview

Ceftazidime–avibactam combines the established cephalospo-
rin ceftazidime (which, among other indications, is approved
as a monotherapy for HAP/VAP caused by susceptible bacte-
ria), with avibactam, a novel, non-β-lactam inhibitor of
Ambler class A, class C, and some class D β-lactamases
[19]. The combination is active against a wide range of
Gram-negative bacteria, including most carbapenemase-
resistant Enterobacteriaceae (with the exception of those pro-
ducing metallo-β-lactamases), and some multidrug-resistant
P. aeruginosa strains [20–22].

The efficacy and safety of ceftazidime–avibactam, including
in patients with infections caused by ceftazidime-resistant bac-
teria, have been demonstrated in a comprehensive adult clinical
trial program, including two phase II [23, 24] and five phase III
trials [25–29]. The phase II trials, and the first four phase III
trials, enrolled adults with complicated intra-abdominal infec-
tion (cIAI) or complicated urinary tract infection (cUTI), and
supported initial US (in 2015) and European (in 2016) ap-
provals in these indications [30, 31]. Population PK modeling
and probability of target attainment (PTA) analyses, using
phase I and II clinical PK data and PK/PD targets derived from
preclinical data (discussed below), were used to select a
ceftazidime–avibactam dosage of 2000/500 mg by 2-h intrave-
nous infusion q8h for patients with normal renal function across
all of the phase III trials. The phase III trials all included sparse
PK sampling schedules, and at various stages during the devel-
opment program, additional patient PK and covariate data were
incorporated into updated iterations of the ceftazidime and
avibactam population PK models to evaluate the performance
of the selected dose by assessing model predictions versus ac-
tual exposures. These analyses provided assurance that the se-
lected regimen would provide adequate exposures for various
clinically important patient subgroups, including patients with
NP/VAP [31–33], and also supported selection of dosage ad-
justments for renal function [34, 35]. In conjunction with mi-
crobiological surveillance data and data from in vitro and ani-
mal models, the simulations also supported determination of
ceftazidime–avibactam MIC susceptibility breakpoints [36].

The selected ceftazidime–avibactam dosage regimen for
patients with NP/VAP was based on a PK/PD-guided ap-
proach, described here in detail, and led to European approval
of ceftazidime–avibactam for adults with HAP/VAP before
the completion of the final phase III trial (REPROVE), which
evaluated ceftazidime–avibactam compared with meropenem
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in patients with NP, including VAP [29, 37]. Since there was
no clinical experience with ceftazidime–avibactam in NP/
VAP prior to REPROVE, the study also served to validate
the dosage selection approach in a clinical setting [29]. A
US label extension to include adults with HAP/VAP [38]
was granted following the completion of the trial and analyses
according to US Food and Drug Administration (FDA)–spec-
ified endpoints [39].

Establishing PK/PD targets for NP and VAP

Population PK modeling and PTA analyses using PK/PD tar-
gets derived from preclinical data are commonly used to guide
and support the selection of appropriate antibiotic dosage reg-
imens for clinical use [40–43]. Achievement of 50% free drug
time above the MIC (fT>MIC) is an established PD target for
ceftazidime that is associated with up to 2 log10 killing of
Enterobacteriaceae and P. aeruginosa in neutropenic mouse
infection models [44–46], and with microbiological eradica-
tion in patients with NP caused by Gram-negative pathogens
[47, 48]. This has led to the use of 50% fT>MIC as the key
exposure target for evaluating ceftazidime PK/PD target at-
tainment and in establishing MIC interpretive criteria
(breakpoints) [36, 49, 50]. For avibactam, hollow-fiber and
murine thigh and lung infection models with ceftazidime-
resistant Enterobacteriaceae and P. aeruginosa were used to
determine the avibactam PK/PD index in combination with
ceftazidime [51, 52]. Based on these experiments, the
avibactam PK/PD target in plasma associated with restoration
of ceftazidime activity was defined as 50% free time above a
critical avibactam threshold concentration of 1 mg/L (%fT>CT

1 mg/L) during each dosage interval [33, 51, 52].
For dosage selection in NP, including VAP, it was neces-

sary to study the lung penetration of ceftazidime and
avibactam to establish whether these plasma-based PK/PD
targets derived from murine infection models were appropri-
ate surrogates for the achievement of adequate ceftazidime–
avibactam exposures in human ELF. Moreover, it was impor-
tant to assess the in vitro activity of ceftazidime–avibactam
against clinical bacterial isolates from patients with pneumo-
nia and to evaluate any impact of pulmonary surfactant, a
primary component of ELF, or the presence of other antibi-
otics on in vitro activity.

