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Brain network analyses have moved to the forefront of neuroimaging research over the
last decade. However, methods for statistically comparing groups of networks have lagged
behind. These comparisons have great appeal for researchers interested in gaining further
insight into complex brain function and how it changes across different mental states and
disease conditions. Current comparison approaches generally either rely on a summary
metric or on mass-univariate nodal or edge-based comparisons that ignore the inherent
topological properties of the network, yielding little power and failing to make network
level comparisons. Gleaning deeper insights into normal and abnormal changes in complex
brain function demands methods that take advantage of the wealth of data present in
an entire brain network. Here we propose a permutation testing framework that allows
comparing groups of networks while incorporating topological features inherent in each
individual network. We validate our approach using simulated data with known group
differences. We then apply the method to functional brain networks derived from fMRI
data.
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INTRODUCTION
As brain network analyses have become popular in recent years,
neuroimaging researchers often face the need to statistically com-
pare groups of brain networks (Simpson et al., 2013). A rudimen-
tary and commonly used approach to conduct such comparisons
is to summarize each network by a univariate metric and compare
such summary measures by a simple test (e.g., a t-test). Although
this approach may be appealing for its simplicity, such meth-
ods are blind to the complex local connectivity patterns within
the network. In fact, to the best of our knowledge, the network-
based statistic (NBS) (Zalesky et al., 2010) and the exponential
random graph modeling (ERGM) framework (Simpson et al.,
2011, 2012) are the only methods that attempt to account for
topological differences across networks. The NBS and other mass-
univariate analyses are designed to localize which nodes or edges
differ between groups of networks. Although these approaches
allow local comparisons of connectivity patterns or nodal prop-
erty differences, they are predicated on edge by edge (or node by
node) comparisons and only subsequently aggregate the results
of these comparisons to identify clusters of nodal or edge-based
differences. In other words, they are not designed to compare or
account for topological features inherent in the entire network
of each subject. Contrastingly, the ERGM framework allows cap-
turing a network’s topological features, but group comparisons
pose difficulties (Simpson et al., 2011). Thus, analysis methods are
needed that enable the comparison of groups of networks while
incorporating topological features inherent in each individual
network.

In order to develop such an analysis, we can exploit the fact
that brain networks often exhibit consistent organizations across

subjects. For example, a number of studies have reported that
nodes with particular characteristics (e.g., high degree) tend to
coincide at the same spatial locations across subjects (Hagmann
et al., 2008; Van Den Heuvel et al., 2008; Hayasaka and Laurienti,
2010; Moussa et al., 2011). Although the set of such nodes may
not be exactly the same across subjects, there are large areas of
overlap (Hagmann et al., 2008; Hayasaka and Laurienti, 2010).
Furthermore, our recent study on network modules, or com-
munities of highly-interconnected nodes, indicated that some
building blocks of resting-state functional brain networks exhib-
ited remarkable consistency across subjects (Moussa et al., 2012).
It has also been shown that such consistent organizations dif-
fer under different cognitive states (Deuker et al., 2009; Moussa
et al., 2011; Rzucidlo et al., 2013) or in different groups of
subjects (Rombouts et al., 2005; Stam et al., 2007; Liu et al.,
2008; Bassett and Bullmore, 2009; Meunier et al., 2009a; Burdette
et al., 2010; Yuan et al., 2010). Thus, an analysis method sensi-
tive to such differences in spatial locations or patterns can assess
group differences at the network level (as opposed to the edge
or nodal level). In this work we propose a group comparison
framework within which we develop two analysis methods. The
first focuses on whether or not the spatial location of key nodes
or modules is consistent between groups of networks beyond
inter-subject variations observed within each group. In other
words, this method compares the consistency of network organi-
zation between groups. Our second proposed method compares
the degree distributions (distribution of the number of connec-
tions each node has) between groups. Assessment of the degree
distribution provides insight into the overall topology of brain
networks (Barabasi and Albert, 1999).
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As mentioned above, our first proposed test takes into account
the consistency of key node sets within and between groups. We
do so by summarizing similarities in node sets across multiple
networks with the Jaccard index, a metric that quantifies simi-
larity in partitions of a set (Meunier et al., 2009b; Joyce et al.,
2010). The Jaccard index is then incorporated into a permuta-
tion testing framework, enabling the formal assessment of group
differences at the network level. Permutation tests have been used
extensively in neuroimaging data analyses because they allow use
of a test statistic with an unknown distribution as is the case with
the Jaccard index in our context (Bullmore et al., 1999; Nichols
and Holmes, 2002; Hayasaka and Nichols, 2003, 2004; Nichols
and Hayasaka, 2003).

