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Objectives: Accurate identifying head and neck squamous cell cancer (HNSCC)

patients at high risk of local persistence/recurrence (P/R) is of importance for

personalized patient management. Here we developed a multi-objective,

multi-classifier radiomics model for early HNSCC local P/R prediction based

on post-treatment PET/CT scans and clinical data.

Materials and methods: We retrospectively identified 328 individuals (69 patients

have local P/R) with HNSCC treated with definitive radiation therapy at our

institution. The median follow-up from treatment completion to the first

surveillance PET/CT imaging was 114 days (range: 82-159 days). Post-treatment

PET/CT scans were reviewed and contoured for all patients. For each imaging

modality, we extracted 257 radiomic features to build a multi-objective radiomics

model with sensitivity, specificity, and feature sparsity as objectives for model

training. Multiple representative classifiers were combined to construct the

predictive model. The output probabilities of models built with features from

various modalities were fused together to make the final prediction.

Results: We built and evaluated three single-modality models and two multi-

modality models. The combination of PET, CT, and clinical data in the multi-

objective, multi-classifier radiomics model trended towards the best prediction

performance, with a sensitivity of 93%, specificity of 83%, accuracy of 85%, and

AUC of 0.94.
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Conclusion: Our study demonstrates the feasibility of employing a multi-

objective, multi-classifier radiomics model with PET/CT radiomic features

and clinical data to predict outcomes for patients with HNSCC after radiation

therapy. The proposed prediction model shows the potential to detect cancer

local P/R early after radiation therapy.
KEYWORDS

head and neck squamous cell cancers, radiotherapy, treatment outcome prediction,
radiomics, local persistence and recurrence
Introduction
In the United States, head and neck squamous cell cancers

(HNSCC) represent a substantial number of cancers, with an

estimated 53,000 new cases per year and 10,800 deaths from the

disease (1). Patients with HNSCC often require radiation

therapy as part of their treatment. Radiation can be

recommended as a definitive treatment with or without

chemotherapy, as an adjuvant treatment after surgery, or in

combination with other treatment modalities (2, 3). However,

even when treated with curative intent, 25-50% of patients with

HNSCC will experience recurrence, predominantly within the

first three years after treatment (4, 5). Therefore, accurate and

early prediction/detection of tumor persistence/recurrence (P/R)

would be valuable for making treatment decisions after

radiotherapy. For patients at high risk for recurrence,

intensified treatments or more frequent post-treatment

surveillance imaging are needed. On the other hand, for

patients at low risk for recurrence, unnecessary repeated

surveillance scans may be avoided (6).

Fluorodeoxyglucose (FDG) PET/CT is routinely used for post-

radiation treatment surveillance to detect cancer P/R in HNSCC, as

it provides both anatomic and metabolic information (7, 8).

However, the oncologic use of PET/CT in the post-treatment

assessment presents formidable challenges due to treatment-related

inflammation, which involves the increased FDG uptake and

ultimately lead to false-positive interpretation (7, 9, 10). For

instance, Mester et al. showed that more than one quarter of 1,134

FDG PET/CT reports contained incidental foci of begin FDG uptake

and the majority were caused by inflammatory processes (10). Thus,

it is recommended that PET/CT be performed at least 12 weeks after

treatment completion to minimize inflammatory FDG uptake (8,

11). However, in a meta studies including 24 studies (2627 patients),

assessment of PET/CT (>3 months) in detecting local failure

demonstrated a sensitivity of 87% and a specificity of 93% and

more tools are needed to improve the detection of local failure (12).

