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Skin cutaneous melanoma (SKCM) is a common malignant skin cancer. Early diagnosis could effectively reduce SKCM patient’s
mortality to a large extent. We managed to construct a model to examine the prognosis of SKCM patients. The methylation-
related data and clinical data of The Cancer Gene Atlas- (TCGA-) SKCM were downloaded from TCGA database. After
preprocessing the methylation data, 21,861 prognosis-related methylated sites potentially associated with prognosis were
obtained using the univariate Cox regression analysis and multivariate Cox regression analysis. Afterward, unsupervised
clustering was used to divide the patients into 4 clusters, and weighted correlation network analysis (WGCNA) was applied to
construct coexpression modules. By overlapping the CpG sites between the clusters and turquoise model, a prognostic model
was established by LASSO Cox regression and multivariate Cox regression. It was found that 9 methylated sites included
cg01447831, cg14845689, cg20895058, cg06506470, cg09558315, cg06373660, cg17737409, cg21577036, and cg22337438. After
constructing the prognostic model, the performance of the model was validated by survival analysis and receiver operating
characteristic (ROC) curve, and the independence of the model was verified by univariate and multivariate regression. It was
represented that the prognostic model was reliable, and riskscore could be used as an independent prognostic factor in SKCM
patients. At last, we combined clinical data and patient’s riskscore to establish and testify the nomogram that could determine
patient’s prognosis. The results found that the reliability of the nomogram was relatively good. All in all, we constructed a
prognostic model that could determine the prognosis of SKCM patients and screened 9 key methylated sites through analyzing
data in TCGA-SKCM dataset. Finally, a prognostic nomogram was established combined with clinical diagnosed information
and riskscore. The results are significant for improving the prognosis of SKCM patients in the future.

1. Introduction

Skin cutaneous melanoma (SKCM) is a malignant skin cancer
formed by the canceration of melanocytes below the epider-
mis. Pathogenic factors for SKCM are mainly classified into
external and internal factors [1]. The most common external
pathogenic factor for SKCM is ultraviolet radiation, and stud-
ies found that when the underlying cells of the skin are
exposed to ultraviolet radiation, DNA damage can be caused
to further induce SKCM [2–5]. Moreover, environmental
factors are also important external factors for SKCM. For
example, di-(2-ethylhexyl) phthalate (DEHP) in cosmetics

and PM2.5 in the air can increase the incidence rate of SKCM
[6, 7]. Besides common environmental carcinogenic factors,
genetic and epigenetic modifications are also common carci-
nogenic factors, and studies considered that people from fam-
ilies with CDKN2A gene mutation have higher incidence rate
of melanoma [8, 9]. Telomerase reverse transcriptase (TERT)
can also increase the risk of SKCM [10]. In addition, epige-
netic modification is a crucial factor for melanoma. Studies
disclosed that methylation of genes like APC, PYCARD, and
COL11A1 is relevant to the incidence of melanoma, and
histone H3K27me3 upregulation can promotemelanoma pro-
gression [11, 12]. Additionally, current studies uncovered that
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immunosuppression and pigment characteristics are risk fac-
tors for melanoma [13–15].

DNA methylation is one of the most important epige-
netic modifications. A considerable number of studies con-
sidered that DNA methylation modification is related to
the incidence of melanoma. For example, de Unamuno Bus-
tos et al. [16] found that aberrant methylation of genes like
RARB and PTEN is associated with clinical melanoma pro-
gression. DNA methylation is correlated with the metastasis
and drug resistance of melanoma as well. For example,
Venza et al. [17] discovered that DNA methylation can pro-
mote melanoma metastasis by silencing E-cadherin. MGMT
gene promoter methylation can promote the tolerance of
temozolomide in melanoma [18]. In conclusion, DNA
methylation can be widely involved in the occurrence and
progression of melanoma. We believed that it had a good
potential value to diagnose the prognosis of SKCM patients
by detecting DNA methylation level.

