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Some carcinomas show that one or more metastatic sites appear with unknown origins.
The identification of primary or metastatic tumor tissues is crucial for physicians to
develop precise treatment plans for patients. With unknown primary origin sites, it is
challenging to design specific plans for patients. Usually, those patients receive broad-
spectrum chemotherapy, while still having poor prognosis though. Machine learning has
been widely used and already achieved significant advantages in clinical practices. In this
study, we classify and predict a large number of tumor samples with uncertain origins by
applying the random forest and Naive Bayesian algorithms. We use the precision, recall,
and other measurements to evaluate the performance of our approach. The results
have showed that the prediction accuracy of this method was 90.4 for 7,713 samples.
The accuracy was 80% for 20 metastatic tumors samples. In addition, the 10-fold
cross-validation is used to evaluate the accuracy of classification, which reaches 91%.

Keywords: the ability of tissue tracing, random forest, naive Bayes, machine learning, uncertain origins

INTRODUCTION

Tumors can develop in any part of body, and some tumors even can metastasize to other parts of
the body from their primary sites after developing at a certain point. In general, the occurrence
of tumors at primary sites and their metastatic sites could be found deferentially, and the primary
origins of metastatic cancers can be identified within a short amount of time by clinical assessments
(Chen and Chen, 2001). Histological and imaging techniques are mostly employed to identify the
origin of metastatic tumors. However, in some cancer patients, physicians cannot find the primary
origin of tumors even after comprehensive examinations and assessment studies of patients with
standard methods. These tumors are called carcinomas with unknown primary (CUP). According
to statistical data, there are approximately 150,000 new cases of CUPs annually in the United States
and Europe, and the numbers are still increasing though. Currently, approximately one third of
cancer patients would develop metastasis after initial diagnosis and/or post-operation treatment.
In many of those patients, it is relatively difficult for physicians to identify the primary origins
of the metastatic cancers (Oien, 2009; Pavlidis and Pentheroudakis, 2012). To our knowledge,
2–4% of CUPs (Susman et al., 2012) account for all metastatic cancer. Even through autopsy, the
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primary origin of CUPs is uncertain (Myung et al., 2001;
Petrushev et al., 2011). Because of limited treatment plan for
CUP patients, the treatment efficacy is often unpredictable, and
those patients usually have poor prognosis (Sun and Zhang,
2006; Gupta et al., 2007; Carmeliet and Jain, 2011; Petrakis et al.,
2013). The immunohistochemistry assay is usually considered to
be a diagnostic method for CUP patients. However, it is time-
consuming and subjective. Moreover, the diagnostic accuracy
is around by 30% for CUP patients, which is not reliable to
design a personalized treatment plan for CUP patients. Currently,
most CUP patients received radiological therapy (Stoyianni
et al., 2011) or broad-spectrum chemotherapy. However, these
treatments are not effective and with intolerable complications,
and the prognosis is relatively poor as well. Therefore, it
is urgent to develop effective clinical intervention for CUP
patients (Guntinas-Lichius et al., 2006; Pavlidis and Fizazi, 2009;
Hainsworth and Greco, 2014). Nowadays, identifying the primary
origin of malignant tumors is critical for designing a treatment
plan in clinical practices.

The targeted therapy (Tsao et al., 2005; Hudis, 2007; Miller
et al., 2007; Varadhachary et al., 2008; Anderson and Weiss, 2010;
Boscolo-Rizzo et al., 2015) can be used for tumors after accurately
identifying the primary origin, which could greatly improve the
survivals. It has been proven in the Minnie Pearl Cancer Research
Network Study (Pavlidis and Pentheroudakis, 2010; Molina et al.,
2012). Immunohistochemically, the marker has also been an
important instrument for identifying the primary origin of
cancerous tissues (Monzon et al., 2009; MacReady, 2010; Massard
et al., 2011; Hashimoto et al., 2012; Oien and Dennis, 2012;
Kim et al., 2013; Tang et al., 2018). Furthermore, a diagnostic
method has been proposed to predict the primary origin of
malignant cancers by comparing the gene expression profiles
from the primary origin and the metastasis tissue (Hoadley
et al., 2014). Many researchers have systematically compared the
characteristics of gene expression profile across different cancers
(Joyce and Pollard, 2009). Therefore, it is feasible to compare
the differential gene expression to predict the primary origin of
malignant cancer. There are two commercial products approved
by FDA, which are Tissue of Origin (TOO) and CancerTYPE
ID. Both of them are developed on the basis of differential gene
expressions to predict primary origins.