Radiomics involves advanced imaging analysis techniques

that offer a possibility for differentiating intratumoral
02
heterogeneity and observing a patient’s response to treatment

by extracting quantitative features from radiological images such

as CT, PET, MRI, or PET/CT (13, 14). These features, including

some not easily visible or quantifiable upon visual inspection,

can be used to build models for exploring predictive information

from radiological images (15–18). For HNSCC treatment

outcome prediction, Vallieres et al. developed a set of random

forest method based radiomics model to predict locoregional

failure (LF) and distant metastases using PET/CT data collected

before treatment (19). With a multi-institution dataset, they

obtained an area under the receiver operating characteristic

curve (AUC) of 0.86 for DM and 0.69 for LF. Using the same

dataset, we built a multi-classifier, multi-objective and multi-

modality model (mCOM) for pre-treatment HNSCC LF

prediction (20). In the mCOM model, multiple classifiers were

used to create the model; sensitivity and specificity were

considered simultaneously as the objectives to guide the model

construction. Both clinical features and radiomics features

extracted from various modalities were used as model inputs.

The optimal mCOM model achieved an AUC value of 0.77. In

addition, Lv et al. used the same cohort to construct a multi-level

multi-modality fusion radiomics model for prognostication of

HNCSS, and similar performance was achieved (21). As more of

HNCSS data are publicly available on The Cancer Imaging

Archive (TCIA), they developed a context-aware saliency

guided radiomics model using 806 HNSCC patients from 9

centers for survival time-event outcome prediction using pre-

treatment imaging only (22). HEad and neCK TumOR

(HECKTOR) challenge, organized as a satellite event of the

International Conference on Medical Image Computing and

Computer Assisted Intervention (MICCAI) from 2020, offered

an opportunity for researchers accessing more HNSCC patient

data and validation their HNSCC segmentation and outcome

prediction model objectively (23). According to the overview of

the challenge in 2021, radiomics based method played an

important role in the submitted models (23).

Although radiomics is a hot topic for treatment outcome

prediction of HNSCC, most of the works and datasets are

focusing on pre-treatment outcome prediction. Here we
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hypothesize that a radiomic feature set extracted from PET/CT

images of HNSCC primary tumors after radiation therapy

correlates with patients’ local control and that a machine

learning model can be trained by these features to predict

patients’ local control after radiotherapy. The goal of this

study was to develop and validate a multi-objective, multi-

classifier radiomics model that can predict post-treatment local

P/R in patients with HNSCC. As many clinical parameters such

as patient age, tumor stage, primary site and HPV status have

shown strong correlation to treatment outcome in different

studies, we added several of these parameters as features for

model training (19, 24, 25). In the multi-objective model, to

select the most predictive feature set and to balance the model

performance on prediction sensitivity and specificity, we

optimized the sparsity of the selected radiomic feature set, the

prediction sensitivity, and prediction specificity simultaneously

through an immune algorithm. To improve the prediction

robustness, we used three base classifiers—logistic regression

(LR), discriminant analysis (DA), and support vector machine

(SVM)—together to build the model. We developed the

radiomics model with a training cohort and evaluated it on an

independent validation cohort.
Materials and methods

Patients

All investigations in this study were carried out in

accordance with the guidelines and regulations of institutional
Frontiers in Oncology 03
review board (IRB). We originally included 432 patients with

HNSCC diagnosed at our institution from August 2005 to

November 2018. This institutional database contained

information about the baseline features, therapy, and follow-

up data. Patients with distant metastases, those who did not

receive a PET/CT scan from the treating institution within six

months after treatment, and those who had a history of

radiotherapy were excluded. Thus, 328 patients were included

in this study: 69 with tumor persistence/local recurrence and 259

without locoregional recurrence. All 69 cases who have

locoregional recurrence were confirmed with biopsy (cytologic

or histologic). 328 patients were divided into a training cohort

(262 patients) and a validation cohort (66 patients) using

baseline characteristics-based case-control matching with a 4:1

fashion (Figure 1). Baseline characteristics difference between

training and validation cohorts were evaluated with t-test,

Mann-Whitney U-test, and Fisher’s test for continuous data,

ordinal data, and categorical data, respectively. We used SPSS

version 26.0 (Armonk, NY: IBM Corp) to perform the matching,

and P-value of <0.05 was set as significant.
Treatments and clinical endpoints

Patients were treated with radiation therapy in different

treatment modalities, including definitive radiation treatment

(RT), concurrent chemoradiotherapy (CCRT), and surgery then

RT alone or CCRT. Patients referred for re-irradiation were

excluded. Cisplatin, paclitaxel, and cetuximab were combined

with radiotherapy in different treatment regimens in CCRT.
FIGURE 1

Diagram of the patients included in this study.
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Each of these patients received a total radiation dose of 66-72 Gy

in 2-2.2 Gy fractions to the gross tumor. Radiation treatments

were performed according to a conventional (five fractions per

week) schedule. And patients were followed up every 3-6 months

for the first two years and every 6-12 months after the therapy,

albeit the exact timing was subject to normal clinical variability.