Bridging the gap between mice and men: confirming
the suitability of plasma PK/PD targets derived
from murine models for dosage selection in NP
and VAP

Successful microbiological eradication requires adequate drug
concentrations at the site of infection. Therefore, the extent of

penetration of ceftazidime and avibactam into ELF was an
important consideration for appropriate dosing in the treat-
ment of NP [10]; however, there are several limitations to this
approach (see Supplemental Materials), and in particular it
may underestimate the extent of pulmonary penetration of
β-lactams [53].

Murine infection models are commonly used to identify
PK/PD targets, as it is difficult to determine the PK/PD
index from clinical trials, which often have too few clinical
failures to conduct exposure–response analyses [54].
However, bridging PK data from mice to humans without
considering human ELF data may result in incorrect calcu-
lations for the drug exposure expected at the infection site
[10].

Plasma and ELF PK data for ceftazidime–avibactam
from a phase I trial that sampled ELF in healthy volun-
teers were compared with plasma and ELF PK data ob-
tained from murine neutropenic thigh and lung infection
models [55, 56]. In the human phase I study, ELF/
plasma AUC ratios were calculated using total (free +
bound) plasma concentrations of ceftazidime and
avibactam (i.e., they were not corrected for differences
in protein binding in plasma and ELF) [56], resulting in
slightly lower estimated human ELF/plasma exposure ra-
tios than if calculated using unbound fractions. In con-
trast, the murine ELF/plasma AUC ratios accounted for
protein binding of ceftazidime and avibactam, and were
calculated using free concentrations (protein binding is
approximately 10% for both ceftazidime and avibactam
in plasma, and negligible in ELF) [53, 55]. Both ceftaz-
idime and avibactam penetrated similarly into mouse
(Figs. 1 and 2) and human ELF (Fig. 3) in a dose-
proportional manner [55, 56], and concentration-time
profiles in ELF were a similar shape to those in plasma
(Figs. 1 and 3). The mouse ELF:plasma AUC ratios for
ceftazidime and avibactam (20–24%) were slightly lower
than the corresponding human values (31–35%) [55, 56],
suggesting that the mouse data provided a conservative
indication of ELF penetration achieved in humans. Thus,
as lower penetration in mouse still resulted in effective
bacterial killing, although ELF concentrations in humans
were a proportion of those in plasma, these were con-
sidered sufficient to achieve adequate free lung
exposures.

These findings, in addition to studies showing a lack of
interaction between pulmonary surfactant and ceftazidime
or avibactam (see below), and of interactions with other
antibiotics (see Supplemental Materials), indicated that
ceftazidime and avibactam PK in plasma are appropriate
surrogates for the PK of these drugs in ELF and confirmed
the suitability of the mouse infection model to derive
plasma-based PK/PD targets for estimation of PTA appro-
priate to support dosage selection in NP.
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In vitro activity of ceftazidime–avibactam
against bacteria isolated from patients
with non-ventilated or ventilated pneumonia

To account for potential differences in susceptibility among
bacteria causing NP and VAP compared with other infection
types, the in vitro activity of ceftazidime–avibactam was eval-
uated against bacterial isolates from patients with pneumonia.
In an international surveillance study, the ceftazidime–
avibactam MIC was ≤ 8 mg/L in 92–96% of P. aeruginosa
isolates from non-ventilated hospitalized patients with pneu-
monia, and in 79–95% of those obtained from ventilated pa-
tients (Fig. 4) [57]. Ceftazidime–avibactam MIC90 values for
Enterobacteriaceae ranged from 0.25 to 0.5 mg/L [57]. This
was concordant with analyses of isolates from patients with
other infection types, which have reported ceftazidime–
avibactam MIC90 values of ≤ 8 mg/L for P. aeruginosa and
Enterobacteriaceae [22, 58–62]. A target-free plasma ceftazi-
dime exposure (fT>MIC) based on high target attainment
against bacteria that test with MIC of ceftazidime–avibactam
of 8 mg/L was therefore considered appropriate for use in
dosage selection for NP and VAP.