The Cancer Genome Atlas (TCGA) is a database com-
monly applied in tumor biomarker screening, which
includes abundant clinical experimental data of tumor
patients, wherein it contains SKCM methylation data of
470 cases that can be used for analyzation and have signifi-
cant clinical value [19]. Presently, massive studies have
applied TCGA database for screening of tumor biomarkers.
For example, Zhu et al. [20] obtain methylation sites related
to prognosis of lung cancer via digging methylation data of
lung cancer patients in TCGA. Olkhov-Mitsel et al. [21]
acquired methylation biomarkers that can identify bladder
cancer stage differences through digging the methylation
data of patients with bladder cancer. In this study, the meth-
ylation data as well as clinical data in TCGA-SKCM database
were used to screen methylation sites that resulted in poor
prognosis of SKCM patients.

In this study, TCGA database was applied to screen
prognosis-related methylation sites via univariate regression
analysis, multivariate regression analysis, the weighted corre-
lation network analysis (WGCNA), and unsupervised cluster-
ing analysis. After constructing a risk model by LASSO and
multivariate Cox regression, we identified the independence
and accuracy of the model. Lastly, a prognostic nomogram
was constructed combined with relevant clinical data. The
nomogram has great guiding significance for the clinical diag-
nosis and treatment of SKCM.

2. Materials and Methods

2.1. Data Processing. Methylation sequencing data and cor-
responding clinical information in TCGA-SKCMdataset from
TCGA database (https://portal.gdc.cancer.gov/) were included
in this study. Clinical data like patient’s age, gender, and tumor
stage in TCGA-SKCM dataset were first downloaded from
TCGA website (Table S1). Afterward, DNA methylation
(450K) data were accessed from TCGA-SKCM dataset on 20
July 2020, including DNA methylation sequencing results of
2 healthy tissue samples and 473 tumor tissue samples.

Downloaded DNA methylation data were filtrated
according to the following criteria: (1) removing methylation
sites that missed more than 70% of data, (2) filtrating all

non-GpG methylation sites, (3) filtrating all SNP-related
methylation sites, (4) filtrating all methylation sites that
mapped to multiple locations, and (5) filtrating all methyla-
tion sites in the X and Y chromosomes. Afterward, 361,126
methylation sites were obtained. R package “KNN” [22]
was applied to complete the missing values in the methyla-
tion expression profile, and R package “ChAMP” [23] was
used to standardize the data. After obtaining standardized
methylation data, tumor tissue samples with the follow-up
time more than 0d were selected (n = 455). The samples
were randomly divided into the training set (n = 318) and
validation set (n = 137) in a proportion of 7 : 3.

2.2. Preliminary Screening of Methylation Sites Related to the
Prognosis. Data in the training set were analyzed by univar-
iate regression to calculate methylation sites that were signif-
icantly correlated with patient’s overall survival (OS)
(p < 0:05). Thereafter, relevant clinicopathological data were
combined to perform multivariate regression analysis on
screened prognosis-related methylation sites, thereby
screening methylation sites correlated with patient’s OS
(p < 0:05). All analyses were finished with R package
“survival” [24].

2.3. Unsupervised Clustering Analysis. According to the
methylation level of methylation sites related to patient’s
prognosis, unsupervised clustering analysis was performed
on patients with R package “ConsensusClusterPlus” [25].
The “pam” method was selected for clustering, and the
“Euclidean” method was used to calculate the sample dis-
tance. The optimal cluster number was assessed by the
cumulative distribution function (CDF) and its area under
curve (AUC). After clustering, OS of patients with different
disease subtypes was analyzed with R package “survival”
[24].

2.4. WGCNA. WGCNA was performed on data in the train-
ing set with the R package “WGCNA” [26]. Firstly, we eval-
uated prognosis-related methylation sites and screened
methylation sites with the variance ranked in the top 5000
to construct a coexpression network. Thereafter, the Pearson
correlation index was used to establish adjacent matrix with
the soft threshold β = 8. Afterward, the adjacent matrix was
transferred into the topological matrix (TOM). Based on
TOM, average-linkage hierarchical clustering was applied
to cluster methylation sites. Lastly, a dynamic tree cut algo-
rithm was exerted to identify coexpression modules with
the size of minimum module of 30.

