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a b s t r a c t 

Thermophilic, facultatively anaerobic, xylanolytic bacterial 

strain DA-C8 ( = JCM34211 = DSM111723), newly isolated from 

compost, shows strong beechwood xylan degradation abil- 

ity. Whole-genome sequencing of strain DA-C8 on the Ion 

GeneStudio S5 system yielded 69 contigs with a total size 

of 3,110,565 bp, 2,877 protein-coding sequences, and a G + C 

content of 52.3 mol%. Genome annotation revealed that 

strain DA-C8 possesses debranching enzymes, such as β-L- 

arabinofuranosidase and polygalacturonase, that are impor- 

tant for efficient degradation of xylan. As inferred from 16S 

rRNA sequences and average nucleotide identity values, the 

closest relatives of strain DA-C8 are Paenibacillus cisolokensis 

and P. chitinolyticus . The genomic data have been deposited 
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Subject Microbiology 

Specific subject area Bacteriology, Genomics 

Type of data Figure, Supplementary table 

How data were acquired Whole-genome sequencing using the Ion GeneStudio S5 System 

Data format Raw, Analyzed 

Parameters for data collection Genomic DNA was extracted from a pure culture of strain DA-C8 (DSM 

111723). The genome of strain DA-C8 was sequenced on the Ion 

GeneStudio S5 system, de novo assembled using CLC Genomics 

Workbench 20.0.1, and annotated using the DDBJ Fast Annotation and 

Submission Tool (DFAST). 

Description of data collection Genomic DNA was extracted from strain DA-C8. A sequencing library 

with an insert size of 30 0–40 0 bp was prepared using an Ion Xpress 

Plus Fragment Library kit (Thermo Fisher Scientific, Waltham, MA, 

USA). Approximately 20 0–30 0-bp fragments were size-selected by 

electrophoresis on E-Gel SizeSelect II agarose gels (Invitrogen, Thermo 

Fisher Scientific) before library preparation. The genomic library of 

strain DA-C8 was subjected to whole-genome sequencing, assembly, 

and annotation. 

Data source location Japan International Research Center for Agricultural Sciences (JIRCAS), 

Tsukuba, Ibaraki, Japan 

Data accessibility The draft genome sequence has been deposited at DDBJ/ENA/GenBank 

under accession number BMAQ0 0 0 0 0 0 0 0. The direct URL to the data 

is https://www.ncbi.nlm.nih.gov/nuccore/BMAQ0 0 0 0 0 0 0 0.1 . BioProject 

and BioSample IDs in GenBank are PRJDB10171 

( https://www.ncbi.nlm.nih.gov/bioproject/PRJDB10171 ) and 

SAMD00235398 

( https://www.ncbi.nlm.nih.gov/biosample/SAMD00235398 ). 

All additional data analysis files and supplementary tables can be 

accessed at Mendeley Data ( http://dx.doi.org/10.17632/5gzxp24s4z.2 ). 

alue of the Data 

• The genome data from newly isolated strain DA-C8 contribute to understanding of mech-

anisms of efficient degradation of lignocellulosic biomass, including xylan, by xylanolytic

bacteria. 

• Comparison of the genome data of strain DA-C8 with data of other xylanolytic bacteria can

yield information useful for enhancing the efficiency of xylanolytic enzymes. 

• The genome data of strain DA-C8 can aid taxonomic delineation of new independent genera

and Paenibacillus . 

. Data Description 

Efficient hydrolysis of lignocellulosic biomass not only requires the participation of β-

,4-glycosidic chain-cleaving enzymes, such as endo- β-1,4-glucanase, cellobiohydrolases, and

-glucosidase, but also the cooperation of numerous hemicellulosic enzymes (e.g., xylanolytic

nzymes) and side chain-cleaving enzymes (e.g., α-L-arabinofuranosidase) [1] . Cellulolytic and

ylanolytic enzymes, in particular, have various potential industrial applications in a wide va-

iety of areas, such as food engineering and the production of supplements, animal feed,

http://creativecommons.org/licenses/by/4.0/
https://www.ncbi.nlm.nih.gov/nuccore/BMAQ00000000.1
https://www.ncbi.nlm.nih.gov/bioproject/PRJDB10171
https://www.ncbi.nlm.nih.gov/biosample/SAMD00235398
http://dx.doi.org/10.17632/5gzxp24s4z.2
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bio-ethanol, and pulp [2–4] . The laundry and dish detergent industry is one of the primary con-

sumers of industrial enzymes [2,3,5] . Among xylanolytic enzymes, Paenibacillus strains produce

a variety of enzymes, including amylases, cellulases, xylanases, other hemicellulases, and lipases,

with potential applications to the industrial manufacturing of detergents, food, paper, and biofu-

els [5] . Enzymes of Paenibacillus strains are highly active under industrially-relevant conditions,

and Paenibacillus strains can be produced at a lower cost than available alternatives by high

density culture [5] . 