In vitro interaction with pulmonary surfactant

Pulmonary surfactant, a complex lipid and protein mixture
that is present in the ELF, binds to some antimicrobials, caus-
ing their activities to decrease [16]. Dallow and colleagues
[63] conducted an in vitro study to evaluate the effect of pul-
monary surfactant on the activity of ceftazidime–avibactam
and to determine whether there was any antagonistic in vitro
interaction with other antimicrobial classes that are commonly
used in the treatment of NP. No significant increases in
ceftazidime–avibactamMIC were observed at pulmonary sur-
factant concentrations up to 10% for β-lactamase-producing
Gram-negative bacteria, indicating that pulmonary surfactant
does not adversely affect the in vitro activity of ceftazidime–
avibactam [63].

Population PK modeling and PTA analyses
to guide dosage selection for NP and VAP

Population PK models were developed for ceftazidime and
avibactam using patient PK data from clinical trials and

Fig. 1 Murine model: dose proportionality of ceftazidime (parts a, c) and
avibactam (parts b, d) in plasma (parts a, b) and ELF (parts c, d) in
neutropenic mice infected in the thigh or lung by Pseudomonas

aeruginosa. AUC area under the concentration–time curve, AVI
avibactam, CAZ ceftazidime, ELF epithelial lining fluid. Dose, a single
dose administered subcutaneously. Figures from Berkhout et al. [55]
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updated as additional data were generated throughout the clin-
ical development program, with key iterations including two
early phase I–II models [64, 65], two interim phase I–III
models [66, 67], and a final model [32], with each new itera-
tion incorporating all previously available data; the model
iterations have been reviewed in detail by Das et al. (2019)
[68], and details of the final model, including NONMEM
codes, as well as descriptions of the model construction, se-
lection of covariates, and model evaluation, have been report-
ed by Li et al. (2019) [32]. Ceftazidime and avibactam plasma
concentration–time data were analyzed using nonlinear
mixed-effects modeling, which described the PK of both cef-
tazidime and avibactam as a two-compartment disposition
model with first-order elimination from a central compartment
following intravenous infusion, parameterized by clearance
(CL) , volume of the cent ra l compar tment (V c ) ,
intercompartmental clearance (Q), and volume of the periph-
eral compartment (Vp) [32]. The final model parameter esti-
mates are shown in the Supplementary Materials. Prediction-

corrected visual predictive checks confirmed that the various
model iterations reflected the observed data [32, 68]. These
models were used in Monte Carlo simulations to support and

Fig. 2 Murine model: example of PK profiles for two different single
doses of avibactam (co-dosed with ceftazidime) in plasma and ELF of
neutropenic mice with a thigh infection (32 mg/kg dose) or b lung infec-
tion (64 mg/kg dose). ELF epithelial lining fluid, PK pharmacokinetic.
Each dose group consists of two mice. Figures from Berkhout et al. [55]

Fig. 3 Human volunteer study: geometric mean (± SD) plasma and
median and individual ELF concentration–time profiles for a ceftazidime
2000 mg and b avibactam 500 mg (semi-logarithmic scale). ELF epithe-
lial lining fluid, SD standard deviation. *n = 6 for ELF median concen-
trations at 2 h and 4 h in the 2000/500 mg ceftazidime–avibactam group.
Figure from Nicolau et al. [56]

Fig. 4 Ceftazidime–avibactam MIC distribution of Pseudomonas
aeruginosa isolates from non-ventilated and ventilated hospitalized pa-
tients with pneumonia. HAP hospital-acquired pneumonia, MIC mini-
mum inhibitory concentration, VAP ventilator-associated pneumonia.
Data sourced from study conducted by Flamm et al. [57]
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validate dosage selection, with simulation methods summa-
rized in the Supplementary Materials. Based on the in vitro
and in vivo studies described above, free plasma PK/PD tar-
gets of 50% fT > 8 mg/L for ceftazidime (8 mg/L was selected
as it was the ceftazidime–avibactam MIC90 for the target spe-
cies, P. aeruginosa, and higher than the MIC90 for species of
the Enterobacteriaceae, as described above) and 50% fT > CT