Our second proposed test compares the degree distributions
within and between groups. We accomplish this by summariz-
ing similarities in nodal cumulative degree distributions across
multiple networks with the Kolmogorov-Smirnov statistic (K-S
statistic), a measure that quantifies the distance between two
cumulative distribution functions (Kolmogorov, 1933; Smirnov,
1948). As with the Jaccard Index, the K-S statistic is also incor-
porated into a permutation testing framework, enabling the
assessment of statistical differences between groups of networks.

In this paper, we detail our Permutation Network Framework
(PNF) for the Jaccard index (PNF-J) and K-S statistic (PNF-KS).
We focus on the PNF-J, but introduce the PNF-KS as an addi-
tional useful approach. We validate the PNF-J using simulated
data with known group differences in terms of locations of key
nodes. We then apply both the PNF-J and PNF-KS to functional
brain networks derived from fMRI data.

MATERIALS AND METHODS
PERMUTATION TEST
A permutation test requires no knowledge of how the test statistic
of interest is distributed under the null hypothesis (e.g., no signif-
icant group difference). This is because the permutation process
empirically “generates” the distribution under the null hypothesis
from the data by permuting data labels. Consequently, a permuta-
tion test can be a useful tool when the study design is simple (e.g.,
comparing two groups) yet the theoretical derivation of the test
statistic is difficult. A group comparison of networks falls under
such a scenario. Thus, we developed a framework to perform a
permutation test for the comparison of groups of networks. It is
important to note that permutation tests are not assumption free
and do assume exchangeability (i.e., that when the null hypoth-
esis is true the joint distribution of the observations remains
unchanged under permutation of the group labels).

JACCARD INDEX
Identifying key nodes
For the PNF-J, groups of network data having the same set of
nodes can be compared. First, key nodes of interest in those net-
works need to be identified. Key nodes can be identified based
on nodal characteristics such as high degree, high centrality, or
other desired characteristics. Since those key nodes will be com-
pared across subjects, it is important to employ the same criterion
in all of the networks (e.g., top 10% highest centrality, node
degree >200, etc.). Alternatively, key nodes can be identified as

those belonging to a particular module, a collection of highly
interconnected nodes. The resulting key nodes will form a set and
the consistency of the spatial location of the nodes can be com-
pared across groups. An example visualization of key node sets
from voxel-based networks in brain space is given in Figure 1.

Establishing similarity/dissimilarity between networks
Key node sets likely include similar nodes within groups and
different nodes between groups. To quantify how similar or dis-
similar key node sets are between networks, we will employ the
Jaccard index (Meunier et al., 2009b; Joyce et al., 2010). If A and
B are the key node sets from two networks, then the Jaccard index
between these networks can be calculated as

J = |A ∩ B|
|A ∪ B| , (1)

where |A ∩ B| is the number of key nodes that overlap in net-
works A and B, and |A ∪ B| is the total number of key nodes in
the two networks. J ranges from 0 (no overlap) to 1 (perfect over-
lap), with a large number indicating high similarity between the
sets A and B. If there are multiple networks in a data set then J can
be calculated for every pair in the data set, resulting in a matrix
as can be seen in Figure 2. In the comparison statistic matrix in
Figure 2, each row and column represents an individual network,
and the (i, j)th element corresponds to the comparison statistic
value (the Jaccard index in this case) between networks i and j.
The main diagonal elements in the matrix are 1, since they rep-
resent J between identical key node sets. If there are two distinct
groups among the networks, then the matrix includes two types
of patterns. J is elevated among networks belonging to the same
group since their key node sets are similar (note the blue squares
in Figure 2). Conversely, J is attenuated if networks belong to dif-
ferent groups (note the yellow squares in Figure 2). Thus, the
mean of J within groups is expected to be larger than the mean
of J between groups. To summarize this disparity we define the
Jaccard ratio RJ as

RJ = MJ(Within)

MJ(Between)
, (2)

FIGURE 1 | Example visualization of key node sets from voxel-based

networks in brain space. The 3D brain images (Top) are 3 representative
subjects from each group with the key node sets defined to be those with
the top 20% highest degree. Overlap maps (Bottom) show the proportion
of subjects with key nodes in given areas.
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FIGURE 2 | Comparison statistic (Jaccard index and K-S statistic)

matrix. The figure shows hypothetical data for 2 groups each with 5
subjects. The value in each cell of the matrix represents the similarity
between the two subjects based on either the Jaccard or the rescaled K-S
statistics. The permuted matrix results in a scrambling of the group
assignment for subjects based on random selection. Note that subjects 2
and 5 have been moved to Group 2 and subjects 9 and 6 have been moved
to Group 1.

where MJ corresponds to the mean of J. If RJ � 1, then the
Jaccard index is greater within groups than between groups, indi-
cating that the groups differ significantly in the consistency of the
key node sets. Conversely, if RJ ≈ 1, then there is no evidence
that the groups differ significantly in the consistency of the key
node sets. One of the strengths of the Jaccard ratio RJ is that it
can account for inter-subject variations in key node set consis-
tency within groups, while enabling an assessment of the between
group differences in relation to such intra-group variations. The
impetus for this RJ test statistic (and the RKS statistic discussed
in the next section) was a desire to create an ANOVA F-test ana-
logue for our context. The main difference with our statistic is that
averages across network relationships (key node set consistency
and degree distribution similarity) are computed as opposed to
averages across networks themselves.