The screening, identification, and characterization of the functional properties of strongly

xylanolytic bacteria are of crucial importance for the construction of applicable bioprocesses.

To obtain a bacterium exhibiting efficient xylan-degradation ability under anaerobic and ther-

mophilic conditions, we newly isolated strain DA-C8, assigned to the genus Paenibacillus , as a

pure culture from compost. This strain was deposited at the RIKEN BioResource Research Cen-

ter as JCM 34211 and at the German Collection of Microorganisms and Cell Cultures GmbH

(DSMZ) as DSM111723. Strain DA-C8 possesses strong xylan-degradation ability under ther-

mophilic anaerobic conditions. We compared the xylan-degradation abilities of DA-C8 and P.

curdlanolyticus B-6, which is highly xylanolytic because of the production of an extracellular

multienzyme complex [6] , using beechwood xylan (1% w/v). When we incubated DA-C8 and B-

6 for 6 days at 55 °C under anaerobic conditions in previously reported BMN basal medium

[7] or at 37 °C under aerobic conditions in Berg ′ s mineral salt medium [6] , respectively, com-

plete degradation of beechwood xylan was achieved earlier with strain DA-C8. Strain DA-C8 can

thus degrade beechwood xylan more efficiently than can xylanolytic P. curdlanolyticus B-6. 

We sequenced the whole genome of strain DA-C8 to obtain information on the effective,

strong xylan-degradation system of this bacterium. DNA sequencing performed using the Ion

GeneStudio S5 system [8] generated 11,760,377 reads. De novo genome assembly using CLC Ge-

nomics Workbench 20.0.1 (CLC Bio, Qiagen, Valencia, CA) yielded 69 contigs with an N50 of

108,510 bp and a mean contig length of 45,081 bp. The genome of strain DA-C8 comprised

3,110,565 bp and had a G + C content of 52.3 mol%. Genome annotation was carried out via the

DDBJ Fast Annotation and Submission Tool (DFAST). Strain DA-C8 had 2,877 protein-coding se-

quences, 2 rRNA genes, 55 tRNA genes, and 5 CRISPR genes. We obtained a 650-fold genome

coverage depth. 

Phylogenetic analysis based on 16S rRNA sequences ( Fig. 1 ) revealed a close similarity be-

tween strain DA-C8 and the following strains: P. cisolokensis UICC B-42 (93.7% identity; acces-

sion no. NR_151901) , Xylanibacillus composti K-13 (92.8% identity; NR_159899) , P. pinistramenti

ASL46 (92.7% identity; LC102482), P. senegalensis JC66 (92.6% identity; NR_125594), P. yonginensis

DCY84 (92.5% identity; NR_148742), P. chitinolyticus (92.4% identity; NR_040854) , P. favisporus Y7

(92.4% identity; AY308758) , P. residui MC-246P (92.2% identity; NR_116949) ( Supplementary ta-

ble 1 ) [9] . The closest relatives of strain DA-C8 based on average nucleotide identity (ANI) values

with nine other Paenibacillus strains were P. chitinolyticus KCMM41400 (68.7%), followed by P. cel-

lulositrophicus KACC16577 (68.1%), P. yonginensis DCY 84 (68.1%), and P. larvae (67.7%) ( Fig. 2 , and

supplementary tables 2 and 3 ) [9] . ANIs between DA-C8 and all additional strains included in

the analysis were < 70% ( Fig. 2 and supplementary table 3 ) [9] . 

The genome annotation confirmed the presence of the following predicted essential en-

zymes having xylan and lignocellulosic biomass degradation abilities in strain DA-C8: endo-1,4-

β-xylanase (EC 3.2.1.8), acetylxylan esterase (EC 3.1.1.72), α-L-arabinofuranosidase (EC 3.2.1.55),

β-L-arabinofuranosidase (EC 3.2.1.185), α-xylosidase (EC 3.2.1.177), β-xylosidase (EC 3.2.1.37), β- 

glucosidase (EC 3.2.1.21), endo-1,4- β-glucanase (EC 3.2.1.4), α-glucoamylase (EC 3.2.1.3), poly-

galacturonase (EC 3.2.1.15), and α-glucuronosidase (EC 3.2.1.131). Of particular interest, the de-

tected debranching enzymes, such as β-L-arabinofuranosidase and polygalacturonase, are not

present in the genome sequence of P. curdlanolyticus B-6 [8] . The contigs and annotated data of

strain DA-C8 can be accessed at Mendeley Data [9] . 
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Fig. 1. Neighbor-joining tree depicting the relationships of 13 Paenibacillus isolates, Xylanibacillus composti , and strain 

DA-C8 based on 16S rRNA sequences. Numbers at nodes are bootstrap support percentages based on 1,0 0 0 replicates. 