1 mg/L for avibactam (see Nichols et al. (2018) [33] for a
review of PK/PD target selection), to be attained simulta-
neously in each simulated patient, were used in PTA analyses
to guide dosage selection based on achievement of > 90%
joint PTA [31, 32, 68].

The overall phase III dosage selection and optimization
process for ceftazidime–avibactam has been reviewed by
Das et al. [68]. In brief, ceftazidime 2000 mg q8h was
selected as the “starting point,” as this is the recommended
monotherapy dose for severe infections [69], co-
administered with avibactam 500 mg q8h in a 4:1 fixed-
dose ratio. At the time of dosage selection for REPROVE,
PK data for ceftazidime–avibactam were available from
five phase I studies in healthy volunteers and a phase II
study in patients with cIAI treated with ceftazidime–
avibactam 2000/500 mg 30-min intravenous infusions
q8h. Ceftazidime and avibactam population PK models
were developed using data from these studies and used to
guide dosage selection for REPROVE, because no clinical
trial PK data were available at the time for ceftazidime–
avibactam in patients with NP/VAP. For both ceftazidime
and avibactam, the final models were two-compartmental,
with body-surface-area-normalized creatinine clearance
(CLCR), age, body weight, and study population (healthy
subjects vs patients) identified as covariates [64, 70]. The
use of population PK models based on patients with cIAI
was considered appropriate for dosage selection in NP, as
the PK profile of ceftazidime alone was previously shown
to be comparable across cIAI and NP patient populations
[71, 72]. We assumed that the same would be true for
avibactam, given the generally similar PK profiles of the
two compounds [73].

ARC occurs commonly in patients who are critically ill,
such as those with VAP, resulting in faster elimination of
renally cleared drugs [10, 15]. As both ceftazidime and
avibactam are almost entirely cleared by the kidneys, and
CLCR was identified as a significant covariate affecting the
exposures of both drugs in the population PK models, the
effect of high CLCR was an important consideration in dos-
age selection for NP/VAP [10]. Following completion of
the ceftazidime–avibactam phase III cIAI and cUTI trials,
updated population PK models were developed which in-
cluded data from 101 phase III patients with estimated
CLCR 150–180 mL/min and 76 with CLCR 180–395 mL/
min [31]. These updated models were used to explore spe-
cific considerations for the CLCR distribution in

simulations of patients with NP/VAP [70]. We assumed
that the relationships between ceftazidime and avibactam
exposures and high CLCR were already well characterized
in the models based on patients with cIAI. This assumption
was supported by data from a phase I study which explored
the impact of ARC on avibactam exposure when dosed in
combination with ceftaroline fosamil in patients with con-
firmed ARC (measured CLCR ≥ 140 mL/min) and sepsis
[31]. An increase in avibactam CL in patients with ARC
and sepsis was seen compared with healthy subjects
(noncompartmental analysis), resulting in an average

Fig. 5 Patient CLCR distributions used in the PTA simulations for dosage
regimen selection in NP including VAP. CLCR creatinine clearance, NP
nosocomial pneumonia, PTA probability of target attainment, VAP
ventilator-associated pneumonia. Case 1: CLCR distribution from 415
non-ventilated patients with NP [10]. Case 2: CLCR distribution from
164 patients with VAP [10]. Case 3: CLCR distribution from the phase
III CANVAS 1 and 2 studies of ceftaroline fosamil in complicated skin
and soft-tissue infection. This distribution was used as these trials
contained many patients with infection and high CLCR (truncated at
CLCR > 80mL/min). Dashed lines show the alignment of the distribution.
Data from Li et al. (2015) [70]. Simulations were conducted for 3000
patients each in case 1 and case 2 (of which 2000 simulated subjects had
CLCR > 80 mL/min and 1000 had CLCR 50–80 mL/min), and 1000
patients in case 3, receiving ceftazidime–avibactam 2000/500 mg q8h
2-h intravenous infusions. Case 1 and 2 panels adapted from Ambrose
et al. (2010) [10]
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28.4% lower AUC0–t, which was comparable to the
avibactam exposure seen in phase III patients with cIAI
with estimated CLCR > 150 mL/min [31]. There was a
similar impact of CLCR > 150 mL/min on the exposure of
ceftazidime. The similar magnitudes of differences in ex-
posures (compared to healthy subjects with normal renal
function) between patients with cIAI with high estimated
CLCR (> 150 mL/min) and patients with ARC and sepsis
suggested that it was plausible to use estimations of high
CLCR from the phase III data to model the impact of ARC
on PTA.

