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Abstract
Increases in temperature related to global warming have important implications for organismal fitness. For ectotherms 
inhabiting temperate regions, ‘winter warming’ is likely to be a key source of the thermal variation experienced in future 
years. Studies focusing on the active season predict largely positive responses to warming in the reptiles; however, over-
looking potentially deleterious consequences of warming during the inactive season could lead to biased assessments of 
climate change vulnerability. Here, we review the overwinter ecology of reptiles, and test specific predictions about the 
effects of warming winters, by performing a meta-analysis of all studies testing winter warming effects on reptile traits to 
date. We collated information from observational studies measuring responses to natural variation in temperature in more 
than one winter season, and experimental studies which manipulated ambient temperature during the winter season. Avail-
able evidence supports that most reptiles will advance phenologies with rising winter temperatures, which could positively 
affect fitness by prolonging the active season although effects of these shifts are poorly understood. Conversely, evidence 
for shifts in survivorship and body condition in response to warming winters was equivocal, with disruptions to biological 
rhythms potentially leading to unforeseen fitness ramifications. Our results suggest that the effects of warming winters on 
reptile species are likely to be important but highlight the need for more data and greater integration of experimental and 
observational approaches. To improve future understanding, we recap major knowledge gaps in the published literature of 
winter warming effects in reptiles and outline a framework for future research.
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Introduction

Increases in temperature related to global warming have 
important implications for organismal fitness. Relative to 
endothermic species that regulate their own body tempera-
ture, ectothermic species are physiologically reliant on ambi-
ent temperature to direct behavior, growth, and reproduc-
tion, and are therefore considered especially vulnerable to 

projected thermal shifts (Deutsch et al. 2008; Kingsolver 
et al. 2013; Paaijmans et al. 2013). While a majority of the 
research examining these effects has focused on temperature 
changes during annual periods of activity (i.e., when mean 
temperatures exceed the minimum thresholds required for 
growth and reproduction; Deutsch et al. 2008; Kingsolver 
et al. 2013; Paaijmans et al. 2013), thermal conditions can 
also impart strong effects on ectotherms during periods of 
non-activity or dormancy, such as during winter. Winter 
temperatures are rising at a faster rate than summer tempera-
tures (Intergovernmental Panel on Climate Change, 2014), 
and failure to account for asymmetries in warming patterns 
is likely to bias insights from climate change research (Spei-
ghts et al. 2017). ‘Winter warming’, although traditionally 
studied in high arctic species and cold-adapted mammals, 
is predicted to also have important (and thus far, underesti-
mated) fitness implications for temperate-zone species (Wil-
liams et al. 2015; Johansson et al. 2020), and may be an 
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important source of vulnerability for ectotherms (reviewed 
in Marshall et al. 2020).

One group of ectotherms for which climate change 
research has been particularly ‘active-season-biased’ is the 
non-avian reptiles. Indeed, existing frameworks for assess-
ing vulnerability to temperature change in reptiles focus 
almost exclusively on activity budgets as a metric for fitness, 
which by definition can only be measured in the active sea-
son (Huey et al. 2009; Kearney 2013). Sinervo et al. (2010) 
projected devastating global extinction rates across lizard 
species due to thermally restricted activity during reproduc-
tive months, a result echoed by later applications of this 
framework (Böhm et al. 2016; Pontes-da-Silva et al. 2018; 
Diele-Viegas et al. 2020). Conversely, by the same metrics 
cold-climate reptiles could benefit from warmer breeding 
seasons due to release from cold stress and extended activ-
ity periods (Chamaillé-Jammes et al. 2006; Clarke and Zani 
2012; Caldwell et al. 2015; Cabezas-Cartes et al. 2019; 
Chukwuka et al. 2021; Muñoz et al. 2021). While rising 
thermal minima are increasingly recognized as a fitness-rel-
evant dimension of reptile thermal ecology (e.g., warming 
nights; Clarke and Zani 2012; Moore et al. 2020; Chukwuka 
et al. 2021; Rutschmann et al. 2021), the effects of warm-
ing during the winter period are rarely factored into these 
projections (but see Zani et al. 2012; Bestion et al. 2015).