The follow-up practices included physical examination, blood

test, PET/CT and considerable chest imaging, and a biopsy

confirmation was commonly recommended if lesions were

suspected of harboring malignancy. Recurrence was defined as

re-emergence of the tumor after initial complete regression and

was divided into local (i.e., treatment failure within the planning

target volume or the zone of the primary tumor) and regional

recurrence (i.e., failure in the neck lymph nodes). Recurrence

was distinguished from a second primary tumor by considering

pathological features, clinical features, and the location of the

tumor in relation to radiotherapy (26). The median follow-up

for this study is 61 months (range: 9-170 months).
PET/CT image acquisition and
image segmentation

Diagnostic post-treatment PET and CT scans were exported

through the digital Picture Archiving Communication System

(PACS, iSite Enterprise). The median follow-up time from

treatment completion to PET/CT imaging was 114 days

(range: 82-159 days). Gross tumor volume (GTV) was defined

as areas suspicious for cancer local P/R after radiation therapy

on PET/CT images, which included pretreatment GTVs and

areas with a standardized uptake value (SUV) ≥ 2.5. A radiation

oncologist and a nuclear medicine radiologist with more than six

years of clinical experience contoured the GTVs on CT in

Velocity AI (Varian Medical Systems, Palo Alto, CA, USA).

Details about the PET/CT imaging protocol of the included

patient scans are shown in Supplementary Table S1.
Radiomic feature extraction

We extracted radiomic features from PET/CT images within

the delineated GTV. We corrected GTV masks to cover soft-

tissue-only areas by removing voxels whose Hounsfield units

(HU) are outside of [-150, 180] on CT images. For PET images,

we calculated the standardized uptake value (SUV) (27). For CT

images, we kept their image values in raw HU format. Before

feature extraction, we resampled the voxel spacing of all the

images to an isotropic voxel size of 1.0 × 1.0 × 1.0 mm3 via

bilinear interpolation to correct for the differences in voxel

spacing and slice thicknesses between different scans.

We extracted 257 radiomic features for each imaging

modality by using a MATLAB based open source radiomics
Frontiers in Oncology 04
toolbox (28). These radiomic features comprise eight geometry

features, nine intensity features, and 240 gray-level co-

occurrence matrices (GLCMs) based texture features. See the

Supplementary Material for more detailed explanations of the

extracted features and their mathematical definitions.
Clinical feature selection

In addition to radiomic features, clinical characteristics such

as patient age, tumor stage, primary site and HPV status may

improve the performance of local P/R prediction models (29–

33). Several prospective clinical trials and retrospective analyses

have shown that HPV status is strongly associated with

therapeutic response and survival for individuals with HNSCC

in the oropharynx (29, 30, 32). Besides, patient age, tumor

primary site, tumor T-stage, and N-stage were found

contribute significantly to prediction HNSCC treatment

response and overall survival (31). Therefore, in this study, we

also collected clinical information to build the prediction model.
Multi-objective, multi-classifier
prediction model

We created a multi-classifier, multi-objective, and multi-

modality radiomics model to identify HNSCC patients who have

a high risk of local P/R by fusing the output probabilities from

separate predictive models built with features from different

modalities: CT, PET, and clinical data. The training and

prediction pipeline for the proposed radiomics model is

illustrated in Figure 2.