TOO is a product of array-based gene expression profiles.
TOO can identify 2,000 genes and 15 types of tumors,
including thyroid cancer, breast cancer, non-small cell lung
cancer, pancreatic cancer, gastric cancer, colorectal cancer,
liver cancer, bladder cancer, kidney cancer, non-Hodgkin’s
lymphoma, melanoma, ovarian cancer, sarcoma, testicular germ
cell tumor, and prostate cancer. The advantage of this product
is that it prevents the subjective bias. It can objectively
identify the primary origin of cancers no matter which is
well-differentiated or not. However, TOO is time-consuming,
which is not feasible for clinical practices (Brugarolas, 2007;
Economopoulou et al., 2015).

CancerTYPE ID is a product that uses cancer samples based
on RT-PCR data. In the study (Marquard et al., 2015), 578
labeled samples covering 39 tumor types were included in
datasets for tracing origins. The results showed that there was

no significant difference in the accuracy of predictions of cancer
with primary or metastatic tumors. Secondly, RT-PCR was used
to evaluate the 92-gene (Ma et al., 2005) expression of cancer
cells from patients and then compared with labeled 50 tumors
from databases to predict the primary origin of metastatic tumors
and their subtypes (Pappa et al., 2006). CancerTYPE ID has
been able to compare gene expression profiles from tumor
samples to reference database with more than 2,000 labeled
tumors, therefore identifying the most accurate results. However,
CancerTYPE ID does not have the relatively good accuracy for
pancreatic cancer, colorectal cancer, and gastroesophageal cancer.

Though the above two products have good performance for
some types of cancers, two products are costly with up to $3000–
$4000 (Pillai et al., 2011; Oien and Dennis, 2012; Economopoulou
et al., 2015), and the accuracy is limited to other types of cancer
as well. In order to facilitate the low-cost and high-efficiency
product, our study aimed to use RNA-seq data, which are
extracted from TCGA database, combining with random forest
and naïve Bayes algorithms to develop a computational model.

RESULTS

Firstly, data were downloaded from TCGA and GEO. Secondly,
after data preprocessing for raw data, genes were selected by the
random forest algorithm with 10-fold cross-validation. Finally,
the naive Bayes classifier was used to classify the 20 kinds of
tumors, and the output of the model was shown as the evaluation
index. The detailed step is shown in Figure 1.

Data Preparation
A total of 7,715 RNA-seq samples that covered 21 cancers
and excluded metastatic cancers were extracted from TCGA.
In the process of data preparation, we eliminated two samples
due to the lack of clinical data. Therefore, the remaining
7,713 samples were used as either the training dataset or
the validation dataset for the classification. Furthermore, the
expression spectrum matrix of 7,633 samples was constructed.
Each sample contained 20,501 genes. In this paper, 372 samples
from metastatic cancers were selected as the test dataset, of which
352 samples belong to Skin Cutaneous Melanoma (SKCM).
The ratio of SKCM was much higher than other types of
metastatic cancers, and we excluded SKCM data from our
selected data in order to reduce the possible effects on the
results. The detailed information of selected data is shown
in Table 1.

For the independent validation dataset, 48 samples are
obtained from GEO and processed according to the description
in section “Materials and Methods” and then used for the trained
naive Bayesian model to make the prediction. The detailed
information of selected data is shown in Table 2.