To assess the impact of higher renal clearance in patients
with NP, additional simulations based on the updated
models were conducted to evaluate whether the proportion
of patients with high CLCR significantly affected PTA [70].
During typical PTA simulations, the CLCR distribution is
re-sampled using the population model patient dataset. In
the original simulations for NP dose selection, the popula-
tion PK models were developed using data from patients
with cIAI, and did not include patients with NP. Therefore,
the impact of high CLCR on PTA was analyzed in three
scenarios (Fig. 5). First, the CLCR distribution from pa-
tients with cIAI was replaced with literature-reported
values from patients with NP, using CLCR distributions
from non-ventilated (case 1) and ventilated (case 2) pa-
tients [10]. A third approach (case 3), simulated a “high
CLCR distribution” by removing low clearances from a
natural patient distribution (i.e., of the CLCR range seen
in a clinical trial, the distribution of values > 80 mL/min
was taken and re-sampled). In this instance, the CLCR dis-
tribution was derived from two phase III studies of
ceftaroline fosamil in complicated skin and soft-tissue in-
fection [74]. These two studies included multiple subjects
with infection and high CLCR, and were therefore consid-
ered informative for simulations of patients with NP (Fig.
5). In this distribution, at least 25% of patients had CLCR >
160 mL/min and could be considered to have ARC. Other
covariates (age, weight, height, and gender) were simulat-
ed from their distribution functions obtained from the
phase II trial in patients with cIAI [24, 70].

For each CLCR distribution case defined above, joint
PTA by MIC curves were compared with ceftazidime–
avibactam MIC distributions for P. aeruginosa isolates
from patients with NP and VAP (Fig. 4) [57]. Joint PTA
> 90% was predicted for ceftazidime–avibactam 2000/
500 mg 2-h intravenous infusions q8h for all three CLCR

distribution cases (NP, VAP, and high CLCR) for
ceftazidime–avibactam MICs ≤ 8 mg/L (Table 1) [70].
These s imula t ions thus suppor ted the se lec ted
ceftazidime–avibactam dosage regimen for patients with
NP, including VAP, and CLCR ≥ 50 mL/min. Dosage ad-
justments are required for patients with CLCR < 50 mL/
min, as described elsewhere [32].

Approval of ceftazidime–avibactam
for the treatment of NP and VAP in Europe
prior to the completion of REPROVE

Ceftazidime–avibactam was approved in Europe for the treat-
ment of HAP, including VAP, prior to the completion of
REPROVE [31, 37]. This decision was supported by the PK
analyses described above and the following additional data. At
the time of the European approval in HAP/VAP, results from
the RECLAIM, REPRISE, RECAPTURE, and RECLAIM 3
phase III clinical trials had confirmed the efficacy in patients
with cIAI and cUTI of the proposed NP dosage regimen
[25–28]. Blinded interim plasma concentration data were also
available from 308 patients (109 with VAP) from REPROVE,
which demonstrated similar ceftazidime and avibactam plas-
ma exposures in patients with NP or VAP compared with
those for patients with cIAI [31]. Updated ceftazidime and
avibactam population models, including data from the phase
III clinical trials in cIAI and cUTI, were used together with
blinded demographic data from patients with NP and VAP in
REPROVE to simulate joint PTA for patients with NP, includ-
ing VAP, and confirmed high joint PTA (> 98%) in these
patients at ceftazidime–avibactam MICs up to 8 mg/L [31].
Ceftazidime and avibactam plasma–ELF relationships were
also further characterized by developing population PK
models for ceftazidime and avibactam in plasma and ELF
using data from the phase I ELF study [56, 75]. ELF penetra-
tion of ceftazidime and avibactam from plasma occurred rap-
idly and was nonlinear, with penetration of both drugs greater
than previously calculated using noncompartmental AUC
methods [75]. Simulation of ELF concentration–time profiles
demonstrated that most subjects achieved ceftazidime and
avibactam ELF exposures exceeding their respective plasma
PK/PD targets by the midpoint of the dosing interval (Fig. 6).
This analysis confirmed that substantial ELF penetration is
achieved in healthy subjects, and that the exposures in the
lungs of both drugs administered at the proposed dosage reg-
imen were predicted to exceed levels required for efficacy.