After clustering coexpression modules, module subtype
(MS) correlation was used to identify the correlation
between coexpression modules and patients’ subtypes. Fol-
lowing this, methylation sites correlated with patients’ sub-
types were screened by GpG-site significance (CS) and
module membership (MM). CS represented the correlation
between the methylation level of methylation sites and
patients’ subtypes, and MM represented the correlation
between methylation level of methylation sites correspond-
ing to the patients’ subtypes and module eigenvalue.
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Methylation sites (CS > 0:6 and MM> 0:8) were screened to
establish a prognostic risk model.

2.5. Construction and Validation of Methylation-Related
Prognostic Model. After acquiring key methylation sites,
LASSO Cox regression analysis was performed on data in
the training set with R package “glmnet” [27] to reduce the
complexity of the module and screen key methylation sites
with prognostic value. Afterward, multivariate regression
analysis was undertaken with R package “survminer” [28]
on key methylation sites screened by LASSO Cox. Finally,
a risk model was established. Riskscore in the risk model
was calculated by the formula as follows:

Riskscore = 〠
n

i=1
Coef i × xið Þ: ð1Þ

In the formula, Coef i represents the risk index of each
methylation site, xi represents methylation level of each
methylation site, and Riskscore represents the ultimate risk-
score. After screening prognosis-related methylation sites,
related information of methylation sites was searched
according to Ensembl database (version GRCh38.p13)
(http://asia.ensembl.org).

Patients were divided into two groups according to the
median of the score based on the formula: the high-risk
group and the low-risk group. Survival analysis was under-
taken on two groups with R package “survival,” and the
accuracy of the model was identified by receiver operating
characteristic (ROC) curve. Finally, the score distribution
map, survival status distribution map, and methylation level
heatmap of samples were drawn.

2.6. Assessment of Clinical Characteristics and Prognostic
Independence of Riskscore. Univariate regression and multi-
variate regression analyses were performed on riskscore
combined with clinical information including age, gender,
pathological_T stage, pathological_N stage, pathological M
stage, and tumor stage to analyze the correlation between
the indexes and patient’s OS, respectively. The indexes that
were significantly correlated with patient’s OS both in the
results of univariate and multivariate regression analyses
were considered to have the independent prognostic value.

2.7. Construction of a Prognostic Nomogram. Combined with
clinically related indexes and riskscore, a nomogram that
could predict 1-, 3-, and 5-year survival rates of patients
was established with R package “rms” [29]. Correction
curves of 1, 3, and 5 years were generated with R package
“foreign” [30] after establishing the nomogram to identify
the predictive effect of the nomogram.

3. Results

3.1. Screening of Prognosis-Related Methylation Sites. The
flow chart of this study is shown in Figure 1. After down-
loading and preprocessing methylation-related data, we
screened 63,735 prognosis-related methylation sites by
univariate regression analysis and then followed by multi-
variate regression analysis obtaining 21,861 methylation
sites which were remarkably correlated with SKCM
patients’ OS (Table S2).

3.2. Four Groups of Patients with Different Subtypes Found
by Unsupervised Clustering Analysis. After screening methyl-
ation sites that were significantly correlated with SKCM
patient’s OS, we clustered patients by unsupervised
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Figure 1: Overall flowchart of this study.
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clustering method (Figures 2(a) and 2(b)). Clustering results
showed that patients were mainly divided into 4 subtypes:
cluster 1, cluster 2, cluster 3, and cluster 4 (Figure 2(c)).
Heatmap of 5,000 methylation sites with the highest vari-
ance was drawn combined with patient’s clinical informa-
tion. The result represented that the methylation levels
differed in patients with 4 subtypes (Figure 3). Finally, sur-
vival analysis was performed on patients in the 4 groups. It
was shown that OS of patients with 4 different subtypes
had differences; the prognosis of cluster 2 patients was the
poorest, and the prognosis of cluster 1 patients was the best
(Figure 4). The above results exhibited that the unsupervised
clustering analysis could reliably cluster the patients into 4
subtypes, and there were differences in methylation level
and OS of patients with different subtypes had differences.