Gene Selection by Random Forests
Under the common condition, we use relatively low-cost panels
but also include sufficient genes to determine the level of specific
gene expression. However, the coverage of gene numbers would
be significantly affected by the cost of panel. In order to reduce
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FIGURE 1 | Flow chart of the article.

the cost of panels as well as improve the accuracy of tracing
ability. Random forest algorithm was employed widely in the
bioinformatics researches (Lv et al., 2019, 2020; Ru et al., 2019).

TABLE 1 | Detailed information of data covering 21 cancers
downloaded from TGCA.

Cancer Total
samples

Samples
from

women

Samples
from men

Percentage
(%)

Note

BLCA 301 80 221 3.9

BRCA 1,056 1,044 11 13.7 1 person has no
clinical information

CESC 258 258 0 3.3

COAD 451 215 236 5.8

GBM 153 53 100 2.0

HNSC 480 128 352 6.2

KIRC 526 184 342 6.8

KIRP 222 63 159 2.9

LAML 173 80 93 2.2

LGG 439 192 247 5.7

LIHC 294 99 195 3.8

LUAD 486 262 224 6.3

LUSC 428 109 319 5.5

OV 261 261 0 3.4

PAAD 142 64 78 1.8

PRAD 379 0 379 4.9

READ 153 70 82 2.0 1 person has no
clinical information

SKCM 80 34 46 1.0

STAD 415 147 268 5.4

THCA 500 367 133 6.5

UCEC 516 516 0 6.7

Total 7,713 4,226 3,485 99.8

TABLE 2 | Detailed information of data covering five cancers
downloaded from GEO.

Cancer Total samples Percentage (%)

LIHC 9 18.75

UCEC 6 12.5

THCA 8 16.67

BLCA 11 22.92

PAAD 14 29.17

Total 48 99.98

In this study, the random forest algorithm was applied to
select the features of the primary origin tumor samples, and a
matrix of M∗N was formed, with M representing the number
of samples and N representing the numbers of genes, and
all samples were labeled with the type of each cancer. The
expression profile was divided into 20 types of cancer, and
the combination of five genes could be used to classify this
problem (Ashburner et al., 2000). The Gini average impurity
method of random forest was used as the standard to evaluate
the importance of genes. The importance score of genes was
obtained, and the genes were sequenced according to the score.
We conducted many experiments, and the precision was the
highest when 2,300 genes were obtained. The experimental
results are shown in Figure 2. Our method takes five steps and
increases N up to 2,300.

Based on the above analysis, genes with high scores were
selected as the features, and 2,300 genes were extracted from each
sample. Because some genes were not in the GEO database, we
deleted these genes and got 2,284 genes. A 7,633∗2,284 matrix was
constructed as the input matrix for cancer classification.

Classification Based on Naive Bayes
Since Naive Bayes is relatively consistent for classification, this
study used Naive Bayes as a classifier for genomic combination.
In this study, we chose 75% of the dataset for training, and
the remaining 25% was chosen for validation by using our
model. The algorithm used gene expression as the feature for
training and predicting the labeled cancer. After the training,
the model achieved the accuracy of 91% in predicting the
origin of the cancer. In order to validate the accuracy of
classification of model for metastatic tumors, 20 metastatic
tumors with known primary origin sites were applied to the
model. 7,633∗2,284 was used as the input matrix for classification
and applied to the naive Bayesian classification model to obtain
the specific prediction results of specific cancer types with a
prediction accuracy of 80% for metastatic cancer types, as shown
in Figure 3.

In addition, ClueGO was used to identify gene ontology and
enrichment analysis for selected genes. Due to the large number
of 2,284 genes, we selected the top 100 genes with the highest
score for analysis. The statistical significance level is set as the
p-value of 0.001. The results of enrichment analysis are shown
in Figure 4.