Before model training, for both PET and CT radiomic

features, we removed the redundant and less predictive

radiomic features using the minimal-redundancy-maximal-

relevance criterion (mRMR) method (34). The pre-selected

feature group is of 50 features for each imaging modality. In

the model training stage, we train the PET-radiomics, CT-

radiomics, and clinical feature-based models separately. For

each separate model, three representative classifiers—LR, SVM,

and DA—were used together to improve the robustness of the

prediction results. Model sensitivity, specificity and feature

sparsity were optimized simultaneously to guide the model

construction. Feature sparsity here is defined as one over the

number of features selected through model training, where a

higher value indicates that fewer features were selected to build

the model, and the minimum number of features selected was set

as 1. To create a model for each modality, we used an iterative

multi-objective immune algorithm (IMIA) (35) to update the

feature selection vector ƒ, hyperparameters of classifiers b, and
weights of classifiers w for classifier fusion according to the
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predictive performance on the training cohort. Different values

and combinations of ƒ, b and w result in different solutions, e.g.,

sub-models, and solutions in the pareto-optimal solution set

were kept during model updating with IMIA. Each solution in

the pareto-optimal solution set has either higher feature sparsity,

higher sensitivity, or higher specificity on the training data than

the other solutions in the pareto-optimal set. During model

training, the probability output of solutions in the pareto-

optimal solution set were weight-fused by using the evidential

reasoning (ER) method to evaluate the training performance of

the pareto-optimal solution set (36). The weight for each

solution was determined by its performance on the training

data. The more balanced the sensitivity and specificity, the

higher the weight factor.

After the model performance on the training cohort

converged or the number of model updating generations

reached the maximum, which was set as 50 in our experiment,

we calculated the weights of modalities for output probability

fusion based on their training performances. Then, for a sample

from the validation cohort, models built with clinical data, CT

radiomic features, and PET radiomic features gave their

prediction results separately. Finally, these prediction results

were fused together via ER again to give a final prediction value.

See the Supplementary File and recent studies (20, 37) for details

about IMIA, classifier fusion, weighted fusion, and modality

fusion. Of note, the proposed multi-classifier, multi-objective,

and multi-modality radiomics model is based on our previous

work (20), and we modified it by adding feature sparsity as an

additional objective to further reduce the redundancy of the

selected feature set during model training.
Frontiers in Oncology 05
Model performance evaluation

To evaluate the benefit of adding feature sparsity to the objective

during model training, we compared the number of selected features

and model performance of the multi-classifier, multi-objective

radiomics models trained with and without feature sparsity

objective for PET and CT separately. To evaluate the robustness of

the multi-classifier model over single-classifier ones, we compared the

prediction performance of PET and CT multi-classifier radiomics to

their single-classifier ones (models built with LR, DA, and SVM

separately). To illustrate the added prediction power of using multi-

modality fusion strategy, we constructed five different multi-objective,

multi-classifier prediction models for comparison. Three of them were

single-modality models: clinical features model, CT radiomic features

model and PET radiomic features model. The other two were multi-

modality models: fused CT and PET radiomics model and fused

Clinical, CT and PET features (CT+PET+Clinic) model.

We evaluated the final models by calculating the sensitivity,

specificity, accuracy, and AUC of the prediction results on the

validation cohort. We calculated the statistical differences between

the receiver operating characteristic curves (ROCs) of different

models by using the Delong test with a significance level of 0.05

(38). To evaluate the difference of local P/R free survival between the

identified high- and low-risk patient groups by different models, we

plotted Kaplan-Meier curves to show their locoregional recurrence

free survival probabilities along follow-up, where log-rank test with

significance level of 0.05 was used to compare the survival

distributions. We also evaluated the prognostic value of the three-

modality-fused model in predicting local and regional recurrence

respectively to compare with the reported prediction performance of
FIGURE 2

Workflow for the proposed multi-objective, multi-classifier, multi-modality radiomics model.
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human experts in a meta-analysis. Model training, validation and

performance analysis were performed using MATLAB 2020a (The

MathWorks, Inc).
Results

Clinical characteristics of the patients

Table 1 shows the patient characteristics for the training and

validation cohorts. These cohorts had a median age of 66.4 (range

32-91) and were predominantly males (79.6%). The majority of the

patients (98.8%) had a performance status (PS) score less than two,

and oropharynx was the most common site of cancer (67.4%). We

divided the therapeutic treatments toward HNSCC into four

categories: CCRT (75.9%), RT alone (5.8%), surgery then RT

alone (9.1%), and surgery then CCRT (9.1%). The training and

validation cohorts did not differ significantly in terms of basic

characteristics or recurrence rate (21.0% and 21.2%, respectively).