K-S STATISTIC
Degree distributions, which help quantify the topology of net-
works, are likely more similar within distinctive groups than they
are between these groups. We employ the K-S statistic noted in the
Introduction to quantify this potential dissimilarity. If F1(x) and
F2(x) are the cumulative degree distribution functions for two
networks, then the K-S statistic for the difference between these
distributions is

KS = sup
x

| F1(x) − F2(x)|, (3)

where supx is the supremum of the set of distances between dis-
tributions. KS ≥ 0, with larger values indicating more dissimilar
distributions. As with the Jaccard index, KS can be calculated for
every pair of networks in a multiple network data set to produce
a matrix like the one shown in Figure 2. For visual purposes, we
present rescaled KS values in Figure 2 [Rescaled KS = 1−(KS −
KSmin)/(KSmax − KSmin)] to align it with the range of the Jaccard
index. Again each row and column represents an individual net-
work, and the (i, j)th element corresponds to the rescaled KS value

between networks i and j. The main diagonal elements in the
matrix are 1, since they represent rescaled KS between the same
distributions. If there are two distinct groups among the net-
works, then KS is relatively small (or relatively large for rescaled
KS) among networks belonging to the same group (note the blue
squares in Figure 2) and relatively large (or relatively small for
rescaled KS) among networks belonging to different groups (note
the yellow squares in Figure 2). Thus, the mean of KS within
groups is expected to be smaller than the mean of KS between
groups. To summarize this disparity we define the K-S ratio
RKS as

RKS = MKS(Between)

MKS(Within)
, (4)

where MKS corresponds to the mean of KS. If RKS � 1, then
the K-S statistic is greater between groups than within groups,
indicating that the groups differ significantly in their degree dis-
tributions. Conversely, if RKS ≈ 1, then there is no evidence that
the groups have significantly different degree distributions. Like
the Jaccard ratio, the K-S ratio RKS accounts for inter-subject vari-
ations (in degree distributions) within groups, while enabling an
assessment of the between group differences in relation to such
intra-group variations.

STATISTICAL ASSESSMENT THROUGH PERMUTATIONS
The distributions of the Jaccard and K-S ratios (RJ and RKS)
are unknown under the null hypothesis of no group differ-
ence. However, the null distribution can be generated empirically
through a permutation process. In a two-sample compari-
son setting, this is done by randomly re-assigning, or per-
muting, group labels. This process, consisting of permuting
group labels and re-calculating RJ or RKS, is repeated a large
number of times (Lperm). Table 1 describes the permutation
process.

This process results in a collection of RJ/KS
perm values cal-

culated under permuted group labels. We can determine the
null distribution of RJ/KS by constructing the empirical distri-
bution of RJ/KS

perm values. Figure 3 shows distributions gener-
ated by the permutation methodology that are typical for the
Jaccard and K-S analyses. The distributions are based on sim-
ulated data and 300,000 permutations. For the Jaccard data,
simulated network degree images were used as described below
in the Simulated Data section. The K-S permutation process
was based on simulated degree distributions that were drawn
from exponentially-truncated power law distributions (data not
shown). By comparing RJ/KS, the Jaccard or K-S ratio based
on the original labels, to this empirical distribution, we can

Table 1 | Steps involved in the permutation process.

Step Procedure

1 Calculate RJ/KS based on the original group labels

2 Randomly permute group labels

3 Re-calculate RJ/KS based on the permuted group labels from Step 2

4 Record RJ/KS from Step 3 as RJ/KS
perm

5 Repeat steps 2-4 Lperm times
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FIGURE 3 | Empirical distributions generated by the permutation process

for the Jaccard (left) and K-S (right) analyses using simulated data. The
distributions are based on simulated data and Lperm = 300, 000 permutations.

For the Jaccard data, simulated network degree images were used as
described in the simulated data section. For the K-S data, simulated degree
distributions were drawn from exponentially-truncated power law distributions.

determine the statistical significance of the group difference. In
particular, the p-value for this comparison can be computed as

p = #(RJ/KS
perm > RJ/KS)

Nperm
, (5)

where #(RJ/KS
perm > RJ/KS) is the number of permutations

for which RJ/KS
perm is larger than RJ/KS. If the p-value is

small, it indicates that the observed ratio RJ/KS did not occur
by chance alone, signifying strong evidence against the null
hypothesis.