3.3. WGCNA. After grouping patients and screening 5,000
methylation sites with highest variance, we further per-
formed WGCNA on the methylation sites (Figures 5(a)
and 5(b)) and ultimately obtained 10 different modules

(Figure 5(c)). Correlation analysis was undertaken on the
10 methylation modules and 4 different patient’s subtypes.
Then, modules related to patient’s subtypes were screened
by MS. The results showed that patients with cluster 1 sub-
type and cluster 2 subtype were significantly correlated
with most modules and represented opposite trends
(Figure 5(d)). The further analysis discovered that the tur-
quoise module had the highest correlation with cluster 1
and cluster 2. Hence, we chose the turquoise module for
further analysis. Afterward, correlation analysis was per-
formed on the 3,031 methylation sites in the turquoise
module and cluster 1/cluster 2, respectively, to screen
methylation sites. A total of 502 methylation sites both
related to the turquoise module and cluster 1 were
obtained, and 219 methylation sites both related to the tur-
quoise module and cluster 2 were obtained (Figures 6(a)
and 6(b)). At last, to further screen for methylation sites
that are prominently associated with SKCM patients, Venn
plot was used to intersect the sites and 214 key methyla-
tion sites were obtained (Figure 6(c)).
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Figure 2: Unsupervised clustering of SKCM patients. (a) Cumulative distribution function curve of unsupervised clustering. (b) Relative
change in area under cumulative distribution function (CDF) curve. (c) Clustering heatmap of 4 types of SKCM patients. Each cluster
represents a subgroup of patients.
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3.4. Construction and Validation of Prognosis-Related
Methylation Model. To avoid module overfitting, we
screened key methylation sites with LASSO Cox regression
and obtained 16 key methylation sites (Figures 7(a) and
7(b)). Multivariate regression analysis was performed on
the 16 key methylation sites to construct multivariate regres-

sion model, and finally, 9 prognosis-related methylation sites
(cg01447831, cg14845689, cg20895058, cg06506470,
cg09558315, cg06373660, cg17737409, cg21577036, and
cg22337438) were screened in SKCM (Figure 7(c) and
Table 1). Meanwhile, risk model was obtained: Riskscore =
−1:0719 ∗ cg01447831 + 0:6563 ∗ cg14845689 + 0:7445 ∗ cg
20895058 + 0:6031 ∗ cg06506470 − 0:6421 ∗ cg09558315 −
0:5512 ∗ cg06373660 − 0:4686 ∗ cg17737409 − 0:9057 ∗ cg
21577036 + 0:8385 ∗ cg22337438.

After establishing the risk model, we detected the dis-
tribution and survival status of high- and low-risk patients
in the training set with the score distribution map and
survival status distribution map (Figure 7(d)). The result
showed that patients with high risk commonly were more
likely to die and the survival time of high-risk patients was
relatively lower. Changes of the methylation levels of 9
methylation sites of high- and low-risk patients were ana-
lyzed with heatmap. The result was consistent with the
risk index of model (Figure 7(e)). To identify the reliability
of risk model, survival analysis was performed to compare
the OS differences between high- and low-risk patients in
the training set and the validation set. It was represented
that OS in the low-risk group was significantly higher than
that in the high-risk group (Figures 8(a) and 8(b)). ROC
curve was further used to analyze the 1-, 3-, and 5-year
survival of patients in the training set and the validation
set. It was exhibited that AUC of ROC curve was 0.73,
0.71, and 0.73 in the training set, respectively, and AUC
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of ROC curve was 0.74, 0.67, and 0.71 in the validation
set, respectively, indicating that the model was reliable
(Figures 8(c) and 8(d)). The results showed that the risk
model could accurately determine 1-, 3-, and 5-year sur-
vival of patients. The above findings represented that the
results of the risk model were accurate and the model
could be used for predicting the prognosis of SKCM
patients.