Median follow-up time was 31 months (range 9-113 months) for

the training cohort and 29 months (range 9-116 months) for the

validation cohort. The Kaplan-Meier curves of local P/R free

survival on training and validation cohort are shown in Figure 3A.
Model performance

The radiomics feature selection results and the validation

performance are shown in Supplementary Figures S1, S2, Table

S2, and Table 2 when the models were trained with and without

feature sparsity objective. As multiple objectives were used for

model training, the final model for each modality is a

fused model of different sub-models (solutions). Each of

these solutions has different feature selection vector,

hyperparameter, and classifier weight. Compared with models

trained without the feature sparsity objective, the median

number of selected features in each solution decreased from 13

to 5 for CT radiomics model, and 12 to 6 for PET radiomics

model with feature sparsity serving as an additional objective.

Meanwhile, the performance of models with feature sparsity

objective numerically improved (Table 2). Of note, as most

radiomics features in the pre-selected feature set (50 features)

were less frequently selected when feature sparsity was used as an

additional objective, the feature selection frequency for top

features increased (Figure S2).

The performance comparison of radiomics models built with

single classifier and multiple classifiers is shown in Table 3.

Radiomics models built with the proposed multi-classifier

strategy achieved numerically better performance for all

evaluation metrics in both PET and CT radiomics models.

The prediction performance of the separate single-modality

models and the fused multi-modality models is summarized in
Frontiers in Oncology 06
Table 4 and Figure 4. P-values in Table 4 were calculated

between the three-modality fused model and the other models.

The fusion model of clinical features and post-treatment CT and

PET radiomic features achieved the highest AUC (0.94) at

predicting local P/R in the validation cohort. This was higher

than both of the separate models, but only marginally higher than

the fused CT and PET radiomics model. The CT+PET+Clinic

model’s ROC did not differ significantly from that of the other

models, except for the clinical feature–based model.

The Kaplan-Meier curves of local P/R free survival of

differentiated low- and high-risk patient group using the CT+

PET+Clinic model are shown in Figures 3B, C for training and

validation cohort, respectively. The Kaplan-Meier curves of low-

and high-risk patient groups identified by other models are shown

in Supplementary Figure S3. Prediction probability value of 0.5

was used as the risk differentiation threshold for all the models.

According to the results of log-rank test (Figure 3; Figure S3), the

identified low-risk patient group using the CT+PET+Clinic model

has significantly better local P/R free survival than the high-risk

group in both training and validation cohorts. Meanwhile, the

clinical feature model is the only model could not significantly

identify high- and low-risk patients on the validation cohort

(Figure S3).

In our dataset, 33 local failure and 25 regional failure were

recorded in the training cohort, while the validation cohort

patients had 11 local and 5 regional failure recorded. When

probability value of 0.5 was used as the classification threshold,

the three-modality-fused model predicted 23 patients in the

validation cohort to have locoregional failure, in which 11 out of

11 local failure and 4 out of 5 regional failure was identified,

however 9 patients were falsely predicted to be positive for

locoregional failure. The corresponding sensitivities for local and

regional failure are 100% and 80% respectively, while the overall

specificity is 83%.
Discussion

As radiation therapy is an important and potentially curative

modality for HNSCC, a better local control is linked to improved

disease-free survival and quality of life after treatment. In the

present study, we developed a multi-objective, multi-classifier

radiomics model using post-treatment PET/CT radiomics

features and clinical data from HNSCC patients who had

undergone radiotherapy, which could provide important

information for predicting locoregional recurrence after

radiotherapy. By adding feature sparsity as an additional

objective to our previous published method, the median

selected radiomics feature number decreased a half and better

validation performance was achieved. The multi-classifier

strategy produced more robust prediction performance than

single classifier models. The fused post-treatment PET/CT
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TABLE 1 Patient characteristics.