The permutation process described above is computationally
efficient since it only involves re-ordering the rows and columns
of the comparison statistic matrix based on the permuted group
labels. Unlike permutation tests used in mass-univariate analy-
ses of brain imaging data (Holmes et al., 1996; Bullmore et al.,
1999; Nichols and Holmes, 2002), our permutation process does
not involve the re-calculation of network statistics or imaging
data. Thus, once the comparison statistic matrix is calculated,
the permutation process can be accomplished with a relatively
small computational burden, enabling a large number of permu-
tations. The larger the number of permutations, the more precise
the empirical p-value becomes. It should be noted, however, that
the number of possible permutations is limited by the number
of networks (study participants) in the data set. For example, if
there are N1 and N2 networks in groups 1 and 2, respectively,
then the number of possible permutations of group labels, Lmax, is
given by

Lmax =
(

N1 + N2

N1

)
= (N1 + N2)!

N1!N2! (6)

For sufficiently large N1 and N2, it is not feasible to per-
form all possible permutations of group labels. Thus, in
practice, only a subset of all possible permutations is used,
with Lperm � Lmax. In this subset context, the computed
p-values may slightly underestimate the “true” p-value by

around 1/Lperm, which is negligible in our case (around
3 × 10−6 − 1 × 10−5). However, this issue becomes problem-
atic in mass-univariate settings in which multiple testing
approaches can lead to inflated family-wise type I error rates.
Exact tests have been developed to address this limitation
(Phipson and Smyth, 2010).

PAIRED TWO SAMPLE TEST
The permutation test framework described above is designed
for comparing two independent groups of networks, but the
framework can also be extended to paired two-sample tests. In
a paired setting, two networks originate from the same sub-
ject. For example, two networks may represent brain networks
before and after a certain treatment or intervention. Or, two net-
works may be constructed from neuroimaging data under two
distinct cognitive conditions or states. Since each network in one
group is “paired” with a network in the other group, the per-
mutation procedure for two independent groups as described
above cannot be directly applied in this setting. This is because
the pairing information needs to be maintained during the per-
mutation process. To do so, rather than randomly permuting
group labels as is done in the independent two-sample test, the
group label is flipped within each subject. For example, if each
subject has two networks acquired under conditions X and Y,
then these group labels may be permuted for this subject from
XY to YX. Flipping the labels within each subject ensures that
each subject’s networks are represented in both groups. The
flipping of the group label can be done for a random sub-
set of the subjects in the data set. If there are N subjects in
the data set, then there are 2N possible permutations of group
labels for the paired-test setting. Under the original labeling,
as well as permuted labeling, the Jaccard and K-S ratios RJ/KS

or RJ/KS
perm can be calculated in the same way as described

above. The statistical significance of a paired-test can also be cal-
culated by comparing RJ/KS to the distribution of RJ/KS

perm as
described above.
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SIMULATION STUDIES
DATA
Three tests of significance based on simulated data (Figure 4)
were performed to validate our PNF-J approach and show its abil-
ity to statistically identify various qualitative changes. For brain
network analyses it is very common to qualitatively and quanti-
tatively evaluate the locations of high degree network nodes. The
first simulation was used to detect a new region of high degree
nodes. The second simulation was used to detect an increase in
the size of a region of high degree nodes. The third simulation
was designed to identify the loss of a region of high degree nodes.

Each simulation contained two groups of ten subjects (control
and experimental), and each subject’s network contained 5400
nodes. For each node a value of one represented signal or noise
(i.e., a true high degree node or falsely identified high degree
node), while the absence of either was represented by zeros. The
control groups for the first and second simulations contained a
216 node subset (region) with each node given a 40% probabil-
ity of being defined as a signal. The remaining nodes were given
a 10% probability of being defined as noise. For the experimental
group in the first simulation, signal was introduced in a new 216
node subset of the network. Signal probability within this sec-
ond subset was gradually increased across 10 iterations from 10
to 40%. As signal probability increased, it was expected that the
control and experimental groups would become less similar. For
the experimental group in the second simulation, the original 216
node subset (with 40% probability of signal) was increased to a
384 node subset. The signal probability in the additional nodes
was gradually increased from 10 to 40% across 10 iterations. The

FIGURE 4 | Simulated data used as a ground truth. The cartoon
demonstrates the locations of the regions that were added (simulation 1),
expanded (simulation 2), and dropped (simulation 3).

goal of the third simulation was to assess test performance with
a gradual reduction in signal. The control group contained four
216 node subsets of elements with each node in the subsets given
an 80% probability of being defined as a signal. The experimental
group was represented in the same way. However, the probability
of signal in the nodes of one subset was gradually decreased from
80 to 50% while the signal in the other subsets remained constant.