Neglecting the effects of warming winters risks biasing 
predictions about how overall warming trends are likely to 
impact reptile species. We provide the first quantitative syn-
thesis of work on winter warming effects in this group. We 
begin by evaluating the literature on reptile winter ecology 
to identify probable mechanisms through which warming 
could influence phenology, physiology, and fitness. We then 
synthesise the existing data on this topic using meta-analy-
sis to investigate whether reptilian responses to increases in 
winter temperature correspond to our biologically informed 
predictions. Finally, we outline a framework for future stud-
ies on this topic, including highlighting understudied areas. 
We hope that this discussion will stimulate more research 
on winter ecology and winter warming effects, particularly 
in the reptiles.

Reptile winter ecology and predictions 
under winter warming

Strategies for overwintering

For reptiles in temperate regions, the arrival of winter ush-
ers in cooler temperatures, reduced food availability, and 
fewer thermoregulatory opportunities. Most reptiles are 
capital breeders, relying on stored energy to fuel reproduc-
tion in the spring (Bonnet et al. 1998; Shine 2005). Thus, 
the optimal overwintering strategy should minimize cold 

risk and maximize the conservation of, and opportunities 
to replenish, energetic reserves (Storey 2006; Huey et al. 
2021).

A common strategy at mid-latitudes is brumation, a 
metabolic adaptation for ensuring survival in seasonally 
cold environments (Hoekstra et al. 2020). Brumation may 
be achieved passively (i.e., metabolic rate declines with 
temperature), or actively by entering a true dormant state 
known as metabolic depression in which metabolic rates 
drop to just above thresholds required to prevent tissue 
damage (Patterson and Davies 1978; Hailey and Loveridge 
1997). Metabolic depression or downregulation is not lim-
ited to extremely cold winters; Brazilian tegus (Tupinam-
bis merianae) in relatively warm temperate habitats show 
a reduction in oxygen consumption during winter months 
to 20–30% resting rate (de Souza 2004).

Many reptiles seek out solitary or communal hibernac-
ula in winter to minimise exposure to sub-zero tempera-
tures (White and Lasiewski 1971; Ultsch 1989; Rabosky 
et al. 2012). These retreats may be shallow (i.e., 10–30 cm 
crevices visible from the surface) or deep (i.e., > 1 m), 
depending on risk of cold injury (Gregory 1982; Huey 
et al. 2021). Where contact with ambient ice is unavoid-
able, physiological adaptations are required for freeze tol-
erance or freeze avoidance. For example, hatchling painted 
turtles (Chrysemys picta), which overwinter in shallow 
nests frequently penetrated by frost, show a remarkable 
capacity for supercooling (Costanzo and Lee 2013) that 
is facilitated at least in part by freeze-responsive gene 
expression (Storey 2006). While supercooling capacities 
vary by population, a lack of predictable correlation with 
winter severity in species that use deep thermal refugia 
suggests that behavioral avoidance may shield many taxa 
from selection on physiological tolerance (Michels-Boyce 
and Zani 2015).

Over-wintering strategies vary geographically and tax-
onomically: for example, where some populations [e.g., 
Sceloporus graciosus in central California (Jameson 1973) 
and Sceloporus occidentalis in southern Washington (Tsuji 
1988)] are entirely winter-dormant, adapting both their 
physiology (e.g., reduced metabolism) and behavior (e.g., 
fasting) to conserve energy, others [e.g., Sceloporus jar-
rovii in Arizona (Ruby 1977) and Sceloporus occidenta-
lis in southern California (Tsuji 1988)] are continuously 
or periodically winter-active, resisting energetic slumps 
brought on by cooler temperatures through opportun-
istic basking and metabolic compensation. While the 
physiological benefits of this latter strategy (e.g., feeding, 
growth, repair, or progression of embryonic development 
where offspring are retained in nests/in oviducts overwin-
ter) are assumed to override the metabolic costs, these 
dynamics likely vary by species and remain an open area 
of research (Huey et al. 2021).
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Sensitivity to thermal cues

While many organisms rely on photoperiodic cues to signal 
the changing seasons, reptiles that overwinter underground 
may receive little to no exposure to these cues. Instead, 
ambient temperature serves as the principal orchestrator 
of the onset and termination of dormancy in most temper-
ate reptiles (reviewed in Van Dyke 2014). Just as periods 
of low temperature can induce gradual entry into dormant 
states regardless of season (Patterson and Davies 1978; 
Toledo et al. 2008), increases in air, soil, or hibernaculum 
temperature trigger emergence from extended hibernation 
(Grobman 1990; Blouin-Demers et al. 2000; DeGrego-
rio et al. 2017). As warming soils are more perceptible 
closer to the surface, reptiles in warm localities tend to 
overwinter at shallow depths, presumably to optimize 
opportunities for midwinter activity (Huey et al. 2021). 
In colder localities, conversely, reptiles must retreat deep 
underground, out of range of surface temperature cues, to 
avoid risk of freezing (Huey et al. 2021). In these cases, 
it is possible that critically low temperatures generate the 
thermal gradients within hibernacula that initiate migra-
tion to the surface (Lutterschmidt et al. 2006).