The enrichment results in Figure 4 show that the genes
are significantly enriched in cellular metabolism, especially
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FIGURE 2 | The accuracy with the different of number genes. With a 10-fold cross-validation accuracy, the value of the accuracy is increasing up to 1,700 genes,
after which it keeps stable with the value of 91.07%.

FIGURE 3 | The confusion matrix of 2,284 genes in the classifier, in which red represented the result of inconsistency between primary and predicted cancer types.
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FIGURE 4 | Gene enriched in biological process, cellular component, and molecular function were drawn for first 100-gene set by ClueGO.

lipid metabolism. In addition, some genes are enriched in
acetyl-CoA cycle, alcohol dehydrogenase NAD activity, etc.
Almost all genes are enriched in lipid metabolism, which
provides cellular energy for all cellular activity. Moreover, genes
are also enriched through peroxisome proliferator-activated
receptor (PPAR) signaling pathway. PPARs are nuclear hormone
receptors activated by fatty acids and their derivatives and
belong to ligand-activated receptors in the nuclear hormone
receptor family. The PPAR signaling pathway plays a role in
clearance of circulating lipid and promotes lipid oxidation
and cell proliferation. The PPAR transcriptional activity
can be regulated by non-gene crosstalks with phosphatases
and kinases, including ERK1/2, p38-MAPK, PKC, and
AMPK. The upregulated PPAR signaling pathway would
lead to dysfunctional metabolic homeostasis and inflammatory
response, ROS accumulation, as well as carcinogenesis across
almost every tumor.

In order to further differentiate those 100 genes, the following
heat map was drawn to further reveal the gene expression level in
each cancer type.

The analysis shown in Figure 5 reveals that there are
expression differences of the first 100 genes in different cancers.
Each small block represents a gene, and the color represents
the size of gene expression. The higher level of the expression
is represented with the darker color (red indicates upregulated
and green indicates downregulated). The bottom horizontal line
represents a different gene, while the vertical line on the right
represents a different cancer.

Independent Verification
For independent tests, the model with the previous training
parameters was tested on the dataset in GEO, and the probability
of each sample being accurately assigned to each category was

given, with an overall accuracy of 75%. The specific results are
shown in Figure 6.

Performance Assessment
For the evaluation of classification performance, this study used
the 10-fold cross-validation for the algorithm with the feature in
each gene set. To be specific, the samples were randomly divided
into 10 subsets; 1 of 10 subsets was selected as the test set at one
time, and the other 9 was merging to 1 training set. The accuracy
of cross-validation is 90%, which indicated that the algorithm
achieved a good performance. The precision, recalls, and f1 scores
were used to evaluate the significance of the model as well. The
detailed results are shown in Figure 7.

The comparison among results of the k-nearest neighbor
(k = 5), decision tree, and Naive Bayesian to classify 20 cancers
is shown in Figure 8.

MATERIALS AND METHODS

Data Preparation
The TCGA RNA-seq and array data were downloaded from
the ICGC Data Portal1. Each sample and each gene from each
cancer type table were extracted to generate a matrix of M∗N,
where M is the number of samples, N is the number of genes,
and all the samples were labeled by cancer types. All primary
tumors were divided into training sets and metastatic tumors
were divided into test sets.

For the independent set, 48 samples from 5 known cancer
origin sites were downloaded from Gene Expression Omnibus
(GEO). These tumors belong to GSE10907, GSE11222,

1 https://dcc.icgc.org/releases/release_26/

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 November 2020 | Volume 8 | Article 607126

https://dcc.icgc.org/releases/release_26/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-607126 November 18, 2020 Time: 19:40 # 6

Liang et al. Tracing Tumor Original Sites

FIGURE 5 | A heat map of the first 100 genes was screened by the random forest algorithm. Where, row is cancer type, column is gene. In this part, RPKM is used
to define the gene expression level, and the average value of samples in each cancer type is calculated as the gene expression difference.