Validation of the ceftazidime–avibactam
dosage regimen for patients with NP,
including VAP

In REPROVE, 879 adults with NP, including VAP, were ran-
domized 1:1 to receive ceftazidime–avibactam 2000/500 mg
2-h intravenous infusion q8h or meropenem 1000 mg 30-min
infusion q8h, with dosage regimens of both drugs adjusted for
impaired renal function [29, 68]. Ceftazidime–avibactam was
non-inferior to meropenem with respect to clinical cure at test
of cure (primary endpoint) [29] and for the US FDA–specified
endpoint of all-cause mortality at day 28 [39]. Adverse events
were as expected for the patient population and consistent
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with the established safety profile of ceftazidime–avibactam
[29, 39]. Of note, ceftazidime–avibactam dosage adjustments
for CLCR < 50mL/minweremodified by protocol amendment
during the study to reflect approved European and US labeling
[68]. Patients in REPROVE receiving the original dosage ad-
justments were excluded from the primary efficacy analyses
but not from the US analyses; however, in both cases, the non-
inferiority criteria were met [29, 39]. Thus, the selected
ceftazidime–avibactam dosage regimens (including recom-
mended adjustments for impaired renal function) were asso-
ciated with clinical efficacy in patients with NP, including
VAP, validating the dosage selection approach.

As noted above, patients with NP, and particularly VAP, are
often critically ill, which can affect the PK of many drugs,
including some antibiotics [13]. Therefore, updated ceftazi-
dime and avibactam population PK models, based on patient
PK data from all five adult ceftazidime–avibactam phase III
trials (including REPROVE), were used to confirm that ap-
propriate exposures and high target attainment were main-
tained in patients with NP and VAP, and in subgroups of
patients with characteristics of critical illness [32]. The final
models included ceftazidime and avibactam PK data from
1975 and 2249 individuals, respectively, including 412 pa-
tients with NP, of whom 138 had VAP. A high proportion of
patient PK data was included in these models, including pa-
tients with a wide range of renal function, and substantial
numbers of patients with more severe infection (438 patients
with Acute Physiology and Chronic Health Evaluation
[APACHE] II score > 10, and 773 patients with systemic

inflammatory response syndrome [SIRS] at baseline).
Consistent with the earlier population PK models, CLCR was
the key covariate that affected CL of both drugs. The CL of
avibactam and ceftazidime was close to proportional to CLCR

at CLCR values < 80mL/min and < 100 mL/min, respectively;
at higher CLCR values, CL increased modestly (shallow slope)
as CLCR increased.

The final models were used to predict steady-state expo-
sures and joint PK/PD target attainment in actual phase III
patients, and conduct joint PTA simulations for multiple pa-
tient subgroups including indication (cIAI, cUTI, or NP),
baseline APACHE II score, presence of SIRS, renal function,
age, sex, and race. Covariate values for simulations in the
different indications were obtained by sampling with replace-
ment from the corresponding set of phase III study patients for
each indication (bootstrapped from the respective trial popu-
lations). Patients with NP were stratified into VAP and non-
VAP patient subgroups for the covariate analysis. To further
assess the effect of ventilation, an additional subgroup was
defined for “patients with a ventilator in the hospital room,”
which included patients with HAP or VAP who were ventilat-
ed on the day of PK sampling (denoted as NPv).