Temperature also regulates physiological and behav-
ioural states during brumation. For example, cold expo-
sure primes fat body cycles for seasonal fasting (Derickson 
1976) and turtle brains for winter anoxia (Couturier et al. 
2019) and is also the trigger for metabolic depression. 
Sensitivity to these cues may be seasonal or year-round: 
for example, Uta stansburiana show the same metabolic 
response to extreme low temperatures in summer as in 
winter (Halpern and Lowe 1968). Finally, environmental 
temperature plays a critical role in regulating reproductive 
cycles. In dissociated breeders (i.e., where gonadal recru-
descence occurs either in the fall or winter leading up to 
spring mating, Van Dyke 2014), a prolonged cold period 
prior to the onset of warm temperatures is a prerequisite 
to recrudescence and associated reproductive behaviors 
(Marion 1982; Gavaud 1991; Lutterschmidt 2012), with 
photoperiod having little to no effect (Aldridge 1975, 
1979). Even in species that do not rely on a cold period to 
trigger recrudescence, gradual warming in late winter and 
early spring is still the primary cue stimulating reproduc-
tion (Tinkle and Irwin 1965; Licht et al. 1969). Evidence 
from laboratory manipulation experiments implicates the 
action of environmentally sensitive hormones in entrain-
ing biological rhythms to overwinter thermal conditions. 
For example, in snakes, melatonin transduces temperature 
cues to the brain’s reproductive axis during hibernation 
(Lutterschmidt and Mason 2009), providing a mechanism 
for the thermal regulation of seasonal reproductive cycles.

Key predictions under winter warming

To predict how warming winters are likely to affect temper-
ate reptiles over the short- to long-term, it is not only impor-
tant to draw direct links between overwinter temperature and 
survivorship and/or reproductive success, but also to identify 
biological processes that are likely to be affected by tempera-
ture and incorporate these into a more holistic understanding 
of fitness. A first major prediction, given the extent to which 
reptiles rely on thermal cues to trigger the onset and termina-
tion of dormancy and the initiation of spring reproduction, is 
that increasingly warm winters will lead to widespread shifts 
in phenology. Phenological advancements in response to cli-
mate change have been documented across plant and animal 
species (Parmesan 2007; Cohen et al. 2018) and regional 
and taxon-specific assessments suggest that reptiles are no 
exception (Urban et al. 2014; Prodon et al. 2020). Shorter 
winters and longer growing seasons are expected to have 
positive impacts on temperate reptiles by extending periods 
available for activity/reproduction (Adolph and Porter 1993; 
Sperry et al. 2010), although early emergence could also 
confer deleterious effects such as greater exposure to late-
season frosts (Turner and Maclean 2022).

A second major prediction based on the direct links 
between temperature and resting metabolic rate in reptiles 
(Gillooly et al. 2001) is that high-temperature dormancy will 
hasten energy depletion. For example, hatchling painted tur-
tles (Chrysemys picta) catabolize more body-derived fuel 
sources when overwintering at mild (10 °C) or warm (15 °C) 
temperatures than at cold temperatures (4 °C)—a sign that 
they have exhausted carbohydrate and lipid stores (Costanzo 
et al. 2004; Muir et al. 2013). Increased energy use during 
periods of dormancy not only reduces body condition upon 
emergence (Costanzo et al. 2004; Brischoux et al. 2016; 
Muir et al. 2013) and contributes to increased overwinter 
mortality (Zani 2008; Zani et al. 2012), but also has the 
potential to limit energy-demanding activities in the spring, 
such as migration (Tucker et al. 1998), gametogenesis (Der-
ickson 1976), and breeding (MacLeod et al. 2018).