FIGURE 6 | The result of independent verification. Blue represents the primary tumor, orange represents the accuracy of the prediction, light red represents the
predicted tumor type, and dark red represents the number of predicted tumor types.

GSE5608, GSE8352, GSE4895, GSE8912, GSE7966, and
GSE12281. In addition, these 5 cancers belong to the 20 cancer
types in this paper.

Gene Selection
In order to reduce the cost of gene number determined by gene
panel, in this study, random forest algorithm was applied to select
genes. The Gini average impurity in random forest was used as
the criterion to estimate the importance of genes. The random

forest is composed of several decision trees, which are binary
decision trees. Each node in the decision tree is a condition on
a single gene. As a result, we can achieve the goal by splitting
the dataset into two datasets; therefore, a similar expression level
can be classified in the same dataset. For random forest, the
average reduction of each feature impurity can be calculated. In
addition, the importance score of genes can be calculated and
sorted according to the score. GI stands for Gini, S stands for
importance score, G = {g1,g2,.,gn} stands for feature, and C stands
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FIGURE 7 | The figure represented the recalls and precision after 10-fold cross-validation.

FIGURE 8 | In this figure, the first was the result of k-nearest neighbor (k = 5) algorithm, and its prediction accuracy was only 88%; the second was the result of
decision tree algorithm, and the classification accuracy was only 88%; the third is the result of naive Bayesian algorithm, and the classification accuracy was reaching
to 90%.

for cancer type. That is, to calculate the Gini score Sj for each
feature gj, the calculation formula of Gini index is as follows:

GIm = 1−
|C|∑
c=1

P2
mk

where c represents C categories, and Pmk represents the
proportion of category k in node m.

The importance of feature gj in node m, that is, the variation
of Gini impurities before and after node m branch, is calculated
as follows:

Sjm = GIm − GIl − GIr

where GIl and GIr, respectively, represent the Gini index of
the two new nodes after branching, and Sjm represents the
importance of feature gj in node m.
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If the node m with characteristic gj that appears in decision
tree i belongs to M, the importance of gj in the ith tree is
calculated as follows:

Sij =
∑

m∈M

Sjm

Assuming the random forest has t trees, the importance score
formula of forest is:

S
∗

j =

t∑
i=1

∑
m∈M

Sjm

The importance score is obtained by normalizing all the
importance scores obtained:

Sj =
S
∗

j∑n
i=1 Si

The top N genes with high scores were selected until the stopping
criterion was met. Finally, the selected genes in all samples
participated in the next classification.

Enrichment
Using the gene ontology (Bindea et al., 2009; Gene Ontology
Consortium, 2019) as the database of enrichment analysis and
annotating the function of specific gene sets to analyze their
biological significance, ClueGO (Zhao et al., 2014) is used
for visualization.

Classification
In this paper, naive Bayes was used as the classifier of gene
combination. Naive Bayes is one of the classical machine learning
algorithms. It is a classification algorithm based on Bayes
theorem. Its principle is simple and easy to implement. The core
idea of naive Bayesian algorithm is to assume that each feature
is independent. For a given type of data to be judged, classify
and predict according to the training dataset, and calculate the
probability that the current type of data to be judged belongs
to a certain category through Bayesian theorem. The maximum
probability relationship obtained is that the algorithm judges the
category of these data. Naive Bayesian algorithm can be divided
into three parts:

First, determine the feature attributes; that is to say, the
expression profiles of 2,284 genes corresponding to each sample
were extracted. Then, it was assumed that all the features
conformed to the Gauss distribution. The samples in the dataset
were labeled as cancer type. G represents the characteristics and C
represents the type of cancer, which can be calculated as the prior
probability P(C). Ck represents the kth category, gi represents the
ith feature, and then calculate conditional probability by prior
probability. The formula is as follows:

P(G|Ck) = P(G1 = g1, G2 = g2, · · · , Gn = gn|Ck)