Predicted plasma ceftazidime and avibactam exposures in
phase III patients with NP (including non-VAP, VAP, and NPv
subgroups) were broadly comparable with (but slightly higher
than) exposures in patients with cIAI and cUTI. Joint PK/PD
target attainment exceeded 97% in all NP subgroups, as well
as in patients with markers of severe disease, including
APACHE II > 10, SIRS, or bacteremia [32]. In phase III

Table 1 Predicted joint PTA (%)
by ceftazidime–avibactam MIC
for patients receiving
ceftazidime–avibactam 2000/500
mg q8h as a 2-h intravenous in-
fusion for three different cases of
CLCR distributions (dose selec-
tion population PK model)

Ceftazidime–avibactam
MIC (mg/L)

Non-ventilatedNP
patientsa (case 1)

VentilatedNP
patientsa (case 2)

Patients with high
CLCR

b (case 3)

0.125 98.2 98.2 97.9

0.25 98.2 98.2 97.9

0.5 98.2 98.2 97.9

1 98.2 98.2 97.9

2 98.2 98.2 97.9

4 98.0 98.2 97.7

8 95.7 94.8 92.5

16 65.6 63.8 53.8

32 12.3 12.1 6.3

CLCR creatinine clearance, MIC minimum inhibitory concentration, NP nosocomial pneumonia, PK pharmaco-
kinetic, PTA probability of target attainment, q8h every 8 h
a For case 1 (non-ventilated NP) and case 2 (ventilated NP) simulations, 3000 patients were simulated for each
case, of which 2000 were simulated from the distribution region CLCR > 80 mL/min, and 1000 from the region
CLCR 50–80 mL/min; covariate distributions for CLCR were obtained from the literature [10]
b For case 3, 1000 patients were simulated; the covariate distribution for CLCR was obtained from two phase III
studies of ceftaroline fosamil in patients with complicated skin and soft-tissue infection with high CLCR, exclud-
ing values < 80 mL/min (case 3). See Fig. 5 for details

Data from Li et al. (2015) [70]. Simulations were conducted for 3000 patients each in case 1 and case 2 (of which
2000 simulated subjects had CLCR > 80mL/min and 1000 had CLCR 50–80mL/min), and 1000 patients in case 3,
receiving ceftazidime–avibactam 2000/500 mg q8h 2-h intravenous infusions
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patients with high (151–180 mL/min) or very high (181–610
mL/min) CRCL, predicted joint PK/PD target attainment rates
were 98.4% and 95.7%, respectively, reflecting the relatively
small increases in ceftazidime and avibactam CL at higher
CLCR values [32]. These findings, consistent with the clinical
outcomes, suggest that the selected dosage regimen provided
appropriate exposures and high joint target attainment in pa-
tients with NP, including VAP, regardless of infection severity
or ARC.

In simulations based on the final models and covariate
distributions, exposures were highest in patients with NP
(compared to those with cIAI or cUTI), and PTA > 95% at a
ceftazidime–avibactam MIC of 8 mg/L was predicted for pa-
tients with NP/VAP/NPv, including those with high CLCR

(Table 2). Appropriate exposures and > 96% joint PTA were
also predicted across renal function categories in patients with
NP receiving the recommended ceftazidime–avibactam dos-
age adjustments for renal impairment [32].

Perspectives on selecting antibiotic dosage
regimens for the treatment of NP and VAP

In selecting an appropriate dosage of ceftazidime–avibactam for
use in patients with NP and VAP, we followed Ambrose and
colleagues’ advice to “look before you leap” [10]. Specifically,
we considered ceftazidime–avibactam MIC distributions against
bacteria isolated from patients with pneumonia, drug penetration
to the infection site, potential antagonism by lung surfactant (and
antagonistic interaction with other antimicrobials [63]), the suit-
ability of using murine-derived plasma PK/PD targets for human
dosage selection, and the phenomenon of ARC thatmay occur in
critically ill patients. These analyses had an important role in
supporting the approval of ceftazidime–avibactam in Europe
for the treatment of patients with HAP, including VAP [37], prior
to the availability of clinical data in this indication. Results from
the REPROVE trial subsequently confirmed the efficacy and
safety of the approved ceftazidime–avibactam dosage regimen
in patients with NP, including VAP [29, 39]. In 2018,
ceftazidime–avibactam was approved in the USA for the treat-
ment of HAP and VAP based on data from REPROVE [38].