Finally, changes in overwinter temperature could impart 
hidden fitness costs by disrupting biological rhythms (i.e., 
sleep vs wake, non-breeding vs breeding) during dormancy. 
Short-term increases in winter temperature can stimulate 
midwinter emergence from retreats (Sperry et al. 2010; Nor-
dberg and Cobb 2016, 2017; Huey et al. 2021). However, 
because temperatures generally remain below the optima 
for efficient locomotion and digestion (Ruby 1977; Huey 
and Kingsolver 1989; Besson and Cree 2011), even success-
ful midwinter hunts are likely to end in a net energy deficit 
(Sperry and Weatherhead 2012; Nordberg and Cobb 2017) 
and increase susceptibility to predators (Wilson and Cooke 
2004; Sperry et al. 2010; Nordberg and Cobb 2016). Warm-
ing winters could also have temporally dissociated effects 
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on reproduction by disrupting physiological and neuroendo-
crinological mechanisms. For example, male garter snakes 
overwintered at 10 °C present lower plasma androgens and 
fewer and smaller gonadotropin-releasing hormone (GnRH) 
cells in their brains after 16 weeks than males overwintered 
for the same duration at 4 °C (Lutterschmidt et al. 2022), 
providing a likely explanation for the observed disruptions to 
courtship behaviors following a mild winter (Lutterschmidt 
and Mason 2009).

Data synthesis—meta‑analysis methods 
and results

Literature search

To test the predictions outlined above, we compiled existing 
data from the literature on winter warming effects in May 
2020 and April 2022 by searching the ISI Web of Science 
database (all years inclusive) for studies containing the fol-
lowing key words, singly or in combination: winter, tem-
perature, hiberna*, overwinter, winter warming, dorman*, 
brumat*, reptile, lizard, snake, turtle. We also made use of 
the references cited by Williams et al. (2015) in their review 
of winter warming effects on terrestrial organisms. We con-
ducted an additional search in August 2021 to widen our 
dataset to include crocodilians, tuatara and amphisbaenids 
by including the following terms in combinations as above: 
crocodil*, amphisbaen*, tuatara. A full list of search term 
combinations is available in Supplementary Material.

We applied the following criteria for eligibility: (1) stud-
ies measured traits in response to experimentally manipu-
lated, or natural variation in, overwinter temperatures (where 
winter boundaries were defined by authors according to 
regional and species-specific criteria); (2) observational/
long-term studies measured responses to natural variation 
in temperature in more than one winter season; (3) experi-
mental studies manipulated ambient temperature, with a 
control group for comparison, during the species’ regular 
winter season. This did not include experimental tempera-
ture manipulations deemed ecologically irrelevant (e.g., 
overwinter treatments were designed to simulate normal 
summer, not winter temperatures). Using the web applica-
tion Rayyan (Ouzzani et al. 2016), we removed duplicates 
and screened abstracts for indications that studies fulfilled 
these criteria. This search yielded an initial set of 67 studies, 
which were then evaluated to determine eligibility (see Sup-
plementary Material S1 for full PRISMA statement, sensu 
Moher et al. 2009). In total, we identified 34 eligible studies.

Study information including sample sizes and information 
on traits measured was extracted from all studies (details 
below). Where parameter values were not reported in the 
text, they were extracted from figures using the R package 

metaDigitise (Pick et al. 2018), WebPlotDigitizer (Rohatgi, 
2019), or by contacting authors directly. We collected data 
on traits categorised as follows: Phenology (pertaining to 
timing of life history events, such as emergence); Body 
Condition and Performance (e.g., mass, energy content); 
Fitness (e.g., survival and reproduction); and Biological 
Rhythms (hormone titres, metabolic rate) (see Supplemen-
tary Table S2 for full list of traits including categorisation).

Statistical analysis

To account for differences in protocols, parameters meas-
ured, and types of calculable effect sizes, experimental 
(n = 12 studies) and observational (n = 22 studies) datasets 
were analysed separately. In both cases, effect sizes were 
calculated using the escalc function in the package metafor 
(Viechtbauer 2010). Effect size signs were adjusted system-
atically to ensure alignment of biological interpretation in 
terms of “positive” vs “negative” effects (see Supplemen-
tary Table S2 for full list of adjusted signs). For example, 
an increase in overwinter mortality represents a positive 
effect size with “negative” effects, and as such the effect 
size sign was changed to negative. Advances in phenology 
(e.g., earlier nesting dates) were designated as positive and 
vice versa. Where there was ambiguity about the assumed 
benefit of an increase or decrease in a trait value, effect size 
sign was left unchanged.