Characteristic Training cohort Validation cohort P-value Combined cohorts

Patients (n) 262 66 328

Age (y)

Mean (SD) 66.0 (10.3) 68.1 (10.6) 0.148 66.4 (10.4)

Range 36-91 32-89 32-91

Sex 0.174

Male 204 (77.9%) 57 (86.4%) 261 (79.6%)

Female 58 (22.1%) 9 (13.6%) 67 (20.4%)

PS 1

Grade 0 177 (67.6%) 44 (66.7%) 221 (67.4%)

Grade 1 82 (31.3%) 21 (31.8%) 103 (31.4%)

Grade 2 3 (1.1%) 1 (1.5%) 4 (1.2%)

Ethnicity 0.301

Caucasian 185 (70.6%) 42 (63.6%) 227 (69.2%)

African American 36 (13.7%) 11 (16.7%) 47 (14.3%)

Hispanic 23 (8.8%) 6 (9.1%) 29 (8.8%)

Asian 12 (4.6%) 2 (3.0%) 14 (4.3%)

Other 1 (0.4%) 1 (1.5%) 2 (0.6%)

Unknown 5 (1.9%) 4 (6.1%) 9 (2.7%)

Smoking status 0.825

Never 89 (34.0%) 21 (31.8%) 110 (33.5%)

Former 124 (47.3%) 34 (51.5%) 158 (48.2%)

Current 49 (18.7%) 11 (16.7%) 60 (18.3%)

Tumor site 0.786

Oropharynx 175 (66.8%) 46 (69.7%) 221 (67.4%)

Oral cavity 27 (10.3%) 4 (6.1%) 31 (9.5%)

Nasopharynx 50 (19.1%) 13 (19.7%) 63 (19.2%)

Larynx 10 (3.8%) 3 (4.5%) 13 (4.0%)

T category 0.915

Tx 3 (1.1%) 0 (0%) 3 (0.9%)

T0 1 (0.4%) 0 (0%) 1 (0.3%)

T1 49 (18.7%) 10 (15.2%) 59 (18.0%)

T2 84 (32.1%) 23 (34.8%) 107 (32.6%)

T3 60 (22.9%) 19 (28.8%) 79 (24.1%)

T4 49 (18.7%) 11 (16.7%) 60 (18.3%)

Unknown 16 (6.1%) 3 (4.5%) 19 (5.8%)

N category 0.137

N0 40 (15.3%) 17 (25.8%) 57 (17.4%)

N1 48 (18.3%) 7 (10.6%) 55 (16.8%)

N2 150 (57.3%) 35 (53.0%) 185 (56.4%)

N3 8 (3.1%) 4 (6.1%) 12 (3.7%)

Unknown 16 (6.1%) 3 (4.5%) 19 (5.8%)

Grade 0.691

Low grade 9 (3.4%) 4 (6.1%) 13 (4.0%)

Intermediate grade 104 (39.7%) 28 (42.4%) 132 (40.2%)

High grade 94 (35.9%) 21 (31.8%) 115 (35.1%)

Unknown 55 (21.0%) 13 (19.7%) 68 (20.7%)

HPV status 0.689

Negative 81 (30.9%) 19 (28.8%) 100 (30.5%)

(Continued)
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radiomics model achieved promising performance (AUC=0.93)

at predicting local P/R. The model that achieved the highest

AUC value fused the output probabilities from all the single-

modality models (AUC=0.94).