RESULTS
We assessed the Permutation Network Framework for the Jaccard
Index (PNF-J) with the three simulations detailed in the last sec-
tion. Each simulation was run 1000 times and the average p-values
across these runs were noted. Figure 5 (and Table A1) contains
the results. The results of the first simulation demonstrate that the
experimental group became more statistically different than the
control group as the probability of the new signal was increased.
The significance threshold (p = 0.05) was first crossed when the
second signal probability reached 26% (p = 0.0391). The results
of the second simulation show this same pattern with the test
detecting a significant signal expansion at a signal probability of
28% (p = 0.0354). A signal probability reduction of 18% was
detectable in the third simulation with the probability reduced
to 62% from 80% (p = 0.0196).

Figure 6 depicts data used in the three simulations. Each
image is a cross-section of the overlap image created by sum-
ming the 10 binary images from the experimental and control
groups (from one of the thousand trials). The value of each cell,
ranging from 0 to 10, shows how many images had a signal at
that location. Images in the first column show a cross-section of
the control group overlap data for each simulation. The second
column contains a slice of the experimental group overlap data
for the minimum signal probability change at which significance
was reached. Cross-sectional overlap images for the experimental
group when the maximum signal probability change occurred are
displayed in the last column.

EXPERIMENTAL STUDIES
DATA
The data used to apply and show the utility of the
Permutation Network Framework (PNF) consist of fMRI
scans from three separate datasets. The first dataset is part
of the 1000 Functional Connectome Project available at
(http://fcon_1000.projects.nitrc.org/). The dataset is from
Leipzig consisting of subjects aged 23–42 years old (n = 37,
male/female = 16/21). The data were collected during resting
state with fixation on a cross. The Leipzig data was randomly
divided into two groups (n = 18 and n = 19) and a two sample
PNF-J test was performed.

The second dataset, the Aging Brain, was originally collected
for a brain perfusion study (Hugenschmidt et al., 2009) and ana-
lyzed with both the PNF-J and PNF-KS. The Aging Brain dataset
is populated by two groups, young subjects aged 27 ± 5.8 years
old (n = 20), and old subjects aged 73 ± 6.6 years old (n =
19). Subjects were healthy and matched for gender and educa-
tion. Three separate conditions of fMRI scans were used, resting,
visual, and multisensory (MS) (visual and auditory), each last-
ing 5.6 min. The details of these conditions along with additional
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FIGURE 5 | Simulation results. Note that when the p-value equals 0 it is set
to the minimum value on the graph. Table A1 contains the actual values.
(A) For the first simulation (blue), the significance threshold was first crossed
when the second signal probability reached 26% (p = 0.0391). For the

second simulation (red), the test first detected a significant signal expansion
at a signal probability of 28% (p = 0.0354). (B) A signal probability reduction
of 18% was detectable in the third simulation with the probability reduced to
62% from 80% (p = 0.0196).

FIGURE 6 | Sample simulated data. The figure shows a single slice
through the overlap of the 10 simulated datasets. The overlap images show
the number of individuals (color scale) that had signal at any particular
location.

network analysis can be found in a previous publication (Moussa
et al., 2011). For each fMRI scan, blood-oxygen-level depen-
dence (BOLD) contrast was measured using a 1.5T MRI scanner
and a whole-brain gradient echo-planar imaging (EPI) sequence
with the following parameters: 200 volumes with 24 contiguous
slices per volume; slice thickness = 5.0 mm; in-plane resolution
of 3.75 mm × 3.75 mm; TR = 1700 ms.

The third dataset was from a group of eight older adults
(male/female = 2/6, average age = 85.63) recruited for a

physical/cognitive intervention. The data used here are all base-
line data collected before the intervention. The data have not
been published elsewhere. Three fMRI scans were performed
in the same imaging session. The first was a resting scan, the
second was a working memory scan (n-back), and the third
was a repeat resting scan. Resting scans were performed while
participants were viewing a fixation point on a screen. The work-
ing memory task was presented on a screen and participants
responded by pressing a button with their right index finger if
the letter being viewed matched the prior letter that was pre-
sented. They pressed the button with their middle finger if the
letter did not match the prior letter. Letters were presented with
an inter-stimulus interval of 3 s. All scans lasted 5:14 min and
the first 14 s was discarded to allow the tissue magnetization to
achieve steady-state. For each fMRI scan, BOLD contrast was
measured on a 3T scanner using a whole-brain gradient echo-
planar imaging (EPI) sequence with the following parameters:
157 volumes with 35 contiguous slices per volume; slice thick-
ness = 5.0 mm; in-plane resolution of 3.75 mm × 3.75 mm; TR =
2000 ms.