In the experimental dataset, we used Standardized Mean 
Difference as the effect size of interest. For studies that com-
pared more than one treatment group to a shared control 
group, control sample sizes were corrected (by dividing by 
the number of treatments) to control for psuedoreplication. 
In the correlational dataset, we used Fisher’s r-to-z cor-
rected correlation coefficients. Effect sizes and their corre-
sponding sampling variances were fit to separate multi-level 
random effects models using metafor. In both models, the 
random term structure accounted for study ID, as well as 
an observation-level random term to control for overdisper-
sion and account for within-study effect size variance addi-
tional to sampling error. To control for phylogenetic effects, 
models also included relatedness matrices derived from phy-
logenetic trees specific to each dataset constructed using a 
synthetic super-tree from the Open Tree of Life database 
(Hinchliff et al. 2015), accessed and pruned through the R 
package rotl (version 3.0.10, Michonneau et al. 2016). We 
repeated the same models including trait category as a mod-
erator to determine whether overall effects were significantly 
driven by changes in a particular type of trait. For the obser-
vational dataset, we collapsed the “Biological Rhythms” 
and “Body Condition and Performance” categories into a 
single category—“Physiology”—due to low sample sizes. 
We repeated the same models again this time including 
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taxonomic group as a moderator to test for taxon-specific 
patterns (tuatara were excluded due to low numbers, N = 2 
effect sizes). Random term structure in moderator models 
was as above.

We additionally performed Egger’s test for funnel asym-
metry (with square root-transformed inverse N as a mod-
erator) for both datasets/models. Neither revealed any sig-
nificant bias (experimental dataset: F1,98 = 2.19, P = 0.14; 
observational dataset: F1,61 = − 0.49, P = 0.69; Supp Fig. 
S3). As is commonly the case in ecological data (Noble 
et al. 2017), many studies across both datasets contributed 
multiple effect sizes. To better account for non-independence 
of data points from the same study, we present model coeffi-
cients and confidence intervals derived from robust variance 
estimation throughout (Hedges et al. 2010).

Results

The 34 eligible studies of winter warming effects in rep-
tiles included in our meta-analysis (Supplementary Table 7) 
hailed from a narrow range of temperate latitudes (34° to 
57° N or S). According to WorldClim (Fick and Hijmans 
2017), the coldest winter temperatures recorded at these 
sites between 1970 and 2000 ranged from − 26 to 10.1 °C 
(Fig. 1). In addition to latitudinal similarities, the major-
ity of studies were geographically clustered: 24 of the 34 
were conducted in North America, with an additional 6 in 
Europe. Only four studies were represented from the whole 
of temperate regions of Asia, South America, Australia, and 
Africa. In line with this geographic bias, we also observed 
considerable taxonomic clustering of studies. Fourteen of 
the 34 studies focused on North American turtles, whereas 
studies of lizards (N = 9) and snakes (N = 11) were more 
cosmopolitan.

Fig. 1   Study sites overlaid on 
projections of the minimum 
temperature of the coldest 
month of the year (in degrees 
Celsius), estimated by World-
Clim and depicted as a color-
ized raster. Pie charts depict 
categorical trait representation 
across experimental studies 
and observational studies of 
effects of winter temperature on 
reptiles
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(i) Experimental dataset

Our final experimental dataset comprising 100 individual 
traits (i.e., effect sizes) from 12 independent studies spanned 
a limited taxonomic breadth, with data available from 9 spe-
cies: Chrysemys picta (N = 4 studies), Thamnophis sirtalis 
(N = 3), Uta stansburiana (N = 2), Vipera aspis (N = 1), Sce-
loporus jarrovii (N = 1), Sphenodon punctatus (N = 1), Hop-
lodactylus maculatus (N = 1), Naultinus gemmeus (N = 1), 
and Oligosoma maccanni (N = 1). The majority (87%) of 
effects examined related broadly to physiology (i.e., sorted 
into categories of condition and performance or biological 
rhythms), including general body condition, energy use, and 
hormone levels during and immediately following hiberna-
tion (Fig. 1a).

There was a non-significant trend for warm winter treat-
ments to have a negative effect on reptile traits (meta-analyt-
ical estimate with robust variance estimation − 0.84 ± 0.80, 
95% CI − 2.60, 0.92; P = 0.32), and this was not driven dis-
proportionately by any trait category (F3,8 = 0.46, P = 0.72; 
Table 1a; Fig. 2a). Taxonomic group had no effect on overall 
patterns (F2,9 = 0.75, P = 0.50). Heterogeneity was high (I2 
total = 97.76%), with the majority explained by between-
study variance (I2 study = 78.28%). Heterogeneity attribut-
able to species was low (I2 species = 0.12%).