When evaluated the prognostic value of our best model

in prediction local and regional failure separately, our

model performed better sensitivities (sensitivitylocal = 100%

and sensitivityregional = 80%) than radiologists’ diagnosis

performance reported from a mate-analysis of 24

studies which included 2627 patients (sensitivitylocal = 87%

and sensitivityreg iona l = 79%), but lower specificity

(specificitymodel = 83% and specificityradiologist = 93% to 95%)

(12, 39). These results indicate our radiomics model was highly

prognostic for locoregional tumor control with high sensitivity,

which could help physicians detect tumor after radiotherapy and

provide timely additional treatment to patients of high

probabilities of tumor local P/R, however it might increase the

risk for unnecessary treatment for false positive patients. Note

that there is one difference between radiologists’ reading

performance and our model prediction performance using
Frontiers in Oncology 08
post-treatment PET. Radiologists’ reading on PET is to make a

diagnosis whether there is any recurrence at the time of post-

treatment PET acquisition. In our model prediction, we do not

necessarily identify recurrence on the post-treatment PET.

Rather we are using the post-treatment PET to predict

whether patients will have recurrence eventually, which could

happen after the first post-treatment PET acquisition.

Because PET/CT is a preferred surveillance modality for

HNSCC patients after radiotherapy, many efforts have been

made to improve the accuracy, sensitivity, and specificity of

PET/CT in predicting clinical outcomes or distinguishing

locoregional recurrence from radiation-induced inflammation

(40–43). Manca et al. reviewed the principles of quantitative

PET/CT imaging as well as related technical issues in PET/CT’s

clinical application and demonstrated that, although SUVs are

widely used for prognostic purposes, there is no consensus

criterion for response assessment across institutions (40). Choi

et al. used dynamic contrast-enhanced (DCE) T1-weighted

perfusion MRI to detect local tumor recurrence after definitive

treatment for patients with head and neck cancer (41).
TABLE 1 Continued

Characteristic Training cohort Validation cohort P-value Combined cohorts

Positive 61 (23.3%) 13 (19.7%) 75 (22.9%)

Unknown 120 (45.8%) 34 (51.5%) 154 (47.0%)

Therapeutic combinations 0.318

Concurrent chemoradiotherapy (CCRT) 200 (76.3%) 49 (74.2%) 249 (75.9%)

Radiation alone 12 (4.6%) 7 (10.6%) 19 (5.8%)

Surgery then radiation alone 25 (9.5%) 5 (7.6%) 30 (9.1%)

Surgery then CCRT 25 (9.5%) 5 (7.6%) 30 (9.1%)

Vital status 0.151

Alive 224 (85.5%) 51 (77.3%) 275 (83.8%)

Deceased 38 (14.5%) 15 (22.7%) 53 (16.2%)

Local Control 1

Yes 207 (79.0%) 52 (78.8%) 259 (79.0%)

No 55 (21.0%) 14 (21.2%) 69 (21.0%)
A B C

FIGURE 3

Kaplan-Meier analysis of local persistence/recurrence free survival on (A) training and validation cohorts, (B) identified low- and high-risk patient
groups on training cohort, (C) identified low- and high-risk patient groups on validation cohort. P-values are calculated using log-rank test.
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Theyanalyzed the surveillance MRI images from 3, 6, and 12

months after the treatment. DCE-MRI showed higher sensitivity

than conventional MRI for the characteristics that allowed

accurate differentiation of the vascular microenvironment

from scars. However, this study did not use early surveillance

images, in which inflammation could affect the prediction

outcome. Nevertheless, the developed model with post-

treatment PET/CT acquired at the median time of 114 days

after treatment completion can still be useful for personalized

management. For example, patients at high-risk for recurrence

may have more frequent follow-ups such that salvage surgery

can be perform rapidly before tumors grow or spread further.
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Our multi-objective, multi-classifier, and multi-modality

model not only demonstrates the feasibility of predicting local

P/R from PET/CT, but also indicates the potential to distinguish

tumor sites from local inflammation. In clinical practice,

physicians were generally unable to detect recurrence within 12

weeks. Because FDG uptake is not limited to cancer sites and may

occur in a variety of inflammatory cells, sites of tumor recurrence

and inflammation could be mistaken for each other due to their

similar FDG levels. Therefore, it is recommended that PET/CT be

conducted at least 12 weeks following the treatment completion to

reduce the false-positive effects of inflammation. By optimizing

training methods and including clinical inputs of PET/CT from
TABLE 2 Performance comparison of multi-classifier multi-objective radiomics models trained with and without feature sparsity (FS) as objective.