DATA PROCESSING AND NETWORK GENERATION
All datasets utilized the same processing and network generation
steps. To process the data, functional scans were normalized to
standard brain space with a 4 × 4× 5 mm voxel size. Data were
band pass filtered (0.00765–0.068 Hz), and motion parameters,
global signal, and mean WM and CSF signals were regressed from
the imaging data.

In order to generate the networks, a correlation matrix was
made for each subject containing the pairwise correlation coef-
ficients between the time courses of all voxel pairs. Unweighted,
undirected networks were then created by thresholding the
correlation matrices for each subject to yield a set of adjacency
matrices (Aij) with 1 indicating the presence and 0 indicating the
absence of an edge between two nodes. Thresholding approaches
generally fall into three categories (fixed threshold, fixed degree,
fixed edge density) with there being no consensus on the best
approach. We find the fixed edge density (or wiring cost) approach
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most appealing given that it avoids the confounding that can
occur in subsequent analyses with networks that have widely
varying degrees or connectivity distributions (Simpson et al.,
2013). More specifically we used the method of Hayasaka and
Laurienti (2010), which falls within this category, and defined
(thresholded) all networks so that the relationship (denoted by S)
between the number of nodes n and the average node degree K
was the same across networks. In particular, the networks were
defined so that S = log(n)/log(K) = 2.5 as this value has been
show to lead to more stable and robust results (Hayasaka and
Laurienti, 2010).

RESULTS
Two sample Jaccard test
We identified key nodes of interest based on node degree, select-
ing the top 20% highest degree (hub) nodes (though the actual
percentage varied some due to true nodal degree). However, a
range of thresholds (selection percentages) was employed and
those results are presented in Figure 7 (and Table A2) for the
paired and unpaired two sample tests for the Leipzig and Aging
Brain analyses. The results demonstrated that the method is
robust to the specific chosen threshold. Note that when a thresh-
old of 1 (100%) is applied to the data, the p-value will neces-
sarily equal 1 since all nodes are selected as key nodes for each
network.

For the first analysis, we created two randomly selected groups
from the Connectome - Leipzig data. The two sample PNF-J test
demonstrated that the two groups were not significantly differ-
ent (p = 0.1864, threshold = 0.2138). This was expected given
that each group was randomly drawn from the same sample
population.

The second analysis, using the Aging Brain dataset, compared
a group of older adults and younger adults during a resting state.
Our method found the two groups to be significantly differ-
ent (p = 5.00 × 10−6, threshold = 0.2144). This corroborates the
age-related differences in brain topology found by many others
(Gaal et al., 2009; Gong et al., 2009; Meunier et al., 2009a), but

our approach provides even more confidence in these differences
given the size of the p-value. We also conducted two paired
two-sample tests on the young group in the same dataset com-
paring resting state with multisensory scans (MS) and resting
state with visual scans of the same subjects. These tests showed
that when visual (p = 3.5 × 10−5, threshold = 0.2131) and mul-
tisensory (p = 1.0 × 10−5, threshold = 0.2138) information is
being processed, significantly different topological configurations
result.

Figure 8 demonstrates group overlap maps for the Leipzig
data and the Aging Brain young and older adults’ data groups.
Each image is a sagittal slice of an overlap of every member
in a group at a threshold of 20%. The images are normalized
by dividing by the number of subjects in each group, result-
ing in values between zero and one. Thus, the color scale shows
the percentage of subjects that had a key hub node in any
particular brain location. The first row contains resting state
images from the Leipzig subset of the Connectome project. As
stated above, the two groups proved to not be significantly
different.

The second row shows the young and older groups of the Aging
Brain dataset. The group differences that achieved significance
are visually apparent. The main points of distinction between the
young and older groups are in the precuneus and visual cortices
where the young group has a stronger concentration of voxels
above the 20% threshold across all subjects. In addition, the older
adults had a higher concentration of hubs located in the medial
inferior frontal lobe.

Within group differences were evaluated in the data from the
third study, again by comparing the spatial consistency of the
top 20% highest degree (hub) nodes. The first analysis compared
the overlap of hub nodes between the first and second resting
state scans. The images showing the location and consistency of
these hubs in the two conditions are shown in Figure 9. The
images qualitatively demonstrate the consistency of hub locations
across the two groups. The PNF-J test corroborated this quali-
tative finding, failing to identify a significant difference between

FIGURE 7 | Leipzig and Aging Brain data analysis results for the PNF-J.