3.5. Identifying Model’s Independence and Establishing
Prognostic Nomogram. After establishing the risk model
and validating accuracy of the model, univariate regression
and multivariate regression analyses were applied combining
with clinical data (age, gender, T, N, M, and tumor stage)

and riskscore to validate whether riskscore could indepen-
dently determine patient’s prognosis. It was shown that risk-
score in the risk model was significantly correlated with
patient’s OS and could independently determine patient’s
prognosis in univariate and multivariate regression analyses
(Figures 9(a) and 9(b)). After validating the independence of
the risk model, we combined clinically related data to establish
a nomogram that could be used to determine 1-, 3-, and 5-year
survival rate of patients (Figure 10(a)). Afterward, fitting curve
was used to validate the accuracy of the nomogram. The result
showed that fitting results of 1-,3-, and 5-year were good
(Figures 10(b)–10(d)). The nomogram can assist clinical doc-
tors to diagnose patient’s prognostic risk and help doctors to
arrange therapeutic plans more accurately.
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4. Discussion

Melanoma is a common modern disease, and SKCM is a
melanoma that occurs in the epidermis. Despite the high
incidence rate of SKCM, its mortality can be relatively low
if it is diagnosed in time in the early stage. We screened
214 methylation (CpG) sites remarkably associated with
OS in SKCM patients from the TCGA-SKCM dataset by
unsupervised clustering and WGCNA and finally con-
structed a prognostic model of 9 signature CpG sites using
LASSO Cox regression analysis and demonstrated that the
model had a better prognostic effect.

With the development of high-throughput sequencing
technology, high-throughput sequencing on tumor patients
has become an important method for tumor research, from
which biomarkers with prognostic values are filtered [31].
Currently, the mainstream research method is evaluating
patient’s risk of cancer by analyzing mRNA expression data
and combining with the expression of many genes [32]. The
advantage of the method is that the combination of the
expression of multiple genes to assess patient’s prognosis is
more accurate than using each gene alone. However, it is still
not comprehensive enough for the determination of
patient’s prognosis. Presently, researchers managed to
increase the accuracy for determining patient’s prognosis
by screening biomarkers via analyzing miRNAs and
lncRNAs, and even patient’s metabolic data [33]. Besides
predicting patient’s prognosis based on RNA expression
data, a study tried to predict patient’s prognosis by the meth-
ylation level of sites through digging relevant data of gene
methylation [34], which can obtain more stable prediction

result and requires lower sample preserve conditions com-
pared with using RNA expression level to predict prognosis.
Hence, methylation sites that affected SKCM patient’s prog-
nosis were explored in this study by digging DNA methyla-
tion relevant data in TCGA-SKCM dataset combined with
patient’s clinical survival time. A total of 21,861 prognosis-
related methylation sites were found through univariate
and multivariate regression analyses.

Mining TCGA database by bioinformatics methods is a
common study method, in which unsupervised cluster is
an effective means to classify patients with cancer in the
present [34–36]. For example, Wu et al. [37] found 3 sub-
types with different molecular characters in lung adenocarci-
noma by unsupervised clustering, and patients with each
subtype are relevant to abnormal specific molecular path-
ways. Patients were divided into 4 groups in this study by
unsupervised clustering. The OS of patients in different
groups was different, wherein cluster 2 patients had the
poorest prognosis, while cluster 1 patients had the best prog-
nosis. WGCNA is also a common study method in bio-
marker screening, and a number of studies screened
biomarkers with value for patient’s prognosis by WGCNA
[34]. Ten methylation modules related to patient’s prognosis
were obtained in this study by WCGNA. At last, 9 methyla-
tion sites and risk model relevant to OS were further
screened combined with the results of WCGNA and unsu-
pervised clustering.

The 9 prognosis-related methylation sites were screened in
this study based on the previous research. Among the 9 sites,
high methylation of cg01447831, cg09558315, cg06373660,
cg17737409, and cg21577036 can reduce prognostic risk, while
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Figure 7: Construction of SKCM risk model. (a) LASSO coefficient profiles of key CpG sites. (b) Selection of the optimal parameter
(lambda) in the LASSO model for TCGA-LUAD. (c) Key CpG sites filtered by multivariate Cox regression analysis. (d) Riskscore and
survival status of patients in training cohort. (e) Heatmap of each CpG site in risk model.

Table 1: Detailed information of filtered CpG sites.