The conditional probability of all the kth classes is calculated
by the Bayesian formula:

P(Ck|G) =
P(G|Ck)P(Ck)

P(G)
= P(Ck)

n∏
i=1

P(gi|Ck)

Since all the features conform to the Gaussian distribution
and are independent of each other, the formula for conditional
probability becomes as follows:

P(G|Ck) =

n∏
i=1

P(gi|Ck) =

n∏
i=1

P(gi|µi,Ck , σi,Ck)

=
1

σi,Ck

√
2π

exp

{
−

(gi − µi,Ck)
2

2σ2
i,Ck

}

where gi is the ith feature, and µi,ck and σi,ck are the mean and
variance of the ith feature in the K class Ck, respectively.

The conditional probability formulas for all the Kth class are
calculated as follows:

P(Ck|G) =
P(G|Ck)P(Ck)∑
k P(G|Ck)P(Ck)

∝ P(G|Ck)P(Ck)

Finally, obtain the relationship between the maximum
probability data to be classified and the category, P(Ck| G), that
is:

y = argmaxCk
P(G|Ck)P(Ck)

It is meaningful to indicate that we could get the most probable
type of cancer under certain gene expressions.

DISCUSSION

In Figure 3, 20 known primary tumors were predicted, while
4 of them were misjudged, which may be related to the naive
Bayesian algorithm. Naive Bayes is one of the few algorithms
based on probability theory, which is a very simple and
convenient algorithm. However, the premise of this algorithm
is to assume that each feature is independent of others, which
is not in line with the reality. Therefore, it may produce
errors in the classification results, leading to the decline of
the prediction accuracy. In addition, in Figure 3, COAD was
mislabeled as READ. It was possibly because the anatomical
proximity is relatively close and may share differential gene
expression. During the normal digestive process, the function
of colon and rectum is not significantly different, while colon
may contribute to maintaining the gut microenvironment. The
epithelial cells that are usually changed in colon adenocarcinoma
and rectum adenocarcinoma are not well-distinguished. It may
possibly increase both the subjective and objective bias of our
model. One case of CESC was misdiagnosed as UCES. Those
two female malignant tumors are more commonly regulated
by the female hormone, which share similar risk factors.
The anatomical proximity is close as well. The above cases
indicated that anatomical proximity may share oncogenic genes
to drive genetic mutation, such as both cancers contain KRAS
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mutations (Gene Ontology Consortium, 2019), or it is difficult to
differentiate epithelial or adrenal cell changes before oncogenesis.
It is critical to point out that some biological factors might
bring some effect for model performance. It is necessary to be
considered as the model construction. In addition, there are
only 20 cases of known primary tumor data used to predict the
classification. The data size is relatively small, so we cannot get a
certain conclusion. We need to further expand the database for
classification and prediction.

In Figure 4, the first 100 genes with the highest score are
selected by the random forest algorithm. Some genes obtained by
this method may have high correlation; that is to say, these genes
will provide the same information for the classifier. In addition,
although we used the 10-fold cross-validation to investigate the
performance of the model, in the independent validation, the
accuracy of this model is only 75%. The predictive error to PAAD
is large, and the independent validation dataset is small.

CONCLUSION

In this study, the random forest and naive Bayesian algorithms
were employed to trace the origin of CUP sites. Through a
large number of experiments, we found that 2,284 genes with
the highest score achieved the best performance. Performance
evaluation shows that this method can achieve good classification
and prediction results. In addition, ClueGO enrichment analysis
was used for the top 100 genes with the highest scores. The
results showed that some genes were enriched in PPAR signaling
pathway. Upregulation of PPAR signaling pathway has been
proven to lead to metabolic homeostasis disorder, inflammation,
ROS accumulation, and carcinogenesis. In summary, the

proposed approach can reduce the cost and has high efficiency,
and thus it is promising for clinical practices.
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