Note that when the p-value equals 0 it is set to the minimum value on the
graph. Table A2 contains the actual values. (A) The unpaired (independent)
two sample tests show that there was a significant difference between
younger and older adults in the Aging dataset but no difference in the two

randomly selected groups from the Leipzig dataset. (B) The paired
(dependent) two sample tests show that there were significant differences
when comparing resting state with multisensory scans (MS) and resting
state with visual scans of the same subjects in the younger group from the
Aging dataset.
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the two resting conditions (p = 0.93, threshold = 0.2146). In
fact, the comparisons between the two resting conditions did not
achieve significance for any threshold tested. The second anal-
ysis compared the spatial consistency of network hubs at rest
to those observed during the working memory task. The two
conditions resulted in quite distinct hub patterns as shown in
Figure 9. The PNF-J test comparing these maps revealed a signif-
icant condition difference (p = 0.0396, threshold = 0.2133). The
significant difference held for all thresholds less than 84%. The
results for all thresholds tested for both comparisons are shown
in Figure 10 (and Table A3). These paired sample test results
reveal that differences exist in the spatial location of high degree
nodes between conditions but not when comparing two identical
conditions.

FIGURE 8 | Leipzig and Aging Brain analysis results. Each image is a
sagittal slice of an overlap of every member in a group at a threshold of
20%. The images are normalized by dividing by the number of subjects in
each group, resulting in values between zero and one.

Two sample K-S test
We analyzed the Aging Brain dataset degree distributions with
the PNF-KS approach in order to compare the results with
those from conducted comparisons of parameters based on fits
to an exponentially truncated power law. Degree distributions
were fitted with an exponentially truncated power law using
the following equation [P(k) = k−β exp(−k/θ)] via maximum
likelihood estimation based on prior work from our research
group (Hayasaka and Laurienti, 2010). The parameter estimates,
θest and βest, were then used to statistically compare the distri-
butions between groups and across conditions via two-sample
t-tests. A significant difference was found between the degree
distributions of the young and older adults only during the
visual state in the anterior cingulate cortex (ACC) (p = 0.01).
However, this parametric analysis makes a strong distributional
assumption, namely that the true degree distributions in young
and older adults follow an exponentially truncated power law,
which can lead to erroneous conclusions if the assumption is
not met. We used our PNF-KS method, which makes no dis-
tributional assumptions, to substantiate this finding and found

FIGURE 10 | Third study data analysis results for the PNF-J. The test
revealed a significant difference between Rest 2 and N-back (red) at the
specified threshold (p = 0.0396, threshold = 0.21) but no difference
between Rest 1 and Rest 2 (blue) (p = 0.93, threshold = 0.21).

FIGURE 9 | Third study analysis results. The images are sagittal (top row) and coronal (bottom row) slices of an overlap of every member in each condition
at a degree threshold of 20%. The images show the percent of participants (color scale) that had hub nodes at any particular location.
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FIGURE 11 | PNF-KS results for Aging Data—young vs. older adults

during a visual task (ACC only). Distribution plots (left) show the
cumulative degree distributions for the young (blue) and older (green) adults.

The empirical distribution of RKS
perm (right) was generated based on

Lperm = 100.000 permutations. 35.58% (p = 0.3558) of the RKS
perm values

were greater than the observed RKS value.

no evidence for a distributional difference in the ACC (p =
0.3558). Figure 11 displays the actual cumulative degree distri-
butions and the results of this comparison between the young
and older adults (ACC only) during the visual state (empirical
distribution of RKS

perm and observed RKS). Given the overlap
of the distributions in the two groups, it appears that our
PNF-KS approach likely results in the appropriate conclusion
while the parametric approach likely leads to a false positive
finding.

DISCUSSION
The explosion of brain network analyses over the last decade
has led to many important findings, but has also created
many methodological gaps. Here we filled one of those gaps
by providing a framework that allows accounting for spa-
tial and topological information when comparing groups of
whole-brain networks. Moreover, our Permutation Network
Framework (PNF) makes no assumptions about the distribu-
tion of the test statistics of interest which often have non-
standard distributions due to the complex nature of the data.
We detailed two analysis methods embedded within this frame-
work, namely the PNF-J and PNF-KS. Our focus was on the
PNF-J, with the PNF-KS approach added to specifically ana-
lyze the Aging Brain dataset and compare the results with
those obtained based on a parametric analysis. Addition of the
PNF-KS also highlighted the fact that our framework allows
the implementation of other modified statistics. Simulation
studies (for the PNF-J) and analyses of fMRI data (for the
PNF-J and PNF-KS) exhibited the utility and appeal of our
approach.