Modality FS Median feature number Sensitivity Specificity Accuracy AUC P-value

CT wo 13
(IQR: 12-15)

0.78 0.81 0.80 0.83 0.25

w 5
(IQR: 4-8)

0.86 0.83 0.83 0.85

PET wo 12
(IQR: 8-16)

0.71 0.75 0.74 0.85 0.04

w 6
(IQR: 3-8)

0.93 0.83 0.85 0.90
front
The bold values indicate the best results of the related metrics for CT and PET radiomics models separately.
TABLE 3 Performance comparison of single classifier radiomics models and multi-classifier (MC) radiomics models.

Modality Classifier Sensitivity Specificity Accuracy AUC P-value

CT LR 0.78 0.83 0.82 0.81 0.09

DA 0.79 0.73 0.74 0.80 0.04

SVM 0.71 0.81 0.79 0.82 0.11

MC 0.86 0.83 0.83 0.85 —

PET LR 0.93 0.75 0.79 0.88 0.43

DA 0.71 0.81 0.79 0.87 0.16

SVM 0.86 0.73 0.76 0.87 0.28

MC 0.93 0.83 0.85 0.90 —
Classifiers comprising logistic regression (LR), discriminant analysis (DA), and support vector machine (SVM) were fused to construct the MC models.
The bold values indicate the best results of the related metrics for CT and PET radiomics models separately.
TABLE 4 Performance of multi-objective, multi-classifier models built with different combinations of modalities.

Modality Sensitivity Specificity Accuracy AUC P-value

Clinic 0.64 0.60 0.61 0.63 <0.01

CT 0.86 0.83 0.83 0.85 0.08

PET 0.93 0.83 0.85 0.90 0.17

CT+PET 0.86 0.87 0.86 0.93 0.50

CT+PET+Clinic 0.93 0.83 0.85 0.94 —
Models were compared to the three-modality fusion model (CT+PET+Clinic) for calculating P-values.
The bold values indicate the best results of the related metrics.
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before 12 weeks, the radiomics model may separate recurrence

from local inflammation at earlier stages, which would shed light

on the early prediction of tumor P/R from PET/CT imaging.

This study has some limitations that could be addressed in our

future research. First, although the three-modality fused model

trended towards better performance than the radiomics-only

models, we could not prove that the fusion of clinical features

and PET/CT radiomic features provides an additive benefit over

PET and/or CT radiomic features. The limited patient population in

this studymay have inhibited our ability to detect the difference, but

the three-modality fusion model is still promising and worth

investigating prospectively in a larger cohort. Second, this

prediction model was trained and validated on data from a single

institution: all the patients included were consistent in treatment

planning, follow-up management, and tumor recurrence/

persistence assessment. Although our results are encouraging, a

large multicenter cohort analysis to further validate the clinical

applicability of this prediction model would be worthwhile,

especially given the concern of robustness, reproducibility, and

standardization to radiomics related study (44, 45). External

validation of our model will be one of our future works when a

post-treatment HNSCC dataset is available. Third, this study only

included post-treatment PET/CT images in the model training. In

the future, an advanced prediction model would be worth exploring

when more data collected during HNSCC patient management

(e.g., dosimetric factors, pre-treatment PET/CT images, on-board

CBCT, MRI, and PET/MRI) become available.

In conclusion, we developed and validated a multi-objective,

multi-classifier radiomics model for predicting local P/R after
Frontiers in Oncology 10
radiotherapy in patients with HNSCC by using post-treatment

PET/CT and patients’ clinical data. This model was effective at

predicting outcomes, which could provide clinicians with more

information about potential recurrence for post-treatment

tumors. The proposed strategy is worthy of further investigation

in larger HNSCC cohorts and integrating features from

other modalities.
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