(ii) Observational dataset

Our final observational dataset comprised 63 individual 
traits (i.e., effect sizes) from 22 independent studies. The 
taxonomic breadth of these studies was broader than for the 
experimental dataset (N = 26 species) but heavily skewed, 
with studies of turtles contributing over half of all effect 

sizes (N = 34), and one species alone (Chrysemys picta) 
contributing 17. The majority (53.9%) of traits measured in 
response to winter temperature were phenological (20 from 
turtles, 8 from snakes, and 6 from lizards), with survival 
being the second-best represented trait category (N = 15 
traits; 11 from turtles, 2 from snakes, and 2 from lizards; 
Fig. 1b).

While correlations extracted from the observational 
dataset spanned the full range of possible correlation coef-
ficients (range of correlation values = −  0.866–0.999), 
the overall trend indicated by our best-fit model was of a 
significant positive fitness effect associated with warmer 
winter seasons (Table 1b; Fig. 2b; mean r-to-z corrected 
correlation coefficient = 0.34). Although there were no sig-
nificant differences between trait categories in the effects of 
winter warming (F2,19 = 0.71, P = 0.50), the strongest posi-
tive effects according to robust variance estimation were 
in phenological traits (Table 1b). Taxonomic group had no 
effect on overall patterns (F2,19 = 0.19, P = 0.83). Heteroge-
neity was also high in this dataset (I2 total = 99. 85%), with 
the majority accounted for by between-study variance (I2 
study = 68.81%) and negligible heterogeneity attributable to 
species (I2 species < 0.001%).

Discussion

Non-avian reptiles have featured prominently in studies of 
biological responses to climate change, with rising thermal 
maxima and, increasingly, thermal minima implicated in a 
range of fitness responses (e.g., Sinervo et al. 2010; Bes-
tion et al. 2015; Muñoz et al. 2021). Here, we synthesize 
our current state of knowledge of winter warming effects 

Table 1   Meta-analytical 
model tests, coefficients, 
and confidence intervals 
derived from robust variance 
estimation (cluster = study) for 
(a) experimental data (N = 91 
outcomes, clusters = 12, mean 
outcomes/cluster = 7.6); and 
(b) observational data (N = 60 
outcomes, clusters = 20, mean 
outcomes/cluster = 3)

F statistics represent the statistical significance of the moderator (trait category) in the basic model (no 
RVE, ANOVA test). Statistically significant effects (confidence intervals do not overlap zero) are shown in 
bold

est s.e F T P ci.lb ci.ub

a. Experimental data
 (i) Overall effect − 0.84 0.80 − 1.05 0.32 − 2.60 0.92
 (ii) Effect of trait category 0.13 (d.f. 3,8) 0.72
  Biological rhythms − 0.35 1.05 − 0.33 0.75 − 2.77 2.08
  Condition/performance − 0.43 0.45 − 0.95 0.37 − 1.46 0.61
  Fitness − 0.60 0.61 0.98 0.35 − 2.01 0.81
  Phenology − 1.21 1.81 − 0.67 0.52 − 5.39 2.97

b. Observational data
 (i) Overall effect 0.45 0.16 2.78 0.01 0.11 0.79
 (ii) Effect of trait category 0.71 (d.f. 2,19) 0.50
  Phenology 0.53 0.18 2.92 0.01 0.15 0.91
  Physiology − 0.11 0.24 − 0.45 0.66 − 0.60 0.39
  Fitness − 0.17 0.20 − 0.68 0.50 − 0.59 0.25
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in reptiles, which have thus far received far less attention. 
Using a meta-analytical framework, we show that overall 
effects on reptile traits are generally strong despite overall 
low availability of data and persistent biases with respect to 
sampling location and taxonomic group. Below, we outline 
key emerging trends based on our quantitative synthesis and 
explore major drivers through a qualitative lens, taking into 
account taxonomic and geographic biases and differences in 
study design. We then return to our key predictions to iden-
tify pervasive knowledge gaps and develop a framework that 

builds upon existing empirical knowledge to guide future 
research on winter warming effects in reptiles.