Notwithstanding the successful outcome of dosage selection
for ceftazidime–avibactam reported here, there were some limi-
tations to the overall modeling approach, and in the data available
for the population PK analyses. For example, we did not use a
joint population PK model, which would have allowed for para-
metric simulations with consideration of PK parameter correla-
tions. Moreover, the lack of ELF data from patients with lung
infections required extrapolation frommurine data and modeling
of ELF penetration based on plasma concentrations. While rec-
ognizing the limitations of ELF measurements, we believe that
the ceftazidime and avibactam ELF population PK models and
exposure calculations can be considered conservative, and the
positive outcome of the REPROVE trial provides further valida-
tion of the view that adequate lung tissue penetration is achieved
in patients. Initial dosage selection was based on PK data from
subjects with a limited range of CLCR, with updated models
based on phase III cIAI data subsequently used for evaluating
exposures and PTA in patients with NP/VAP, a population with
highly variable renal function, including ARC. In addition, there
are limitations in the use of the Cockcroft–Gault formula for
estimation of renal function in subjects with high CLCR.
Similarly, there are known effects of mechanical ventilation on
the PK of multiple drugs, including antibiotics. Our analysis
identifying patients in REPROVE as NPv, VAP, or non-VAP
was based on the presence of a ventilator in the hospital room
(using available study data), which limited exploration of the
impact of mechanical ventilation. However, it should again be
emphasized that the results fromREPROVE support the selected
ceftazidime–avibactam dosage as efficacious in patients with NP
and VAP. Finally, owing to restrictions in the available clinical
data, the population PK models were unable to provide specific
exposure and PTA predictions for some patient groups of clinical

Fig. 6 Simulated total ELF concentration–time profiles in 1000 subjects
receiving ceftazidime–avibactam 2000/500 mg q8h for a ceftazidime and
b avibactam, superimposed with observed ELF concentration data. ELF
epithelial lining fluid, MIC minimum inhibitory concentration, PK/PD
pharmacokinetic/pharmacodynamic. The solid line represents the median
percentile of 1000 simulated individuals, and the dashed lines are 5th and
95th percentiles. The circles represent the observed data points. The hor-
izontal hashed line represents the plasma PK/PD target for ceftazidime
(50% fT>MIC of 8 mg/L) and avibactam (50% fT > 1 mg/L), and the
vertical hashed line represents the midpoint of the 8-h dosing interval.
Figure from Dimelow et al. (2018) [75]
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interest, such as those with neutropenia. However, ceftazidime
monotherapy is approved for the treatment of febrile neutropenia,
and since the action of avibactam is independent of neutrophils, it
is reasonable to expect that the ceftazidime–avibactam dosages,
PK/PD targets, and exposures described here would also apply in
patients with neutropenia with infections caused byβ-lactamase-
mediated ceftazidime-resistant (but ceftazidime–avibactam sus-
ceptible) bacteria.

Conclusions

Selection of inappropriate dosage regimens is likely to have con-
tributed to the failure of some antibiotic development programs
in the NP and VAP indications [10]. As Ambrose and colleagues
have suggested, this can potentially be avoided by considering
the confounders and determinants of response in this patient pop-
ulation and conducting appropriate experiments to inform dosage
regimen decisions [10]. Based on the work described here,
ceftazidime–avibactam 2000/500 mg 2-h intravenous infusion
q8h (adjusted for renal function) was the dosage regimen selected
for patients with NP, including VAP, and which was evaluated in
the phase III REPROVE trial. The results from REPROVE con-
firmed that the selected ceftazidime–avibactam dosage regimen
was associated with efficacy in patients with NP, including VAP,
validating the approach described here for dosage selection in
REPROVE. The present work serves as a clinically successful
example of designing dosing for clinical trialing of a new anti-
bacterial agent in the “perfect storm” of NP, including VAP.
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