CpG site Chrom Position Gene symbol

cg01447831 chr7 155,456,390-155,456,439 EN2

cg14845689 chr10 117,546,682-117,546,731 EMX2

cg20895058 chr14 60,516,569-60,516,618 AL049874.3

cg06506470 chr7 3,990,973-3,991,022 SDK1

cg09558315 chr4 5,709,574-5,709,623 EVC

cg06373660 chr13 80,840,851-80,840,900 AL590807.1

cg17737409 chr1 230,114,215-230,114,264 GALNT2

cg21577036 chr15 90,301,567-90,301,616 AC091167.6

cg22337438 chr19 53,824,135-53,824,184 NLRP12
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highmethylation of cg14845689, cg20895058, cg06506470, and
cg22337437 can increase prognostic risk. After searching regu-
latory genes corresponding to thesemethylation sites, we found
that these sites were located in EN2, EVC, AL590807.1,
GALNT2, AC091167.6, EMX2, AL049874.3, SDK1, and
NLRP12 genes, respectively. EN2 as a transcription factor was

found to be a biomarker for prostate cancer and breast cancer
in relevant studies [38, 39]. Current research considered that
highly expressed EN2 can promote the proliferation and drug
resistance of cancer cells [40, 41]. In this study, it was found
that cg01447831 high methylation could reduce the prognostic
risk of patients, which may be because cg01447831 can inhibit
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Figure 8: Validation of SKCM risk model. (a and b) Survival curve analysis of training cohort and validation cohort. (c and d) ROC curve
analysis of training cohort and validation cohort.
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Figure 9: Univariate and multivariate validation of risk model’s independence. (a) Univariate analysis validates independence of SKCM risk
model. (b) Multivariate analysis validates independence of SKCM risk model.
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the expression of EN2. It was discovered that methylation site
cg09558315 was in the driver zone of EVC, which indicated
that EVC high expression may promote the occurrence of
cancers. At present, few studies were undertaken on the carci-
nogenic mechanism of EVC, and studies considered that
EVC mutation may be an inducement for Ellis-van Creveld
syndrome and EVC may be a prognostic marker of colon can-
cer in the early stage [42, 43]. GALNT2 gene is a Mucin O-
glycosylase which is disputed for its effect in cancers. A study
thought that GALNT2 may promote cancer progression via
activating EGFR/PI3K/Akt/mTOR pathway [44]. Further-
more, it was also considered that GALNT2 can inhibit can-
cer development by reducing MET phosphorylation in some
conditions [45], and it was found that cg17737409 site
methylation in GLANT2 was helpful for patient’s prognosis
in this study. Moreover, we found that high methylation

silencing of cg14845689 in EXM2 could increase patient’s
prognostic risk. EXM2 is thought as a tumor suppressor
gene, and high expression of EXM2 can induce cell cycle
stagnation thereby inhibiting the proliferation of cancer cells
[46, 47]. SDK1 is a kind of immune-related protein, and
studies found that SDK1 mutation causes cancers, but the
effect of SDK1-related site methylation on the incidence of
cancer has not been fully studied [48, 49]. Our study found
that high methylation of cg06506470 site in SDK1 gene
could cause the poor prognosis of patients. NLRP12 is an
immune-sensor element that triggers an inflammatory
response, causing the release of IL-1B and IL-18, and the
cleavage and activation of Caspase-1 [50]. After screening
methylation sites, we identified prognostic model and estab-
lished a prognostic nomogram that could assist clinical doc-
tors to determine patient’s prognosis.
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Figure 10: Construction and validation of prognostic nomogram. (a) Nomogram to predict 1-, 3-, and 5-year survival rate of SKCM
patients. (b–d) Fitting curves used to validate prognostic nomogram.
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All in all, we analyzed related data in TCGA-SKCM
dataset, screened 9 prognosis-related methylation sites, and
established a prognostic model by univariate, multivariate,
and LASSO Cox regression analyses, unsupervised clustering
analysis, and WGCNA. The model was accurate for deter-
mining patient’s prognosis. The model screened by experi-
ments is reliable validated by data in the validation set, but
this paper is a bioinformatics essay solely without experi-
mental data support. Therefore, more animal and clinical
experiments are needed to support the conclusion in this
paper to be clinically used.
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