The bar represents 0.01 substitutions per nucleotide position. 

Fig. 2. Dendrogram of average nucleotide identity (ANI) values. ANI values between different Paenibacillus strains 

were calculated and used to construct a dendrogram based on the unweighted pair group method with arithmetic 

means. The following 10 strains were used: DA-C8 (BMAQ0 0 0 0 0 0 0 0.1), P. cellulositrophicus (CP045295), P. chitinolyticus 

(NZ_CP026520); P. daejeonensis (ARKE0 0 0 0 0 0 0 0.1), P. favisporus (WIBG0 0 0 0 0 0 0 0.1), P. larvae (NZ_CP019687), P. nanensis 

(QXQA0 0 0 0 0 0 0 0.1), P. pinistramenti (VAWG0 0 0 0 0 0 0 0.1), P. senegalensis (CAES0 0 0 0 0 0 0 0.1), and P. yonginensis (CP014167). 
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2. Experimental Design, Materials and Methods 

2.1. Bacterial strain isolation and deposition into collections 

Strain DA-C8 was isolated from compost as described previously. Modified BMN medium [7] ,

which consisted of 2.9 g/L K 2 HPO 4 , 4.2 g/L urea, 2.0 g/L yeast extract, 1.0 g/L Na 2 CO 3 , 0.01

g/L CaCl 2 ·2H 2 O, 0.5 g/L cysteine-HCl, and 0.0 0 05 g/L resazurin in water and 200 μL aqueous

mineral solution (25.0 g/L MgCl 2 ·6H 2 O, 37.5 g/L CaCl 2 ·2H 2 O, and 0.312 g/L FeSO 4 ·7H 2 O) sup-

plemented with 1% (w/v) beechwood xylan as the sole carbon source, was used as the basal

medium. All chemicals used for the basal medium were purchased from Fujifilm Wako Pure

Chemicals, Osaka, Japan. The basal medium was aerated with high-purity nitrogen gas before

autoclaving. Strain DA-C8 ( = JCM34211 = DSM111723) was deposited in the open culture collec-

tion of the RIKEN Bioresource Research Center (JCM) and the Leibniz Institute German Collec-

tion of Microorganisms and Cell Cultures (DSMZ). The culture of DA-C8 was centrifuged, and the

pellet was used for DNA extraction. P. curdlanolyticus B-6 was cultivated on Berg’s mineral salt

medium at 37 °C under aerobic shaking conditions [6] . 

2.2. Genomic DNA purification and sequencing 

After cultivation of cells for 4 days under anaerobic conditions at 55 °C with xylose as the

carbon source, genomic DNA was extracted by the phenol/chloroform method [8] and purified.

DNA fragmentation and library preparation were carried out using an Ion Xpress Plus Frag-

ment Library kit (catalog no. #4471269, Thermo Fisher Scientific, Waltham, MA, USA) according

to the manufacturer’s instructions. Before library preparation, fragments approximately 200 to

300 bp in size were selected by electrophoresis on Invitrogen E-Gel SizeSelect II agarose gels

(catalog no. #G661012, Thermo Fisher Scientific). Genomic DNA sequences of strain DA-C8 were

obtained using the Ion GeneStudio S5 system and then processed [8] . 

2.3. Phylogenetic analysis 

Sequences obtained by BLAST searching against the GenBank database were manually aligned

with the 16S rRNA sequence of strain DA-C8 using CLUSTAL_W [10] . A phylogenetic tree was

generated by the neighbor-joining method based on the Tamura-3 parameter model [11] in

MEGA X v10.1 [12] . 

2.4. Genome assembly, annotation, and analysis 

Trimming of low-quality raw sequences and de novo genome assembly were performed in

CLC Genomics Workbench v20.0.1. The genome assembly was annotated using DDBJ DFAST

( https://dfast.nig.ac.jp/ ). Protein families of predicted essential xylan degradation enzymes were

identified with CAZymes ( http://www.cazy.org/ ). 

2.5. Genomic ANIs 

Calculation of pairwise ANI values of whole-genome sequences of strain DA-C8 and nine

Paenibacillus strains was conducted in GENETYX NGS v4.1.1. The matrix generated from the

calculated ANI values was converted into a genetic dendrogram using algorithms described

previously [8] . 

https://dfast.nig.ac.jp/
http://www.cazy.org/
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