Unlike current network comparison methods, the PNF-J
and PNF-KS allow assessing differences between groups at the
network level, as opposed to the edge or nodal level. The

PNF-J enables comparing the spatial consistency of topologi-
cally important areas of the brain (key node sets) across groups.
Its greatest appeal lies in the fact that the key node set selec-
tion can be informed by a specific question of interest, allowing
an alignment of the research goals with the analytical methods
employed. For example, a researcher might be interested in
whether a stroke in a particular location would have a differen-
tial impact on different groups. Groups with hub nodes that are
consistently concentrated in that location will suffer more severe
damage than those with spatially inconsistent or more widely dis-
tributed hubs. Employing the PNF-J, with hubs as the key nodes,
allows distinguishing these groups. The PNF-KS enables dis-
cerning whether degree distributions differ between groups, thus
giving further insight into the capacity of localized brain injury or
degeneration to affect overall brain capabilities in distinct popu-
lations. Most importantly, our Permutation Network Framework
is easily implementable, as outlined in the Methods section,
and provides a tool to extract meaningful information from
complex data.

Network analyses provide complementary insight to the tra-
ditional activation localization analyses. The network based
paradigm takes the perspective that many diseases don’t just
affect specific brain regions but that they affect patterns of con-
nectivity across the brain. Network based approaches like ours
aim to detect these topological differences and provide insight
into the spatial distribution of these differences via the presented
overlap maps. While the methods described here are power-
ful and yield test statistics without reducing the networks to
summary metrics, there are some limitations to the techniques.
In particular, the use of the PNF-J to compare hub nodes (or
other key node sets) simply determines if (and where) the spa-
tial locations of the hubs are different between groups. It does
not indicate if the number of connections or the regions that
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the hubs are connected to are different between groups. In
order to make such determinations, additional post hoc anal-
yses are required. Once a group difference is identified using
the permutation testing framework proposed, the post hoc anal-
yses are then better justified and can be used to explore and
explain network properties that underlie this observed statistical
difference. Another potential limitation of our approach, men-
tioned in the “Statistical Assessment Through Permutations”
subsection, is that inflated family-wise type I error rates may
result if used in a massively multiple testing context. In this case,
exact tests like those of Phipson and Smyth (2010) should be
incorporated.

Brain network analysis is ripe for methodological development
and our method provides a useful addition to the suite of whole-
brain network comparison tools. Brain network analyses hold
great potential for aiding in our understanding of normal and
abnormal brain function. However, to realize this potential, we
must continue to conscientiously develop tools that account for
and exploit the complexity in the data.
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APPENDIX

Table A1 | Simulation results.

Simulation Signal

probability (%)

P-value

1 10 0.5004

15 0.4258

20 0.2413

22 0.1529

24 0.0851

26 0.0391

28 0.0122

30 0.0034

35 0

40 0

2 10 0.4914

15 0.4355

20 0.2989

22 0.1929

24 0.1392

26 0.078

28 0.0354

30 0.0166

35 0.0007

40 0

3 80 0.4893

77 0.479

74 0.4094

71 0.31

68 0.1816

65 0.0777

62 0.0196

59 0.0039

56 0.0004

53 0

50 0

Table A2 | Leipzig and Aging Brain data analysis results for the PNF-J.

Test type Dataset Threshold P-value

Unpaired two
sample

Aging—old vs.
young

0.0537 0.0363

0.1074 0.0023

0.1609 8.45 × 10−4

0.2144 4.15 × 10−4

0.3208 1.40 × 10−4

0.4264 3.00 × 10−5

0.6349 0

0.8476 0

1 1

Connectome
Leipzig

0.0535 0.4387

0.1069 0.3073

0.1604 0.2436

0.2138 0.1864

0.3206 0.1765

0.4277 0.1066

0.6395 0.4672

0.8505 0.0828

1 1

Paired two
sample

Aging—rest vs.
MS

0.0533 2.00 × 10−5

0.1067 1.50 × 10−5

0.1599 3.00 × 10−5

0.2131 3.50 × 10−5

0.3193 2.50 × 10−5

0.4243 5.50 × 10−5

0.6321 3.10 × 10−4

0.8411 2.50 × 10−4

1 1

Aging—rest vs.
visual

0.0535 9.80 × 10−5

0.107 2.00 × 10−5

0.1604 5.00 × 10−6

0.2138 5.00 × 10−6

0.3202 0

0.4251 5.00 × 10−6

0.633 2.50 × 10−6

0.8415 2.00 × 10−6

1 1
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Table A3 | Third study data analysis results for the PNF-J.

Comparison Threshold P-value

Rest 1 vs. rest 2 0.0536 0.8677

0.1074 0.8523

0.161 0.9141

0.2146 0.9347

0.3211 0.9684

0.4275 0.8904

0.6404 0.9178

0.8465 0.8866

1 1

Rest vs. N-back 0.0534 0.0192

0.1066 0.0394

0.1597 0.0388

0.2133 0.0396

0.3196 0.0312

0.4249 0.0041

0.6332 0.0273

0.8417 0.1587

1 1
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