(i) Winter warming effects on reptile traits: insights 
from meta‑analyses

Several general patterns emerge from our meta-analysis of 
existing studies of winter warming in reptiles. First, Euro-
pean and North American taxa (e.g., turtles, especially) are 
overrepresented relative to other temperate regions. Second, 

Fig. 2   Results from meta-analytical models showing overall patterns 
of effects sizes in a experimental studies (N = 12 studies, 100 effect 
sizes) and b obesrvational studies (N = 22 studies, 63 effect sizes). 
Orchard plots (left panels) depict overall patterns, with point size 
corresponding to effect size precision, and meta-analytic means ± CI 
95% are depicted as an overlaid dark horizontal bar. Overall model 

heterogeneity is also shown. Forest plots (right panels) depict effect 
sizes grouped by trait category, with coefficients derived from robut 
variance estimatation presented for each (95% confidence intervals, 
with estimate depicted by filled squares, with square size represent-
ing estimate precision [1/SE])
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different study designs (i.e., experimental versus observa-
tional) support opposing conclusions about the overall 
effects of winter temperature on reptiles—a not uncommon 
phenomenon (Wolkovich et al. 2012; Yuan et al. 2017).

Reptile phenologies are advancing with the warming 
of winters

As predicted, warmer winter temperatures were associated 
with the advancement of phenological traits (i.e., emer-
gence and breeding occur earlier following warmer win-
ters; Fig. 2b). While we have interpreted these effects as 
“positive”—consistent with the expectation that advancing 
springs will extend the suitable period for reproduction and 
offspring growth (Adolph and Porter 1993; Sperry et al. 
2010; Clarke and Zani 2012)—the true fitness consequences 
of changes in phenology likely depend on population-spe-
cific environmental factors (Urban et al. 2014; Prodon et al. 
2017). In many regions, mild winters are followed by late 
cold spells, which can expose individuals close to the sur-
face to tissue damage (Benard 2015; Turner and Maclean 
2022). Reptiles that specialize on invertebrate prey could 
also face trophic mismatch, as insects are highly sensitive to 
short-term climatic shifts and have been shown to advance 
phenologies at faster rates than insectivorous predators 
(Vafidis et al. 2019 and references therein). Finally, prema-
ture spring emergence could carry reproductive costs. For 
instance, male lizards that emerge before they reach maximal 
sperm production engage in many infertile copulations and 
lose paternity to later emerging males (Olsson and Madsen 
1996).

Physiological and behavioral disruptions under warming 
winters

Though environmental temperature is the primary cue 
by which temperate reptiles coordinate their energy use 
and reproductive cycles, evidence for disruptive or sub-
lethal effects of high winter temperatures on physiologi-
cal traits (body condition and biological rhythms) was not 
statistically significant (Fig. 2), with as many “positive” 
outcomes reported at warmer winter temperatures [e.g., 
enhanced basking, foraging, digestive, and/or nutrient 
assimilation efficiency (Ruby 1977; Besson and Cree, 
2011)] as “negative” (e.g., depletion of nutrient stores and 
acceleration of mass loss) (Ruby 1977; Costanzo 1989; 
Willette et al. 2005; Zani et al. 2012; Muir et al. 2013; 
Spencer and Janzen 2014; Brischoux et al. 2016). Strong 
positive effects appeared to arise more frequently in obser-
vational studies, possibly because these are more likely to 
capture cross-seasonal effects during the growing season 
that could offset energetic costs (Moore et al. 2020) and 

risks of mortality incurred overwinter (Zani 2008; Clarke 
and Zani 2012; Bestion et al. 2015).

In addition to variation between studies, reported 
effects of winter warming varied within studies depend-
ent on trait, sex, and age. For example, Spencer and Janzen 
(2014) found inverse effects of winter temperature on rates 
of mass loss in male versus female hatchling painted tur-
tles. Other studies reported significant alterations to hor-
monal and behavioral rhythms caused by warm hibernation 
temperatures (Lutterschmidt and Mason 2009; Brischoux 
et al. 2016; Lutterschmidt et al. 2022) with unclear fitness 
repurcussions. For example, neuroendocrine responses 
to elevated hibernation temperatures appear to delay the 
peak of male courtship behavior in red-sided garter snakes 
but do not dampen the performance or body condition of 
courting males (Lutterschmidt and Mason, 2009). Only 
two studies in our dataset examined winter warming 
effects at more than one life-stage, but one of these found 
opposing effects on adult vs. juvenile survival (Altwegg 
et al. 2005), again underscoring the point that effects of 
warming are likely to be complex and multidimensional. 
Follow-up studies linking fine-grain physiological effects 
to lifetime whole-organism fitness are needed to improve 
interpretability of these effects in the future.

Winter temperature differentially affects overwinter 
survival across reptiles

While thermal disruptions to physiology or behavior may be 
expected to confer indirect effects on survival and reproduc-
tion, we found equivocal effects of overwinter temperature 
on survival across both datasets. Severe low temperatures 
appear to be more limiting for reptile populations at high 
latitude range boundaries in North America than relatively 
warm temperatures arising over the same study periods 
(Packard 1997; Nagle et al. 2000; Kissner and Weatherhead 
2005; Baker et al. 2010; but see Zani 2008; Zani et al. 2012), 
consistent with expectations that ‘winterkill’ is an important 
source of reptile mortality (Sperry et al. 2010). Despite the 
clear relevance of these effects for evaluating population vul-
nerability, we identified only four studies in which overwin-
ter temperatures were experimentaly manipulated to track 
reptile survivorship (Ruby 1977; Costanzo 1989; Zani 2008; 
Zani et al. 2012). Only a single study quantified variation in 
reproductive output in association with winter temperature 
(finding no difference in the fecundity among gravid Sce-
loporus jarrovii maintained under cold versus warm over-
winter temperature regimes, Ruby 1977). Hence, in addition 
to further study across a wider geographic and taxonomic 
range, more explicit hypothesis-testing is needed to under-
stand possible population- and species-level variation in sen-
sitivity of fitness-relevant traits to winter warming.
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(ii) Framework for future research

While our meta-analyses expose some intriguing trends, 
unsurprisingly the consequences of winter warming for 
reptiles appear complex and multidimensional, and explo-
ration of these nuances remains limited by the number and 
breadth of relevant studies currently available. Empiricists 
must, therefore, expand research efforts taxonomically and 
geographically—work that should become increasingly fea-
sible as wearable technologies become more available and 
cost-effective (e.g., tracking devices, biosensors; Wilmers 
et al. 2015). Another important challenge facing current 
and future researchers in the field is the need to integrate 
experimental and observational approaches with tests of 
paired predictions. For example, while longitudinal stud-
ies have revealed considerable within- and between-species 
variation in the magnitude and direction of phenological 
responses to winter warming (Janzen et al. 2018), persistent 
gaps exist in our mechanistic understanding of this variation 
(reviewed in Chmura et al. 2019). Conversely, physiologi-
cal responses to winter warming have been well studied in 
experimental contexts, but are poorly documented in natu-
ral populations. To enhance this understanding, controlled 
experiments should ideally be paired with ground-truthing 
studies in natural populations. Particularly useful would be 
more holistic studies that investigate effects broadly across 
trait categories (i.e. not just physiological or phenological 
traits), allowing clearer interpretation of, for example, how 
changes in physiology or phenology influence body condi-
tion or reproductive success.

In addition to biases and methodological inconsisten-
cies, there are key questions surrounding the season-specific 
effects of temperature in reptiles that are still lacking in basic 
research. To improve our tools of prediction, experimental 
work should continue to hone the use of proximate physi-
ological metrics (e.g., hormone profiles, telomere dynam-
ics) to evaluate short- and long-term fitness consequences of 
winter warming. Reptiles (particularly lizards) are increas-
ingly being used as animal models in general stress studies 
(Belliure and Clobert 2004; French et al. 2008; MacLeod 
et al. 2018) and combining hormonal manipulations with 
manipulations of environmental variables could reveal 
additive and/or contextual effects that would otherwise be 
overlooked (Sheriff et al. 2017) such as how overwinter tem-
peratures influence subsequent response to breeding season 
stressors (MacLeod et al. 2018). There is also a need for 
more studies investigating how temperature-induced changes 
in proximate metrics at various points during and after win-
ter hibernation translate into performance to elucidate what 
constitutes a meaningful deviation in terms of fitness.

Finally, both observational and experimental studies 
of winter warming in reptiles should integrate carry-over 
effects to more explicitly link different categories of fitness 

for which measurement may be temporally decoupled 
(for example, the long-term effects of physiological costs 
incurred during dormancy on reproductive performance). An 
increasing number of studies in reptiles suggest that earlier 
onset of activity and longer growing seasons, as are antici-
pated under broadscale spring advancement, could provide a 
buffer against suboptimal winter conditions, for example by 
reducing gestational periods (Moore et al. 2020) or increas-
ing energetic stores (Zani 2008; Clarke and Zani 2012; Bes-
tion et al. 2015). Conversely, few studies have investigated 
how costs incurred during mild winters may carry over to 
affect energy-demanding tasks (e.g., reproduction, matura-
tion, migration) in the subsequent growing season. Clearly, 
more long-term studies are needed to ascertain how vari-
ables affecting fitness, including winter warming, interact 
across seasons.
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